652
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Modeling of vertical ground heat exchangers

ORCID Icon & ORCID Icon
Pages 755-774 | Received 13 Sep 2020, Accepted 11 Jan 2021, Published online: 24 Mar 2021

References

  • Abdelaziz, S., T. Ozudogru, C. Guny Olgun, and J. R. Martin II. 2014. Multilayer finite line source model for vertical heat exchangers. Geothermics 51:406–16. doi:10.1016/j.geothermics.2014.03.004.
  • Ahmadfard, M., and M. Bernier. 2018. Modifications to ASHRAE’s sizing method for vertical ground heat exchangers. Science and Technology for the Built Environment 24 (7):803–17. doi:10.1080/23744731.2018.1423816.
  • Akrouch, G. A., M. Sánchez, and J.-L. Briaud. 2016. An experimental, analytical and numerical study on the thermal efficiency of energy piles in unsaturated soils. Computers and Geotechnics 71:207–20. doi:10.1016/j.compgeo.2015.08.009.
  • Bandyopadhyay, G., W. Gosnold, and M. Mannc. 2008. Analytical and semi-analytical solutions for short-time transient response of ground heat exchangers. Energy and Buildings 40 (10):1816–24. doi:10.1016/j.enbuild.2008.04.005.
  • Beier, R. A., M. D. Smith, and J. D. Spitler. 2011. Reference data sets for vertical borehole ground heat exchanger models and thermal response test analysis. Geothermics 40 (1):79–85. doi:10.1016/j.geothermics.2010.12.007.
  • Boban, L., V. Soldo, and H. Fujii. 2020. Investigation of heat pump performance in heterogeneous ground. Energy Conversion and Management 211:112736. doi:10.1016/j.enconman.2020.112736.
  • Bonamente, E., E. Moretti, C. Burattia, and F. Cotanaa. 2016. Design and monitoring of an innovative geothermal system including an underground heat-storage tank. International Journal of Green Energy 13 (8):822–30. doi:10.1080/15435075.2016.1161630.
  • Bose, James E., Jerald D. Parker, and Faye C. McQuiston. 1985. Design/data manual for closed-loop ground-coupled heat pump systems. Atlanta, GA: American Society of Heating, Refrigerating, and Air-Conditioning Engineers.
  • Bottarelli, M., M. Bortoloni, and Y. Su. 2019. On the sizing of a novel Flat-Panel ground heat exchanger in coupling with a dual-source heat pump. Renewable Energy 142:552–60. doi:10.1016/j.renene.2019.04.088.
  • Bottarelli, M., M. Bortoloni, Y. Su, C. Yousif, A. Alper Aydın, and A. Georgiev. 2015. Numerical analysis of a novel ground heat exchanger coupled with phase change materials. Applied Thermal Engineering 88:369–75. doi:10.1016/j.applthermaleng.2014.10.016.
  • Cai, S., X. Li, M. Zhang, J. Fallon, K. Li, and T. Cui. 2020. An analytical full-scale model to predict thermal response in boreholes with groundwater advection. Applied Thermal Engineering 168:114828. doi:10.1016/j.applthermaleng.2019.114828.
  • Capozza, A., M. De Carli, and A. Zarrella. 2012. Design of borehole heat exchangers for ground-source heat pumps: A literature review, methodology comparison and analysis on the penalty temperature. Energy and Buildings 55:369–79. doi:10.1016/j.enbuild.2012.08.041.
  • Carli, M., M. Tonon, A. Zarrella, and R. Zecchin. 2010. A computational capacity resistance model (CaRM) for vertical ground-coupled heat exchangers. Renewable Energy 35 (7):1537–50. doi:10.1016/j.renene.2009.11.034.
  • Carslaw, H. S., and J. C. Jaeger. 1946. Conduction of Heat in Solids. Oxford, UK: Claremore Press.
  • Chiasson, A., and A. O’Connell. 2011. New analytical solution for sizing vertical borehole ground heat exchangers in environments with significant groundwater flow: Parameter estimation from thermal response test data. HVAC&R Research 17 (6):1000–11.
  • Chiasson, A. D., S. J. Rees, and J. D. Spitler. 2000. A preliminary assessment of the effects of groundwater flow on closed-loop ground-source heat pump systems. ASHRAE Transactions 106 (1):380–93.
  • Choi, W., R. Ooka, and Y. Nam. 2018. Impact of long-term operation of ground-source heat pump on subsurface thermal state in urban areas. Sustainable Cities and Society 38:429–39. doi:10.1016/j.scs.2017.12.036.
  • Cimmino, M. 2015. The effects of borehole thermal resistances and fluid flow rate on the g-functions of geothermal bore fields. International Journal of Heat and Mass Transfer 91:1119–27. doi:10.1016/j.ijheatmasstransfer.2015.08.041.
  • Cimmino, M., and M. Bernier. 2014. A semi-analytical method to generate g-functions for geothermal bore fields. International Journal of Heat and Mass Transfer 70:641–50. doi:10.1016/j.ijheatmasstransfer.2013.11.037.
  • Cimmino, M., and M. Bernier. 2015. Experimental determination of the g-functions of a small-scale geothermal borehole. Geothermics 56:60–71. doi:10.1016/j.geothermics.2015.03.006.
  • Cimmino, M., M. Bernier, and F. Adams. 2013. A contribution towards the determination of g-functions using the finite line source. Applied Thermal Engineering 51 (1–2):401–12. doi:10.1016/j.applthermaleng.2012.07.044.
  • Claesson, J., and A. Dunand. 1983. Heat extraction from the ground by horizontal pipes: A mathematical analysis. Stockholm: Swedish Council for Building Research.
  • Claesson, J., and G. Hellstrom. 2000. Analytical studies of the influence of regional groundwater flow on the performance of borehole heat exchangers. 8th international Conference on Thermal Energy Storage, Terrastock, Conference location: Stuttgart, Germany :195–200.
  • Conti, P., D. Testi, and W. Grassi. 2016. Revised heat transfer modeling of double-U vertical ground-coupled heat exchangers. Applied Thermal Engineering 106:1257–67. doi:10.1016/j.applthermaleng.2016.06.097.
  • Cui, Y., J. Zhu, S. Twaha, and S. Riffat. 2018. A comprehensive review on 2D and 3D models of vertical ground heat exchangers. Renewable and Sustainable Energy Reviews 94:84–114. doi:10.1016/j.rser.2018.05.063.
  • Dehghan, B. 2017. Experimental and computational investigation of the spiral ground heat exchangers for ground source heat pump applications. Applied Thermal Engineering 121:908–21. doi:10.1016/j.applthermaleng.2017.05.002.
  • Diao, N. R., H. Y. Zeng, and Z. H. Fang. 2004. Improvement in modeling of heat transfer in vertical ground heat exchangers. HVAC&R Research 10 (4):459–70. doi:10.1080/10789669.2004.10391114.
  • Eskilson, P. 1986. Thermal analysis of heat extraction boreholes. Department of Mathematical Physics, University of Lund: Doctoral thesis.
  • Eslami-nejad, P., and M. Bernier. 2011. Heat transfer in double U-tube boreholes with two independent circuits. Journal of Heat Transfer 133 (8):082801. doi:10.1115/1.4003747.
  • Fan, R., Y. Jiang, Y. Yao, S. Shiming, and Z. Ma. 2007. A study on the performance of a geothermal heat exchanger under coupled heat conduction and groundwater advection. Energy 32 (11):2199–209. doi:10.1016/j.energy.2007.05.001.
  • Florides, G., and S. Kalogirou. 2007. Ground heat exchangers—A review of systems, models and applications. Renewable Energy 32 (15):2461–78. doi:10.1016/j.renene.2006.12.014.
  • Fossa, M. 2017. Correct design of vertical borehole heat exchanger systems through the improvement of the ASHRAE method. Science & Technology for the Built Environment 23 (7):1080–89. doi:10.1080/23744731.2016.1208537.
  • Geothermal Heat Pump Consortium. Accessed on September 27, 2020. http://www.geoexchange.org/
  • Gu, Y., and D. L. O’Neal. 1998a. Development of an equivalent diameter expression for vertical U-tube used in ground-coupled heat pumps. ASHRAE Transactions 104:347–55.
  • Gu, Y., and D. L. O’Neal. 1998b. Modeling the effect of backfills on U-tube ground coil performance. ASHRAE Transactions 104:356–65.
  • Hahn, D. W., and M. N. Özisik. 2012. Heat conduction. 3rd ed. Hoboken, NJ: Wiley.
  • Hart, D. P., and R. Couvillion. 1986. Earth coupled heat transfer. Dublin, Ohio, USA: Publication of National Water Well Association.
  • He, M., S. Rees, and L. Shao. 2009. Simulation of a domestic ground source heat pump system using a transient numerical borehole heat exchanger model, 11th IBPSA Conference, Glasgow, Scotland:607–14.
  • Hecht-Mendez, J., M. de Paly, M. Beck, and P. Bayer. 2013. Optimization of energy extraction for vertical closed-loop geothermal systems considering groundwater flow. Energy Conversion and Management 66:1–10.
  • Hellström, G. 1989. Duct Ground Heat Storage Model. In Manual for Computer Code. Lund, Sweden: University of Lund Department of Mathematical Physics.
  • Hellström, G. 1991. Ground heat storage: Thermal analyses of duct storage systems. Department of Mathematical Physics, University of Lund: Doctoral thesis.
  • Hu, J. 2017. An improved analytical model for vertical borehole ground heat exchanger with multiple-layer substrates and groundwater flow. Applied Energy 202:537–49. doi:10.1016/j.apenergy.2017.05.152.
  • Ingersoll, L. R., and H. J. Plass. 1948. Theory of the Ground Pipe Heat Source for the Heat Pump. ASHRE Transactions 47:339–48.
  • Ingersoll, L. R., O. J. Zobel, and A. C. Ingersoll. 1954. Heat Conduction with Engineering, Geological, and other Applications. New York: McGraw-Hill.
  • International Ground Source Heat Pump Association, Software. Accessed September 27, 2020. https://igshpa.org/software/
  • Jahanbin, A., G. Semprini, A.N. Impiombato, C. Biserni, E. Rossi di Schio. 2020. Effects of the circuit arrangement on the thermal performance of double u-tube ground heat exchangers. Energies 13:3275
  • Javed, S., P. Fahlén, and J. Claesson. 2009. Vertical ground heat exchangers: A review of heat flow models. In Proceedings of Effstock 2009, Stockholm, Sweden.
  • Jun, L., Z. Xu, G. Jun, and Y. Jie. 2009. Evaluation of heat exchange rate of GHE in geothermal heat pump systems. Renewable Energy 34 (12):2898–904. doi:10.1016/j.renene.2009.04.009.
  • Kavanaugh, S. P. 1992. Simulation of ground-coupled heat pumps with an analytical Solution. ASME International Solar Energy Conference, Solar Engineering 1:395–400.
  • Kavanaugh, S. P., and K. Rafferty. 1997. Ground-Source Heat Pumps: Design of Geothermal Systems for Commercial and Institutional Buildings. Atlanta: American Society of Heating Refrigerating and Air-Conditioning Engineers.
  • Kim, E.-J., -J.-J. Roux, G. Rusaouen, and F. Kuznik. 2010. Numerical modelling of geothermal vertical heat exchangers for the short time analysis using the state model size reduction technique. Applied Thermal Engineering 30 (6–7):706–14. doi:10.1016/j.applthermaleng.2009.11.019.
  • Kim, E.-J., M. Bernier, O. Cauret, and -J.-J. Roux. 2014. A hybrid reduced model for borehole heat exchangers over different time-scales and regions. Energy 77:318–26. doi:10.1016/j.energy.2014.08.091.
  • Koohi-Fayegh, S., and M. A. Rosen. 2012a. Examination of thermal interaction of multiple vertical ground heat exchangers. Applied Energy 97:962–69. doi:10.1016/j.apenergy.2012.02.018.
  • Koohi-Fayegh, S., and M. A. Rosen. 2012b. On thermally interacting multiple boreholes with variable heating strength: Comparison between analytical and numerical approaches. Sustainability 4 (8):1848–66.
  • Koohi-Fayegh, S., and M. A. Rosen. 2014. An analytical approach to evaluating the effect of thermal interaction of geothermal heat exchangers on ground heat pump efficiency. Energy Conversion and Management 78:184–92.
  • Koohi-Fayegh, S., and M. A. Rosen. 2018. Long-term study of vertical ground heat exchangers with varying seasonal heat fluxes. Geothermics 75:15–25.
  • Kramer, C. A., O. Ghasemi-Fare, and P. Basu. 2015. Laboratory thermal performance tests on a model heat exchanger pile in sand. Geotechnical and Geological Engineering 33:253–71.
  • Kumar, S., and K. Murugesan. 2020. Optimization of geothermal interaction of a double U-tube borehole heat exchanger for space heating and cooling applications using Taguchi method and utility concept. Geothermics 83:101723.
  • Lamarche, L. 2017. Mixed arrangement of multiple input-output borehole systems. Applied Thermal Engineering 124:66–476.
  • Lamarche, L., and B. Beauchampe. 2007. A new contribution to the finite line-source model for geothermal boreholes. Energy and Buildings 39:188–98.
  • Lamarche, L., and P. Pasquier. 2019. Higher-order temporal scheme for ground heat exchanger analytical models. Geothermics 78:111–17.
  • Law, Y. L. E., and S. B. Dworkin. 2016. Characterization of the effects of borehole configuration and interference with long term ground temperature modelling of ground source heat pumps. Applied Energy 179:1032–47.
  • Lazzarotto, A. 2016. A methodology for the calculation of response functions for geothermal fields with arbitrarily oriented boreholes – Part 1. Renewable Energy 86:1380–93.
  • Lazzarotto, A., and F. Björk. 2016. A methodology for the calculation of response functions for geothermal fields with arbitrarily oriented boreholes – Part 2. Renewable Energy 86:1353–61.
  • Lee, C. K. 2008. Computer modeling and simulation of geothermal heat pump and ground-coupled liquid desiccant air conditioning systems in sub-tropical regions. Department of Mechanical Engineering, University of Hong Kong: Doctoral thesis.
  • Lee, C. K. 2011. Effects of multiple ground layers on thermal response test analysis and ground-source heat pump simulation. Applied Energy 88 (12):4405–10.
  • Lee, C. K. 2016. A modified three-dimensional numerical model for predicting the short-time-step performance of borehole ground heat exchangers. Renewable Energy 87 (1):618–27.
  • Lee, C. K., and H. N. Lam. 2008. Computer simulation of borehole ground heat exchangers for geothermal heat pump systems. Renewable Energy 33:1286–96.
  • Lee, C. K., and H. N. Lam. 2012. A modified multi-ground-layer model for borehole ground heat exchangers with an inhomogeneous groundwater flow. Energy 47:378–87.
  • Lei, H., and C. Dai. 2013. Comparative experiment of different backfill grouts for concentric ground heat exchangers. GRC Transactions 37:597–600.
  • Li, C., J. Mao, X. Peng, W. Mao, Z. Xing, and G. Zhu. 2019. Analysis of intermittent operation on the ground temperature recovery of borehole heat exchanger fields. International Journal of Green Energy 16 (15):1436–47.
  • Li, M., and A. C. Lai. 2015. Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales. Applied Energy 151:178–91.
  • Li, M., P. Li, V. Chan, and A. C. K. Lai. 2014a. Full-scale temperature response function (Gfunction) for heat transfer by borehole ground heat exchangers (GHEs) from subhour to decades. Applied Energy 136:197–205.
  • Li, X. Y., T. Y. Li, D. Q. Qu, and J. W. Yu. 2017. A new solution for thermal interference of vertical U-tube ground heat exchanger for cold area in China. Geothermics 65:72–80.
  • Li, Y., J. Mao, S. Geng, X. Han, and H. Zhang. 2014b. Evaluation of thermal short-circuiting and influence on thermal response test for borehole heat exchanger. Geothermics 50:136–47.
  • Liu, Y., Y. Zhang, S. Gong, Z. Wang, and H. Zhang. 2015. Analysis on the performance of ground heat exchangers in ground source heat pump systems based on heat transfer enhancements. Procedia Engineering 121:19–26.
  • Liu, Z., R. Li, E. Wang, H. Li, and L. Shi. 2020. Multilayer quasi-three-dimensional model for the heat transfer inside the borehole wall of a vertical ground heat exchanger. Geothermics 83:111711.
  • Malayappan, V., and J. D. Spitler. 2013. Limitations of using uniform heat flux assumptions in sizing vertical borehole heat exchanger fields. In Clima. Prague: Czech Republic.
  • Man, Y., H. Yang, N. Diao, J. Liu, and Z. Fang. 2010. A new model and analytical solutions for borehole and pile ground heat exchangers. International Journal of Heat and Mass Transfer 53 (13–14):2593–601.
  • Marcotte, D., and P. Pasquier. 2008. On the estimation of thermal resistance in borehole thermal conductivity tests. Renewable Energy 33:2407–15.
  • Molina-Giraldo, N., P. Blum, K. Zhu, P. Bayer, and Z. Fang. 2011. A moving finite line source model to simulate borehole heat exchangers with groundwater advection. International Journal of Thermal Science 50:2506–13.
  • Monzó, P., A. R. Puttige, J. Acuña, P. Mogensen, A. Cazorla, J. Rodriguez, C. Montagud, and F. Cerdeira. 2018. Numerical modeling of ground thermal response with borehole heat exchangers connected in parallel. Energy and Buildings 172:371–84.
  • Monzó, P., P. Mogensen, J. Acuña, F. Ruiz-Calvo, and C. Montagud. 2015. A novel numerical approach for imposing a temperature boundary condition at the borehole wall in borehole fields. Geothermics 56:35–44.
  • Muraya, N. K. 1995. Numerical modeling of the transient thermal interference of vertical U-tube heat exchangers. Texas A&M University, College Station: Doctoral thesis.
  • Naldi, C., and E. Zanchini. 2019a. A new numerical method to determine isothermal g-functions of borehole heat exchanger fields. Geothermics 77:278–87.
  • Naldi, C., and E. Zanchini. 2019b. Comparison of isothermal and isoflux g-functions for borehole-heat exchanger fields. Journal of Physics 1224:012026.
  • Nam, Y., and R. Ooka. 2011. Development of potential map for ground and groundwater heat pump systems and the application to Tokyo. Energy and Buildings 43:677–85.
  • Nam, Y., R. Ooka, and S. Hwang. 2008. Development of a numerical model to predict heat exchange rates for a ground-source heat pump system. Energy and Buildings 40:2133–40.
  • Ozudogru, T. Y., C. G. Olgun, and A. Senol. 2014. 3D numerical modeling of vertical geothermal heat exchangers. Geothermics 2014 (51):312–24.
  • Pallard, W. M., A. Lazzarotto, J. A. Sequera, and B. Palm. 2020. Design methodology for laboratory scale borehole storage: An approach based on analytically-derived invariance requirements and numerical simulations. Geothermics 87:101856.
  • Pan, A., J. S. McCartney, L. Lu, and T. You. 2020. A novel analytical multilayer cylindrical heat source model for vertical ground heat exchangers installed in layered ground. Energy 2020 (200):117545.
  • Park, S. H., and E. J. Kim. 2019. Optimal sizing of irregularly arranged boreholes using duct-storage model. Sustainability 11:4338.
  • Park, S. H., J. Y. Kim, Y. S. Jang, and E. J. Kim. 2017. Development of a multi-objective sizing method for borehole heat exchangers during the early design phase. Sustainability 9:1876.
  • Pasquier, P., and D. Marcotte. 2013. Efficient computation of heat flux signals to ensure the reproduction of prescribed temperatures at several interacting heat sources. Applied Thermal Engineering 59 (1–2):515–26.
  • Paul, N. D. 1996. The effect of grout conductivity on vertical heat exchanger design and performance. South Dakota State University: Master Thesis.
  • Priarone, A., and M. Fossa. 2015. Temperature response factors at different boundary conditions for modelling the single borehole heat exchanger. Applied Thermal Engineering 103:934–44.
  • Priarone, A., and M. Fossa. 2016. Temperature response factors at different boundary conditions for modelling the single borehole heat exchanger. Applied Thermal Engineering 103:934–44.
  • Puttige, A. R., S. Andersson, R. Ostin, and T. Olofsson. 2020. Improvement of borehole heat exchanger model performance by calibration using measured data. Journal of Building Performance Simulation 13 (4):430–42.
  • Qi, D., P. Liang, F. Sun, and Y. Li. 2016. Numerical investigation on thermal performance of ground heat exchangers using phase change materials as grout for ground source heat pump system. Applied Thermal Engineering 106:1023–32.
  • Rivera, J. A., P. Blum, and P. Bayer. 2015. Analytical simulation of groundwater flow and land surface effects on thermal plumes of borehole heat exchangers. Applied Energy 146:421–33.
  • Rottmayer, S. P., W. A. Beckman, and J. W. Mitchell. 1997. Simulation of a single vertical U-tube ground heat exchanger in an infinite medium. ASHRAE Transactions 103 (2):651–58.
  • Ruiz-Calvo, F., M. De Rosa, P. Monzó, C. Montagud, and J. M. Corberán. 2016. Coupling short-term (B2G model) and long-term (g-function) models for ground source heat exchanger simulation in TRNSYS. Application in a real installation. Applied Thermal Engineering 102:720–32.
  • Salim Shirazi, A., and M. Bernier. 2014. A small-scale experimental apparatus to study heat transfer in the vicinity of geothermal boreholes. HVAC & R Research 20:819–27.
  • Spitler, J., J. Cullin, M. Bernier, M. Kummert, P. Cui, X. Liu, E. Lee, and D. Fisher. 2009. Preliminary intermodel comparison of ground heat exchanger simulation models. 11th International Conference on Thermal Energy Storage: Effstock, Stockholm, Sweden, 14–17.
  • Spitler, J. D., L. E. Southard, and X. Liu. 2017. Ground-source and air-source heat pump system performance at the ASHRAE headquarters building, The 12th IEA Heat Pump Conference, Rotterdam:12.
  • Staiti, M., and A. Angelotti. 2015. Design of Borehole Heat Exchangers for Ground Source Heat Pumps: A Comparison between Two Methods. Energy Procedia 78:1147–52.
  • Sutton, M. G., D. W. Nutter, and R. J. Couvillion. 2003. A Ground Resistance for Vertical Bore Heat Exchangers With Groundwater Flow. Journal of Energy Research and Technology 125 (3):183–89.
  • University of Wisconsin, A Transient Systems Simulation Program. Accessed September 27, 2020. http://sel.me.wisc.edu/trnsys
  • Yang, H., P. Cui, and Z. Fang. 2010. Vertical-borehole ground-coupled heat pumps: A review of models and systems. Applied Energy 87 (1):16–27.
  • Yang, W., M. Shi, G. Liu, and Z. Chen. 2009. A two-region simulation model of vertical U-tube ground heat exchanger and its experimental verification. Applied Energy 86:2005–12.
  • Yavusturk, C. 1999. Modeling of vertical ground loop heat exchangers for ground source heat pump systems. Oklahoma State University: Doctoral thesis.
  • Yavuzturk, C., and J. D. Spitler. 2001. Field validation of a short time step model for vertical ground-loop heat exchangers. ASHRAE Transactions 107 (1):617–25.
  • Yavuzturk, C., J. D. Spitler, and S. J. Rees. 1999. A transient two-dimensional finite volume model for the simulation of vertical U-tube ground heat exchangers. ASHRAE Transactions 105 (2):465–74.
  • Zanchini, E., and A. Jahanbin. 2016. Finite-element analysis of the fluid temperature distribution in double U-tube Borehole Heat Exchangers. Journal of Physics 745:032002.
  • Zanchini, E., and A. Jahanbin. 2018. Effects of the temperature distribution on the thermal resistance of double u-tube borehole heat exchangers. Geothermics 71:46–54.
  • Zarrella, A., A. Capozza, and M. De Carli. 2013. Analysis of short helical and double U-tube borehole heat exchangers: A simulation-based comparison. Applied Energy 2013 (112):358–70.
  • Zarrella, A., M. Scarpa, and M. D. Carli. 2011. Short time-step performances of coaxial and double U-tube borehole heat exchangers: Modeling and measurements. HVAC & R Research 17 (6):959–76.
  • Zarrella, A., and P. Pasquier. 2015. Effect of axial heat transfer and atmospheric conditions on the energy performance of GSHP systems: A simulation-based analysis. Applied Thermal Engineering 78:591–604.
  • Zeng, H. Y., N. R. Diao, and Z. Fang. 2002. A finite line-source model for boreholes in geothermal heat exchangers. Heat Transfer Asian Research 31 (7):558–67.
  • Zeng, H. Y., N. R. Diao, and Z. Fang. 2003a. Efficiency of vertical geothermal heat exchangers in ground source heat pump systems. Journal of Thermal Science 12 (1):77–81.
  • Zeng, H. Y., N. R. Diao, and Z. Fang. 2003b. Heat transfer analysis of boreholes in vertical ground heat exchangers. International Journal of Heat and Mass Transfer 46 (23):4467–81.
  • Zhang, S., J. Bentsman, X. Lou, C. Neuschaefer, Y. Lee, and H. El-Kebir. 2020. Multiresolution GPC-structured control of a single-loop cold-flow chemical looping testbed.. Energies 13 (7):13: 3275. doi:10.3390/en13071759.
  • Zhongjian, L., and Z. Maoyu. 2009. Development of a numerical model for the simulation of vertical U-tube ground heat exchangers. Applied Thermal Engineering 29 (5–6):920–24.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.