366
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A multi-objective decision model for residential building energy optimization based on hybrid renewable energy systems

, &
Pages 775-792 | Received 29 Aug 2020, Accepted 01 Jan 2021, Published online: 11 Apr 2021

References

  • Agajelu, B. O., O. G. Ekwueme, N. S. P. Obuka, and G. O. R. Ikwu. 2013. Life cycle cost analysis of a diesel/photovoltaic hybrid power generating system. Industrial Engineering Letters 13 (1):19–30.
  • Akram, U., M. Khalid, and S. Shafiq. 2017. Optimal sizing of a wind/solar/battery hybrid grid-connected micro-grid system. IET Renewable Power Generation 12 (1):72–80. doi:10.1049/iet-rpg.2017.0010.
  • Ali, W., M. S. Nasir, A. Nasir, H. Rashid, I. Ayu B, S. H. Gillani, and M. J. Latif. 2018. Assessment of carbon footprints in terms of CO2 of diesel generator. Earth Sciences Pakistan 2 (1):15–17. doi:10.26480/esp.01.2018.15.17.
  • Ascione, F., N. Bianco, R. F. De Masi, C. De Stasio, G. M. Mauro, and G. P. Vanoli. 2016. Multi-objective optimization of the renewable energy mix for a building. Journal of Applied Thermal Engineering 101:612–21. doi:10.1016/j.applthermaleng.2015.12.073.
  • Ascione, F., N. Bianco, R. F. De Masi, G. M. Mauro, and G. P. Vanoli. 2017. Energy retrofit of educational buildings: Transient energy simulations, model calibration, and multi objective optimization towards nearly zero energy performance. Energy and Building 144:303–19. doi:10.1016/j.enbuild.2017.03.056.
  • Blackwood, M. 2016. Maximum efficiency of a wind turbine. Journal of Mathematical Modeling 6 (2):13–24.
  • Cao, Y., Q. Wang, J. Du, S. Nojavan, and K. Jermsittiparsert. 2019. Optimal operation of CCHP and renewable generation-based energy hub considering environmental perspective: An epsilon constraint and fuzzy method. Sustainable Energy, Grids and Networks 20 20( 2019):100274. doi:10.1016/j.segan.2019.100274.
  • Chamandoust, H., G. Derakhshan, S. M. Hakimi, and S. Bahramara. 2020. Tri-objective scheduling of residential smart electrical distribution grids with optimal joint of responsive loads with renewable energy sources. Journal of Energy Storage 27:101–12. doi:10.1016/j.est.2019.101112.
  • Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A fast elicit multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6 (2):182–97. doi:10.1109/4235.996017.
  • Delgarm, N., B. Sajadia, S. Delgarm, and F. Kowsary. 2016. A novel approach for the simulation-based energy consumption using NSGA-II: Case study in Iran. Energy and Buildings 127:552–60. doi:10.1016/j.enbuild.2016.05.052.
  • Dufo-López, R., and J. L. Bernal-Agustin. 2008. Multi-objective design of PV-wind-diesel-hydrogen-battery system. Renewable Energy 33 (12):2559–72. doi:10.1016/j.renene.2008.02.027.
  • Eskander, M., M. M. Sandoval-Reyes, C. A. Silva, S. M. Vieira, and J. M. C. Sousa. 2017. Assessment of energy efficiency measures using multi-objective optimization in Portuguese households. Sustainable Cities and Societies 35:764–73. doi:10.1016/j.scs.2017.09.032.
  • Hamilton, S., E. O. Diemuodeke, and A. Addo. 2016. Multi-criteria assessment of hybrid renewable energy systems for Nigeria’s coastline communities. Energy, Sustainability and Society 26 (6):320–331.
  • Hammoumi, K. E. L., R. El, M. B. Bachtiri, and M. Khanfara. 2018. Dimensioning of a battery system to store energy from a hybrid PV/wind/diesel system at 3 kVA. International conference on renewable energies and energy efficiency 161, Orlando, FL, USA.
  • Hashemipour, N., J. Aghaei, M. Lotfi, T. Niknam, M. Askarpour, M. Shafie-khah, and J. P. S. Catalão. 2019. Multi-objective optimization method for coordinating battery storage systems, photovoltaic inverters and tap chargers. IET Renewable Power Generation 14 (3):475–483.
  • Hlal., M. I., V. K. Ramachandaramurthya, S. Padmanaban, H. R. Kaboli, A. Pouryekta, T. A. Rashid Bin, and T. Abdullah. 2019. . NSGA-II and MOPSO based optimization for sizing of hybrid PV/wind/battery energy storage system. International Journal of Power Electronics and Drive System 10 (1):463–78.
  • http://solarelectricityhandbook.com/solar-irradiance.html
  • https://www.worldweatheronline.com/khansar-weather-averages/esfahan/ir.aspx
  • Ismail, M. S., M. Moghvvemi, and T. M. I. Mahlia. 2014. Genetic algorithm based optimization on modeling and design of hybrid renewable energy systems. Energy Conversion and Management 85:120–30. doi:10.1016/j.enconman.2014.05.064.
  • Kusakana, K., and H. J. Vermaak. 2013. Hybrid renewable power systems for mobile telephony base stations in developing countries. Renewable Energy 51:419–25. doi:10.1016/j.renene.2012.09.045.
  • Libbi, J. N. 2013. Comparing the calculated coefficients of performance of a class of wind turbines that produce power between 330 kW and 7500 kW. World Transaction on Engineering and Technology Education 11:1.
  • Lu, Y., S. Wang, Y. Zhao, and C. Yan. 2015. Renewable energy system optimization of low/zero energy buildings using single-objective and multi-objective optimization methods. Energy and Building 89:61–75. doi:10.1016/j.enbuild.2014.12.032.
  • Luo, X., J. Hu, J. Zhao, B. Zhang, Y. Chen, and S. Mo. 2013. Multi-objective optimization for the design and synthesis of utility systems with emission abatement technology concerns. Applied Energy 136:1110–31. doi:10.1016/j.apenergy.2014.06.076.
  • Mahesh, A., and K. S. Sandhu. 2020. A genetic algorithm based improved optimal sizing strategy for solar-hybrid system using energy filter algorithm. Frontiers in Energy 14 (1):139–51. doi:10.1007/s11708-017-0484-4.
  • Maleki, A., M. A. Rosen, and F. Pourfayaz. 2017. Optimal operation of a grid-connected hybrid renewable energy system for residential applications. Sustainability 9 (8):1314. doi:10.3390/su9081314.
  • Mamaghani, A., S. A. Avella Escandon, B. Najafi, A. Shirazi, and F. Rinaldi. 2016. Techno- economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia. Renewable Energy 97:293–305. doi:10.1016/j.renene.2016.05.086.
  • Mansouri Kouhestani, F., J. Byrne, D. Johnson, L. Spencer, B. Brown, P. Hazendonk, and J. Scott. 2020. Multi criteria PSO-based optimal design of grid-connected hybrid renewable energy systems. International Journal of Green Energy 17 (11):617–31. doi:10.1080/15435075.2020.1779072.
  • Mavalizadeh, H., and A. Ahmadi. 2014. Hybrid expansion planning considering security and emission by an augmented epsilon-constraint method. Electrical Power and Energy Systems 61:90–100. doi:10.1016/j.ijepes.2014.03.004.
  • Mavrotas, G. 2009. Effective implementation of the ɛ-constraint method in multi-objective mathematical programming problems. Applied Mathematics and Computation 213 (2):455–65. doi:10.1016/j.amc.2009.03.037.
  • Neves, D., P. Baptista, M. Simões, C. A. Silva, and J. R. Figueira. 2018. Designing a municipal sustainable energy strategy using multi criteria decision analysis. Journal of Cleaner Production 176:251–60. doi:10.1016/j.jclepro.2017.12.114.
  • Niyomubyeyi, O., P. Pilesjö, and A. Mansourian. 2019. Evacuation planning optimization based on a multi-objective artificial bee colony algorithm. International Journal of Geo-Information 8 (3):110. doi:10.3390/ijgi8030110.
  • Niyomubyeyi, O., T. E. Sicuaio, J. I. Diaz Gonzalez, P. Pilesjo, and A. Mansourian. 2020. A comparative study of four metaheuristic algorithms, AMOSA, MOABC, MSPSO, and NSGA-II for evacuation planning. Algorithms 13 (1):16. doi:10.3390/a13010016.
  • Ould Bilal, B., D. Nourou, C. M. F. Kebe, V. Sambou, P. A. Ndiaye, and M. Ndongo. 2015. Multi-objective optimization of hybrid PV/wind/diesel/battery systems for decentralized application by minimizing the levelized cost of energy and the CO2 emission. International Journal of Physical Sciences 10 (5):192–203. doi:10.5897/IJPS2014.4251.
  • Parvizi, M., E. Shadkam, and N. Jahani. 2015. A hybrid COA/ɛ-Constraint method for solving multi-objective problems. International Journal in Foundations of Computer Science & Technology 5 (5):27–40. doi:10.5121/ijfcst.2015.5503.
  • Prasad, S., V. K. Reddy, and C. H. Saibabu. 2011. Integration of renewable energy sources in zero energy buildings with economical environmental aspects by using HOMER. International Journal of Advance Engineering Science & Technology 9 (2):212–17.
  • Rezaie, B., E. Esmailzadeh, and I. Dincer. 2011. Renewable energy options for buildings: Case studies. Energy and Buildings 43 (1):56–65. doi:10.1016/j.enbuild.2010.08.013.
  • Rezvani, A., M. Gandomkar, M. Izadbakhsh, and A. Ahmadi. 2015. Environmental/economic scheduling of a micro-grid with renewable energy resources. Journal of Cleaner Production 87:216–26. doi:10.1016/j.jclepro.2014.09.088.
  • Rosiek, S., and F. J. Batlles. 2013. Renewable energy solutions for building cooling, heating and power system installed in an institutional building: Case study in southern Spain. Renewable and Sustainable Energy 26:147–68. doi:10.1016/j.rser.2013.05.068.
  • Sharafi, M., and T. Y. ELMekkawy. 2014. Multi-objective optimal design of hybrid renewable energy systems using PSO-simulation based approach. Renewable Energy 68:67–79. doi:10.1016/j.renene.2014.01.011.
  • Sharafi, M., T. Y. Elmekkawy, and E. L. Bibeau. 2015. Optimal design of hybrid renewable energy systems in buildings with low to high renewable energy ratio. Renewable Energy 83:1026–42. doi:10.1016/j.renene.2015.05.022.
  • Sohrabi Tabar, V., M. A. Jirdehi, and R. Hemmati. 2016. Energy management in micro-grid based on the multi-objective stochastic programming incorporating portable renewable energy resource as demand response option. Energy 118:827–39. doi:10.1016/j.energy.2016.10.113.
  • Torki, M., and Z. Abedi. 2011. External costs of electricity generation from fossil power plants. Human & Environment 9 (4):3–7.
  • Wu, W., J. Guo, J. Li, H. Hou, Q. Meng, and W. Wang. 2018. A multi-objective optimization design method in zero energy building study: A case study concerning small mass building in cold district of china. Energy and Buildings 158:1613–24. doi:10.1016/j.enbuild.2017.10.102.
  • Yimen, N., T. Tchotang, A. Kanmogne, I. A. Idriss, B. Musa, A. Aliyu, E. C. Okonkwo, S. I. Abba, D. Tata, L. Mevaa, et al. 2020. Optimal sizing and techno-economic analysis of hybrid renewable energy systems- A case study of photovoltaic/wind/battery/diesel system in fanisau, northern nigeria. Processes 8 (11):1381. doi:10.3390/pr8111381.
  • Yu, W., B. Li, H. Jia, M. Zhang, and D. Wang. 2015. Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design. Energy and Buildings 88:135–43. doi:10.1016/j.enbuild.2014.11.063.
  • Zhang, S., P. Huang, and Y. Sun. 2016. A multi-criterion renewable energy system design optimization for net zero energy buildings under uncertainties. Journal of Energy 94:654–65. doi:10.1016/j.energy.2015.11.044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.