1,676
Views
34
CrossRef citations to date
0
Altmetric
Review Article

Recent advances in bioethanol production from Lignocellulosic biomass

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, & ORCID Icon show all
Pages 731-744 | Received 18 Aug 2020, Accepted 11 Jan 2021, Published online: 01 Mar 2021

References References 

  • Abdu Yusuf, A., and F. L. Inambao. 2019. “Bioethanol production techniques from Lignocellulosic biomass as alternative fuel: A review.” SSRN Scholarly Paper ID 3451096. Rochester, NY: Social Science Research Network. https://papers.ssrn.com/abstract=3451096
  • Abo, B. O., M. Gao, Y. Wang, W. Chuanfu, M. Hongzhi, and Q. Wang. 2019. Lignocellulosic biomass for bioethanol: An overview on pretreatment, hydrolysis and fermentation processes. Reviews on Environmental Health 34 (1):57–68. doi:10.1515/reveh-2018-0054.
  • Achinas, S., and G. J. W. Euverink. 2016. Consolidated briefing of biochemical ethanol production from Lignocellulosic biomass. Electronic Journal of Biotechnology 23 23 (September):44–53. doi:10.1016/j.ejbt.2016.07.006
  • Akinosho, H., T. Rydzak, A. Borole, A. Ragauskas, and D. Close. 2015. Toxicological challenges to Microbial bioethanol production and strategies for improved tolerance. Ecotoxicology 24 (10):2156–74. doi:10.1007/s10646-015-1543-4.
  • Alvira, P., E. Tomás-Pejó, M. Ballesteros, and M. J. Negro. 2010. Pretreatment technologies for an efficient bioethanol production process based on Enzymatic hydrolysis: A review. Bioresource Technology 101 (13):4851–61. doi:10.1016/j.biortech.2009.11.093.
  • Amorim, H. V., M. L. Lopes, C. O. Juliana Velasco de, M. S. Buckeridge, and G. H. Goldman. 2011. Scientific challenges of bioethanol production in Brazil. Applied Microbiology and Biotechnology 91 (5):1267–75. doi:10.1007/s00253-011-3437-6.
  • Aradhey, A. 2019. “India: Biofuels Annual.” IN9069. https://www.fas.usda.gov/data/india-biofuels-annual-4
  • Bahrani, S., S. Raeissi, and M. Sarshar. 2015. Experimental investigation of ionic liquid pretreatment of Sugarcane Bagasse with 1,3-Dimethylimadazolium Dimethyl Phosphate. Bioresource Technology 185 (June):411–15. doi:10.1016/j.biortech.2015.02.085.
  • Baksi, S., A. K. Ball, U. Sarkar, D. Banerjee, A. Wentzel, H. A. Preisig, J. C.Kuniyal, C. Birgen, S. Saha, B. Wittgens, and S. Markussen. 2019. Efficacy of a novel sequential Enzymatic hydrolysis of Lignocellulosic biomass and inhibition characteristics of monosugars. International Journal of Biological Macromolecules 129 (May):634–44. doi:10.1016/j.ijbiomac.2019.01.188
  • Balan, V., B. Bals, S. P. S. Chundawat, D. Marshall, and B. E. Dale. 2009. Lignocellulosic biomass pretreatment using AFEX. Methods in Molecular Biology (Clifton, N.J.) 581:61–77. doi:10.1007/978-1-60761-214-8_5
  • Balan, V. 2014. Current challenges in commercially producing biofuels from Lignocellulosic biomass. ISRN Biotechnology 2014:1–31. doi:10.1155/2014/463074.
  • Bals, B., C. Rogers, M. Jin, V. Balan, and B. Dale. 2010. Evaluation of Ammonia fibre expansion (AFEX) pretreatment for Enzymatic hydrolysis of Switchgrass harvested in different seasons and locations. Biotechnology for Biofuels 3 (1):1. doi:10.1186/1754-6834-3-1.
  • Banerjee, R. 2018. Pilot scale production of 2g ethanol utilizing rice straw: An integrated bio-refinery approach. Journal of Fundamentals of Renewable Energy and Applications. doi:10.4172/2090-4541-C4-058.
  • Barbosa, F. C., M. A. Silvello, and R. Goldbeck. 2020. Cellulase and oxidative Enzymes: New approaches, challenges and perspectives on cellulose degradation for bioethanol production. Biotechnology Letters 42 (6):875–84. doi:10.1007/s10529-020-02875-4.
  • Berłowska, J., K. Pielech-Przybylska, M. Balcerek, U. Dziekońska-Kubczak, P. Patelski, P. Dziugan, and D. Kręgiel. 2016. Simultaneous Saccharification and Fermentation of sugar beet pulp for efficient bioethanol production. BioMed Research International 2016:1–10. doi:10.1155/2016/3154929
  • Bhatia, A., B. Singh, R. Arora, and S. Arora. 2019. In vitro evaluation of the α-Glucosidase inhibitory potential of methanolic extracts of traditionally used Antidiabetic plants. BMC Complementary and Alternative Medicine 19 (1):74. doi:10.1186/s12906-019-2482-z.
  • “Bioenergy International.” 2020. Bioenergy International (blog). March 9, 2020. https://bioenergyinternational.com/markets-finance/us-tops-as-number-one-ethanol-producer-consumer-and-exporter
  • Blanch, H. W. 2012. Bioprocessing for Biofuels. Current Opinion in Biotechnology 23 (3):390–95. doi:10.1016/j.copbio.2011.10.002.
  • Bokinsky, G., P. P. Peralta-Yahya, A. George, B. M. Holmes, E. J. Steen, J. Dietrich, T. S. Lee, D. Tullman-Erceka, C. A. Voigt, B. A. Simmons, and J. D. Keasling, 2011. “Synthesis of three advanced biofuels from ionic liquid-pretreated Switchgrass using engineered Escherichia Coli.” Proceedings of the National Academy of Sciences 108 (50): 19949–54. 10.1073/pnas.1106958108
  • Brandon, A. G., and H. V. Scheller. 2020. Engineering of bioenergy crops: Dominant genetic approaches to improve Polysaccharide properties and composition in biomass. Frontiers in Plant Science 11 (March):282. doi:10.3389/fpls.2020.00282.
  • Brown, H. 2000. “The DOE bioethanol pilot plant: A tool for commercialization.” US Department of Energy
  • Bušić, A., N. Marđetko, S. Kundas, G. Morzak, H. Belskaya, M. I. Šantek, D. Komes, S. Novak, and B. Šantek. 2018. Bioethanol production from renewable raw materials and its separation and purification: A review. Food Technology and Biotechnology 56 (3):3. doi:10.17113/ftb.56.03.18.5546
  • Choudhary, J., S. Singh, and L. Nain. 2016. Thermotolerant fermenting Yeasts for simultaneous Saccharification fermentation of Lignocellulosic biomass. Electronic Journal of Biotechnology 21 (May):82–92. doi:10.1016/j.ejbt.2016.02.007.
  • Chowdhury, H., B. Loganathan, I. Mustary, F. Alam, and M. A. Saleh. 2019. Algae for biofuels: The third generation of feedstock. Second and Third Generation of Feedstocks 323–44. Mobin. . “.” In, . Elsevier. . doi:10.1016/B978-0-12-815162-4.00012-4.
  • Contreras, F., A. M. Subrata Pramanik, I. N. Rozhkova, O. K. Zorov, A. P. Sinitsyn, U. Schwaneberg, and M. D. Davari. 2020. Engineering robust cellulases for tailored Lignocellulosic Degradation Cocktails. International Journal of Molecular Sciences 21 (5):1589. doi:10.3390/ijms21051589.
  • Dahnum, D., S. O. Tasum, E. Triwahyuni, M. Nurdin, and H. Abimanyu. 2015. Comparison of SHF and SSF processes using Enzyme and dry Yeast for optimization of Bioethanol production from empty fruit bunch. Energy Procedia 68 (April):107–16. doi:10.1016/j.egypro.2015.03.238.
  • Dien, L.Q., N. T M. Phuong, D. T. Hoa, and P. H. Hoang. 2015. Efficient pretreatment of Vietnamese rice straw by soda and Sulfate cooking methods for Enzymatic Saccharification. Applied Biochemistry and Biotechnology 175 (3):1536–47. doi:10.1007/s12010-014-1359-3
  • Dubey, A. K., P. K. Gupta, N. Garg, and S. Naithani. 2012. Bioethanol production from waste paper acid pretreated Hydrolyzate with Xylose fermenting Pichia Stipitis. Carbohydrate Polymers 88 (3):825–29. doi:10.1016/j.carbpol.2012.01.004.
  • Erdei, B., Z. Barta, B. Sipos, K. Réczey, M. Galbe, and G. Zacchi. 2010. Ethanol production from mixtures of wheat straw and wheat meal. Biotechnology for Biofuels 3 (1):16. doi:10.1186/1754-6834-3-16.
  • Falls, M., and M. T. Holtzapple. 2011. Oxidative lime pretreatment of Alamo Switchgrass. Applied Biochemistry and Biotechnology 165 (2):506–22. doi:10.1007/s12010-011-9271-6.
  • Fan, C., S. Feng, J. Huang, Y. Wang, L. Wu, X. lI, L. Wang, Y. Tu, T. Xia, J. Li, X. Cai, and L. Peng. 2017. AtCesA8-driven OsSUS3 expression leads to largely enhanced biomass Saccharification and lodging resistance by distinctively altering lignocellulose features in rice. biotechnology for Biofuels 10 (1):221. doi:10.1186/s13068-017-0911-0
  • Fan, C., Y. Hua, S. Qin, L. Yongli, A. Alam, X. Changzhen, D. Fan, Q. Zhang, Y. Wang, W. Zhu, L. Peng, and K. Luo. 2020. Brassinosteroid overproduction improves Lignocellulose quantity and quality to maximize Bioethanol yield under green-like biomass process in transgenic poplar. Biotechnology for Biofuels 13 (1):9. doi:10.1186/s13068-020-1652-z
  • Furtado, A., J. S. Lupoi, N. V. Hoang, A. Healey, S. Singh, B.A. Simmons, and R. J. Henry. 2014. Modifying plants for biofuel and biomaterial production. Plant Biotechnology Journal 12 (9):1246–58. doi:10.1111/pbi.12300
  • Gao, F., Z. Hao, X. Sun, L. Qin, T. Zhao, W. Liu, H. Luo, B. Yao, and S. Xiaoyun. 2018. A versatile system for fast screening and isolation of Trichoderma Reesei cellulase hyperproducers based on DsRed and fluorescence-assisted cell sorting. Biotechnology for Biofuels 11 (1):261. doi:10.1186/s13068-018-1264-z.
  • Geng, P., L. Zhang, and G. Y. Shi. 2017. Omics analysis of acetic acid tolerance in Saccharomyces Cerevisiae. World Journal of Microbiology & Biotechnology 33 (5):94. doi:10.1007/s11274-017-2259-9.
  • Ghareib, M., K. A. Youssef, and A. A. Khalil. 1988. Ethanol tolerance ofSaccharomyces Cerevisiae and its relationship to lipid content and composition. Folia Microbiologica 33 (6):447–52. doi:10.1007/BF02925769.
  • Gyekye, L. 2017. “Second-generation biofuels ‘more cost-effective’ than first-generation biofuels, new study suggests | biofuels international magazine.” Biofuel International.March 2017. https://biofuels-news.com/news/second-generation-biofuels-more-cost-effective-than-first-generation-biofuels-new-study-suggests/
  • Halder, P., K. Azad, S. Shah, and E. Sarker. 2019. “Prospects and technological advancement of Cellulosic Bioethanol EcofueL production.” Advances in Eco-Fuels for a Sustainable Environment Elsevier, 211–36. doi:10.1016/B978-0-08-102728-8.00008-5.
  • Hasunuma, T., and A. Kondo. 2012. Consolidated bioprocessing and simultaneous Saccharification and fermentation of Lignocellulose to Ethanol with thermotolerant Yeast strains. Process Biochemistry 47 (9):1287–94. doi:10.1016/j.procbio.2012.05.004.
  • Hayes, P., and H. Bradford. 2019. “Biofuels annual biofuels annual 2019. https://www.fas.usda.gov/data/canada-biofuels-annual–5
  • Hosseini Koupaie, E., S. Dahadha, A. A. Bazyar Lakeh, A. Azizi, and E. Elbeshbishy. 2019. Enzymatic pretreatment of Lignocellulosic Biomass for enhanced Biomethane production-A review. Journal of Environmental Management 233 (March):774–84. doi:10.1016/j.jenvman.2018.09.106.
  • Huang, J., T. Xia, G. Li, X. Li, Y. Li, Y. Wang, Y. Wang, Y. Chen, G. Xie, F.W. Bai, L. Peng, and L. wang. 2019. Overproduction of Native Endo-β-1,4-Glucanases leads to largely enhanced biomass Saccharification and Bioethanol Production by specific modification of cellulose features in Transgenic rice. Biotechnology for Biofuels 12 (1):11. doi:10.1186/s13068-018-1351-1
  • Jiang, W., S. Chang, Q. Yongshui, Z. Zhang, and X. Jian. 2016. Changes on structural properties of Biomass pretreated by combined Deacetylation with liquid hot water and its effect on Enzymatic Hydrolysis. Bioresource Technology 220 (November):448–56. doi:10.1016/j.biortech.2016.08.087.
  • Kang, Y., M. J. Realff, J. H. Minjeong Sohn, Lee, and A. S. Bommarius. 2015. An effective chemical pretreatment method for Lignocellulosic biomass with substituted Imidazoles. Biotechnology Progress 31 (1):25–34. doi:10.1002/btpr.2005.
  • Kasavi, C., S. Eraslan, K. Y. Arga, E. T. Oner, and B. Kirdar. 2014. A system based network approach to Ethanol tolerance in Saccharomyces Cerevisiae. BMC Systems Biology 8 (1):90. doi:10.1186/s12918-014-0090-6.
  • Kim, J. S., Y. Y. Lee, and T. H. Kim. 2016. A review on Alkaline pretreatment technology for bioconversion of Lignocellulosic biomass. Bioresource Technology 199 (January):42–48. doi:10.1016/j.biortech.2015.08.085.
  • Kim, T. H., R. Gupta, and Y. Y. Lee. 2009. Pretreatment of biomass by Aqueous Ammonia for Bioethanol production. In Biofuels, ed. J. R. Mielenz, Methods in Molecular Biology, Vol. 581, 79–91. Totowa, NJ:Humana Press. doi:10.1007/978-1-60761-214-8_6.
  • Krishna, S. H., T. J. Reddy, and G. V. Chowdary. 2001. Simultaneous Saccharification and Fermentation of Lignocellulosic wastes to Ethanol using a thermotolerant yeast. Bioresource Technology, 77(2): 193–196. doi10.1016/s0960-8524(00)00151–6
  • Kumar, A. 2018. Assessment of different pretreatment technologies for efficient bioconversion of Lignocellulose to Ethanol. Frontiers in Bioscience 10 (2):350–71. doi:10.2741/s521.
  • Kumar, A. K., and S. Sharma. 2017. Recent updates on different methods of pretreatment of Lignocellulosic feedstocks: A review. Bioresources and Bioprocessing 4 (1):7. doi:10.1186/s40643-017-0137-9.
  • Lü, J., C. Sheahan, and F. Pengcheng. 2011. Metabolic engineering of Algae for fourth generation biofuels production. Energy & Environmental Science 4 (7):2451. doi:10.1039/c0ee00593b.
  • Li, F., M. Zhang, K. Guo, Z. Hu, R. Zhang, Y. Feng, X. Yi, W. Zou, L. Wang, C. Wu, J. Tian, T. Lu, G. Xie, and L. Peng. 2015. High-level Hemicellulosic Arabinose Predominately affects Lignocellulose crystallinity for genetically enhancing both plant lodging resistance and biomass enzymatic digestibility in rice mutants. Plant Biotechnology Journal 13 (4):514–25. doi:10.1111/pbi.12276
  • Li, X., T. H. Kim, and N. P. Nghiem. 2010. Bioethanol production from corn stover using Aqueous Ammonia pretreatment and two-phase simultaneous Saccharification and fermentation (TPSSF). Bioresource Technology 101 (15):5910–16. doi:10.1016/j.biortech.2010.03.015.
  • Limayem, A., and S. C. Ricke. 2012. Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science 38 (4):449–67. doi:10.1016/j.pecs.2012.03.002.
  • Liu, J. -J., G. -C. Zhang, E. J. Oh, P. Pathanibul, T. L. Turner, and Y. -S. Jin. 2016. Lactose fermentation by engineered Saccharomyces Cerevisiae capable of fermenting Cellobiose. Journal of Biotechnology 234 (September):99–104. doi:doi:10.1016/j.jbiotec.2016.07.018
  • Liu, Z.-H., and H.-Z. Chen. 2016. Simultaneous Saccharification and Co-Fermentation for improving the Xylose utilization of steam exploded corn stover at high solid loading. Bioresource Technology 201 (February):15–26. doi:10.1016/j.biortech.2015.11.023.
  • Lopes, A. M., E. X. Ferreira Filho, and L. R. S. Moreira. 2018. An update on Enzymatic cocktails for Lignocellulose breakdown. Journal of Applied Microbiology 125 (3):632–45. doi:10.1111/jam.13923.
  • Lorne, D., and A. Bouter. 2019. “Biofuels dashboard 2019 | IFPEN.” Ifp Energies Nouvelles. July 2019. https://www.ifpenergiesnouvelles.com/article/biofuels-dashboard-2019
  • Manzanares, P., M. J. Negro, J. M. Oliva, F. Saéz, I. Ballesteros, M. Ballesteros, C. Cara, E. Castro, and E. Ruiz. 2011. Different process configurations for Bioethanol production from pretreated olive pruning Biomass. Journal of Chemical Technology and Biotechnology 86 (6):881–87. doi:10.1002/jctb.2604.
  • McIntosh, S., Z. Zhang, J. Palmer, H.-H. Wong, W. O. S. Doherty, and T. Vancov. 2016. Pilot-scale Cellulosic Ethanol production using Eucalyptus Biomass pre-treated by Dilute Acid and steam explosion: Pilot-scale Cellulosic Ethanol production using Eucalyptus Biomass pretreated by Dilute Acid and steam explosion. Biofuels, Bioproducts and Biorefining 10 (4):346–58. doi:10.1002/bbb.1651.
  • Mohapatra, S., S. S. Mishra, P. Bhalla, and H. Thatoi. 2019. Engineering grass biomass for sustainable and enhanced Bioethanol production. Planta 250(2): 395–412. doi:10.1007/s00425-019-03218-y
  • Mortimer, J. C. 2019. Plant synthetic biology could drive a revolution in biofuels and medicine. Experimental Biology and Medicine 244 (4):323–31. doi:10.1177/1535370218793890.
  • Mosier, N. 2005. Features of promising technologies for pretreatment of Lignocellulosic biomass. Bioresource Technology 96 (6):673–86. doi:10.1016/j.biortech.2004.06.025.
  • Mukherjee, V., J. Steensels, B. Lievens, I. Van de Voorde, A. Verplaetse, G. Aerts, K. A. Willems, J. M. Thevelein, K. J. Verstrepen, and S. Ruyters. 2014. Phenotypic evaluation of natural and industrial Saccharomyces Yeasts for different traits desirable in industrial bioethanol production. Applied Microbiology and Biotechnology 98 (22):9483–98. doi:10.1007/s00253-014-6090-z
  • Mukherjee, V., D. Radecka, G. Aerts, K. J. Verstrepen, B. Lievens, and J. M. Thevelein. 2017. Phenotypic landscape of non-conventional Yeast species for different stress tolerance traits desirable in Bioethanol Fermentation. Biotechnology for Biofuels 10 (1):216. doi:10.1186/s13068-017-0899-5
  • Nasirpour, N., S. M. Mousavi, and S. A. Shojaosadati. 2014. A novel surfactant-assisted ionic liquid pretreatment of sugarcane Bagasse for enhanced enzymatic hydrolysis. Bioresource Technology 169 (October):33–37. doi:10.1016/j.biortech.2014.06.023.
  • Nielsen, F., G. Zacchi, M. Galbe, and O. Wallberg. 2017. Sequential targeting of Xylose and Glucose conversion in fed-batch simultaneous Saccharification and Co-Fermentation of steam-pretreated wheat straw for improved Xylose conversion to Ethanol. BioEnergy Research 10 (3):800–10. doi:10.1007/s12155-017-9841-8.
  • Nikolić, S., L. Mojović, D. Pejin, M. Rakin, and V. Maja. 2010. Production of Bioethanol from Corn Meal Hydrolyzates by free and immobilized cells of Saccharomyces Cerevisiae Var. Ellipsoideus. Biomass & Bioenergy 34 (10):1449–56. doi:10.1016/j.biombioe.2010.04.008.
  • Olofsson, K., M. Bertilsson, and L. Gunnar. 2008. A Short Review on SSF – An interesting process option for Ethanol production from Lignocellulosic feedstocks. Biotechnology for Biofuels 1 (1):7. doi:10.1186/1754-6834-1-7.
  • Park, J.-Y., R. Shiroma, M. I. Al-Haq, Y. Zhang, I. Masakazu, Y. Arai-Sanoh, I. Atsuhi, K. Motohiko, and T. Ken. 2010. A novel lime pretreatment for subsequent Bioethanol production from rice straw – calcium capturing by carbonation (CaCCO) process. Bioresource Technology 101 (17):6805–11. doi:10.1016/j.biortech.2010.03.098.
  • Petersen, P. D., J. Lau, B. Ebert, F. Yang, Y. Verhertbruggen, J. S. Kim, P. Varanasi, A. Suttangkakul, M. Auer, D. Loqué & H. V. Scheller. 2012. Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of Xylan Biosynthesis mutants. Biotechnology for Biofuels 5 (1):84. doi:10.1186/1754-6834-5-84
  • Phuong, N., T. Minh, P. H. Hoang, D. Le Quang, and D. T. Hoa. 2017. Optimization of Sodium Sulfide treatment of rice straw to increase the Enzymatic Hydrolysis in Bioethanol production. Clean Technologies and Environmental Policy 19 (5):1313–22. doi:10.1007/s10098-016-1329-2.
  • “Praj.” 2020. Praj Industries. 2020. https://praj.net/about-us/company-profile/.
  • Prakash, H., P. S. Chauhan, T. General, and A. K. Sharma. 2018. Development of Eco-friendly process for the Production Of Bioethanol from Banana Peel using inhouse developed Cocktail of Thermo-Alkali-stable depolymerizing enzymes. Bioprocess and Biosystems Engineering 41 (7):1003–16. doi:10.1007/s00449-018-1930-3.
  • Qin, L., X. Zhao, L. Wen-Chao, J.-Q. Zhu, L. Liu, L. Bing-Zhi, and Y.-J. Yuan. 2018. Process analysis and optimization of simultaneous Saccharification and Co-Fermentation of Ethylenediamine-pretreated corn stover for Ethanol production. Biotechnology for Biofuels 11 (1):118. doi:10.1186/s13068-018-1118-8.
  • Qing, Q., H. Rong, H. Yucai, Y. Zhang, and L. Wang. 2014. Investigation of a novel acid-catalyzed ionic liquid pretreatment method to improve Biomass Enzymatic hydrolysis conversion. Applied Microbiology and Biotechnology 98 (11):5275–86. doi:10.1007/s00253-014-5664-0.
  • Radecka, D., V. Mukherjee, R. Q. Mateo, M. Stojiljkovic, M. R. Foulquié-Moreno, and J. M. Thevelein, 2015, Looking beyond Saccharomyces: The Potential of non-conventional Yeast species for desirable traits in Bioethanol Fermentation, Nielsen, FEMS yeast Research 15 (6): fov053. Doi :10.1093/femsyr/fov053
  • Raghavi, S., R. Sindhu, P. Binod, E. Gnansounou, and A. Pandey. 2016. Development of a novel sequential pretreatment strategy for the production of Bioethanol from sugarcane trash. Bioresource Technology 199 (January):202–10. doi:10.1016/j.biortech.2015.08.062.
  • “RFA Releases 2017 Ethanol Industry Outlook, Pocket Guide.” 2017. Renewable Fuels Association (blog). February 21, 2017. https://ethanolrfa.org/2017/02/rfa-releases-2017-ethanol-industry-outlook-pocket-guide/
  • Ritchie, H., and M. Roser. 2020. “CO2 and greenhouse gas emissions.” Our World in Data 2020. https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions#future-emission-scenarios
  • Robak, K., and M. Balcerek. 2018. Review of second-generation Bioethanol production from residual biomass. Food Technology and Biotechnology 56 (2):2. doi:10.17113/ftb.56.02.18.5428.
  • Rocha-Meneses, L., J. A. Ferreira, M. Mushtaq, S. Karimi, K. Orupõld, and T. Kikas. 2020. Genetic modification of Cereal plants: A strategy to enhance Bioethanol yields from agricultural waste. Industrial Crops and Products 150 (August):112408. doi:10.1016/j.indcrop.2020.112408.
  • Ruan, R., Y. Zhang, P. Chen, S. Liu, L. Fan, N. Zhou, K. Ding, P. Peng, M. Addy, Y. Cheng, E. Andersen, Y. Yang, Y. Liu, H. Lei, and B. Li. 2019. Biofuels: Introduction. Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels Elsevier 3–43. doi:10.1016/B978–0–12–816856–1.00001–4
  • Saha, B. C. 2003. Hemicellulose bioconversion. Journal of Industrial Microbiology & Biotechnology 30 (5):279–91. doi:10.1007/s10295-003-0049-x.
  • Sánchez, Ó. J., and C. A. Cardona. 2008. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology 99 (13):5270–95. doi:10.1016/j.biortech.2007.11.013.
  • Sankar, K., R. R. Muthuvelu, M. N. Kumar, and U. Sivakumar. 2018. Development of co-immobilized Tri-Enzyme Biocatalytic system for one-pot pretreatment of four different Perennial Lignocellulosic Biomass and evaluation of their Bioethanol production potential. Bioresource Technology 269 (December):227–36. doi:10.1016/j.biortech.2018.08.091.
  • Sasmal, S., V. V. Goud, and K. Mohanty. 2012. Ultrasound assisted lime pretreatment of Lignocellulosic biomass toward bioethanol production. Energy & Fuels 26 (6):3777–84. doi:10.1021/ef300669w.
  • Scheller, H. V., S. Singh, H. Blanch, and J. D. Keasling. 2010. The Joint BioEnergy Institute (JBEI): Developing new Biofuels by overcoming Biomass Recalcitrance. BioEnergy Research 3 (2):105–07. doi:10.1007/s12155-010-9086-2.
  • Sindhu, R., P. Binod, A. K. Mathew, A. Abraham, E. Gnansounou, S. B. Ummalyma, L. Thomas, and A. Pandey. 2017. Development of a novel ultrasound-assisted Alkali pretreatment strategy for the production of Bioethanol and Xylanases from Chili post harvest residue. Bioresource Technology 242 (October):146–51. doi:10.1016/j.biortech.2017.03.001.
  • Singhania, R. R., A. K. Patel, A. Pandey, and E. Ganansounou. 2017. Genetic modification: A tool for enhancing Beta-Glucosidase production for Biofuel application. Bioresource Technology 245 (December):1352–61. doi:10.1016/j.biortech.2017.05.126.
  • Spindler, D. D., C. E. Wyman, A. Mohagheghi, and K. Grohmann. 1988. Thermotolerant Yeast for simultaneous Saccharification and Fermentation of Cellulose to Ethanol. Applied Biochemistry and Biotechnology 17 (1–3):279–93. doi:10.1007/BF02779163.
  • Taher, B., P. F. Imen, S. Chniti, and M. Hassouna. 2017. Optimization of Enzymatic hydrolysis and fermentation conditions for improved Bioethanol production from potato peel residues. Biotechnology Progress 33 (2):397–406. doi:10.1002/btpr.2427.
  • Taherzadeh, M. J., and K. Karimi. 2007. “Acid-based hydrolysis processes for ethanol from Lignocellulosic materials: A review,” 28
  • Takano, M., and K. Hoshino. 2018. Bioethanol production from rice straw by simultaneous Saccharification and fermentation with statistical optimized Cellulase Cocktail and fermenting fungus. Bioresources and Bioprocessing 5 (1):16. doi:10.1186/s40643-018-0203-y.
  • Tayyab, M. 2018. BIioethanol production from Lignocellulosic biomass by environment-friendly pretreatment methods : A review. Applied Ecology and Environmental Research 16 (1):225–49. doi:10.15666/aeer/1601_225249.
  • Techaparin, A., P. Thanonkeo, and P. Klanrit. 2017. High-temperature ethanol production using thermotolerant Yeast Newly isolated from greater Mekong subregion. Brazilian Journal of Microbiology 48 (3):461–75. doi:10.1016/j.bjm.2017.01.006.
  • Tsai, C.-T., and A. Meyer. 2014. Enzymatic cellulose hydrolysis: Enzyme reusability and visualization of β-Glucosidase immobilized in Calcium Alginate. Molecules 19 (12):19390–406. doi:10.3390/molecules191219390.
  • Ulaganathan, K., S. Goud, M. Reddy, and U. Kayalvili. 2017. Genome engineering for breaking barriers in Lignocellulosic Bioethanol production. Renewable and Sustainable Energy Reviews 74 (July):1080–107. doi:10.1016/j.rser.2017.01.028.
  • Vega-Sánchez, M. E., and P. C. Ronald. 2010. Genetic and biotechnological approaches for biofuel crop improvement. Current Opinion in Biotechnology 21 (2):218–24. doi:10.1016/j.copbio.2010.02.002.
  • Verardi, A., A. Blasi, I. De Bari, and V. Calabrò. 2016. Steam pretreatment of Saccharum Officinarum L. Bagasse by adding of impregnating agents for advanced Bioethanol production. Ecotoxicology and Environmental Safety 134 (December):293–300. doi:10.1016/j.ecoenv.2015.07.034.
  • Vohra, M., J. Manwar, R. Manmode, S. Padgilwar, and S. Patil. 2014. Bioethanol production: Feedstock and current technologies. Journal of Environmental Chemical Engineering 2 (1):573–84. doi:10.1016/j.jece.2013.10.013.
  • Voloshin, R. A., M. V. Rodionova, S. K. Zharmukhamedov, T. Nejat Veziroglu, and S. I. Allakhverdiev. 2016. Review: Biofuel production from plant and Algal biomass. International Journal of Hydrogen Energy 41 (39):17257–73. doi:10.1016/j.ijhydene.2016.07.084.
  • Wang, F., X.-R. Xiong, and C.-Z. Liu. 2009. Biofuels in China: Opportunities and challenges. In Vitro Cellular & Developmental Biology - Plant 45 (3):342–49. doi:10.1007/s11627-009-9209-7.
  • Wang, Y., C. Fan, H. Huizhen, L. Ying, D. Sun, Y. Wang, and L. Peng. 2016. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnology Advances 34 (5):997–1017. doi:10.1016/j.biotechadv.2016.06.001.
  • Watcharawipas, A., D. Watanabe, and H. Takagi. 2017. Enhanced Sodium Acetate tolerance in Saccharomyces Cerevisiae by the Thr255Ala mutation of the ubiquitin ligase Rsp5. FEMS Yeast Research 17 (8):8. doi:10.1093/femsyr/fox083.
  • Wright, A., H. Bandulasena, C. Ibenegbu, D. Leak, T. Holmes, W. Zimmerman, A. Shaw, and F. Iza. 2018. Dielectric barrier discharge Plasma microbubble reactor for pretreatment of Lignocellulosic biomass. AIChE Journal 64 (11):3803–16. doi:10.1002/aic.16212.
  • Xie, G., B. Yang, Z. Xu, F. Li, K. Guo, M. Zhang, L. Wang, W. Zou, Y. Wang, and L. Peng, 2013,“Global identification of multiple OsGH9 family members and their involvement in cellulose crystallinity modification in rice”, ed.J. L. Heazlewood PLoS ONE, 8:1,e50171, 10.1371/journal.pone.0050171
  • Yanase, S., T. Hasunuma, R. Yamada, T. Tanaka, C. Ogino, H. Fukuda, and A. Kondo. 2010. Direct Ethanol production from cellulosic materials at high temperature using the thermotolerant Yeast Kluyveromyces Marxianus displaying cellulolytic enzymes. Applied Microbiology and Biotechnology 88 (1):381–88. doi:10.1007/s00253-010-2784-z.
  • Yang, B., and C. E. Wyman. 2008. Pretreatment: The key to unlocking low-cost cellulosic Ethanol. Biofuels, Bioproducts and Biorefining 2 (1):26–40. doi:10.1002/bbb.49.
  • Yasuda, M., H. Nagai, K. Takeo, Y. Ishii, and K. Ohta. 2014. Bio-Ethanol production through simultaneous Saccharification and Co-Fermentation (SSCF) of a Low-Moisture Anhydrous Ammonia (LMAA)-pretreated Napiegrass (Pennisetum Purpureum Schumach). SpringerPlus 3 (1):333. doi:10.1186/2193-1801-3-333.
  • Yoshida, K., Y. Kobayashi, H. Nishijima, N. Sugimoto, F. Imai, M. Kanematsu, K. Yamada, S. Arai, K. Saga, and Y. Izumi. 2019. A pilot plant scale 2nd generation Bio-Ethanol production from waste mushroom beds in Japan. Journal of the Japan Institute of Energy 98 (6):139–43. doi:10.3775/jie.98.139.
  • Yuan, W., Z. Gong, G. Wang, W. Zhou, Y. Liu, X. Wang, and M. Zhao. 2018. Alkaline organosolv pretreatment of corn stover for enhancing the enzymatic digestibility. Bioresource Technology 265 (October):464–70. doi:10.1016/j.biortech.2018.06.038.
  • Zabed, H., J. N. Sahu, A. Suely, A. N. Boyce, and G. Faruq. 2017. Bioethanol production from renewable sources: Current perspectives and technological progress. Renewable and Sustainable Energy Reviews 71 (May):475–501. doi:10.1016/j.rser.2016.12.076.
  • Zahoor, Z., D. Sun, Y. Li, J. Wang, Y. Tu, Y. Wang, Z. Hu, S. Zhou, L. Wang, G. Xie, et al. 2017. Biomass Saccharification is largely enhanced by altering wall polymer features and reducing silicon accumulation in rice cultivars harvested from nitrogen fertilizer supply. Bioresource Technology 243 (November):957–65. doi:10.1016/j.biortech.2017.07.057.
  • Zhang, K., X. Lu, Y. Li, X. Jiang, L. Liu, and H. Wang. 2019. New technologies provide more metabolic engineering strategies for bioethanol production in Zymomonas mobilis. Applied Microbiology and Biotechnology 103 (5):2087–99. doi:10.1007/s00253-019-09620-6.
  • Zhang, N., H. Xu, J. Yang, J.-C. Xie, M. Wei, J. Zhao, and J.-C. Jiang. 2020. Effects of liquid hot water combined with 1, 4-butanediol on chemical composition and structure of Moso Bamboo. Applied Biochemistry and Biotechnology 190 (4):1177–86. doi:10.1007/s12010-019-03173-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.