729
Views
1
CrossRef citations to date
0
Altmetric
Review Article

A review on the co-processing of biomass with other fuels sources

&
Pages 793-811 | Received 20 Sep 2020, Accepted 11 Jan 2021, Published online: 22 Mar 2021

References

  • Abbasi, T., and S. A. Abbasi. 2010. Biomass energy and the environmental impacts associated with its production and utilization. Renewable and Sustainable Energy Reviews 14 (3):919–37. doi:10.1016/j.rser.2009.11.006.
  • Aboulkas, A., and K. E. Harfi. 2009. Co-pyrolysis of olive residue with poly (vinyl chloride) using thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry 95 (3):1007–13. doi:10.1007/s10973-008-9315-5.
  • Aboulkas, A., K. E. Harfi, and A. E. Bouadili. 2008a. Non-isothermal kinetic studies on co-processing of olive residue and polypropylene. Energy Conversion and Management 49 (12):3666–71. doi:10.1016/j.enconman.2008.06.029.
  • Aboulkas, A., K. E. Harfi, and A. E. Bouadili. 2008b. Pyrolysis of olive residue/low density polyethylene mixture: Part I Thermogravimetric kinetics. Journal of Fuel Chemistry and Technology 36 (6):672–78. doi:10.1016/S1872-5813(09)60003-7.
  • Aboulkas, A., K. E. Harfi, A. E. Bouadili, and M. Nadifiyine. 2010. Study of the pyrolysis of Moroccan oil shale with poly (ethylene terephthalate). Journal of Thermal Analysis and Calorimetry 100 (1):323–30. doi:10.1007/s10973-009-0185-2.
  • Aboulkas, A., K. E. Harfi, A. E. Bouadili, M. Nadifiyine, M. Benchanaa, and A. Mokhlisse. 2009. Pyrolysis kinetics of olive residue/plastic mixtures by non-isothermal thermogravimetry. Fuel Processing Technology 90 (5):722–28. doi:10.1016/j.fuproc.2009.01.016.
  • Aboulkas, A., K. E. Harfi, M. Nadifiyine, and A. E. Bouadili. 2008c. Thermogravimetric characteristics and kinetic of co-pyrolysis of olive residue with high density polyethylene. Journal of Thermal Analysis and Calorimetry 91 (3):737–43. doi:10.1007/s10973-007-8661-z.
  • Ahmad, E., S. Chadar, S. S. Tomar, and M. K. Akram. 2009. Catalytic degradation of waste plastic into fuel oil. International Journal of Petroleum Science and Technology 3 (1):25–34.
  • Ahmaruzzaman, M., and D. K. Sharma. 2005. Non-isothermal kinetic studies on co-processing of vacuum residue, plastics, coal and petrocrop. Journal of Analytical and Applied Pyrolysis 73 (2):263–75. doi:10.1016/j.jaap.2004.11.035.
  • Ahmaruzzaman, M., and D. K. Sharma. 2006. Characterization of liquid products obtained from cocracking of petroleum vacuum residue with plastics. Energy & Fuels 20 (6):2498–503. doi:10.1021/ef060070c.
  • Ahmaruzzaman, M., and D. K. Sharma. 2007a. Chemical reaction engineering studies on cocracking of petroleum vacuum residue with coal, plastics, and biomass (bagasse and petrocrop). Petroleum Science and Technology 25 (7):937–47. doi:10.1080/10916460500411861.
  • Ahmaruzzaman, M., and D. K. Sharma. 2007b. Coprocessing of petroleum vacuum residue with plastics, coal, and biomass and its synergistic effects. Energy & Fuels 21 (2):891–97. doi:10.1021/ef060102w.
  • Ahmaruzzaman, M., and D. K. Sharma. 2007c. Kinetic studies on cocracking of petroleum vacuum residue with thermoplastics and biomass (petrocrop). Petroleum Science and Technology 25 (7):925–36. doi:10.1080/10916460500411853.
  • Ahmaruzzaman, M., and D. K. Sharma. 2008a. Characterization of liquid products obtained from co-cracking of petroleum vacuum residue with coal and biomass. Journal of Analytical and Applied Pyrolysis 81 (1):37–44. doi:10.1016/j.jaap.2007.08.001.
  • Ahmaruzzaman, M., and D. K. Sharma. 2008b. Characterization of liquid products from the co-cracking of ternary and quaternary mixture of petroleum vacuum residue, polypropylene, samla coal and calotropis procera. Fuel 87 (10–11):1967–73. doi:10.1016/j.fuel.2008.01.007.
  • Akram, M., C. K. Tan, D. R. Garwood, M. Fisher, D. R. Gent, and W. G. Kaye. 2015. Co-firing of pressed sugar beet pulp with coal in a laboratory-scale fluidised bed combustor. Applied Energy 139:1–8. doi:10.1016/j.apenergy.2014.11.008.
  • Alencar, J. W., P. B. Alves, and A. A. Craveiro. 1983. Pyrolysis of tropical vegetable-oils. Journal of Agricultural and Food Chemistry 31 (6):1268–70. doi:10.1021/jf00120a031.
  • Ali, M. F., S. Ahmed, and M. S. Qureshi. 2011. Catalytic coprocessing of coal and petroleum residues with waste plastics to produce transportation fuels. Fuel Processing Technology 92 (5):1109–20. doi:10.1016/j.fuproc.2011.01.006.
  • Ali, U., C. Font-Palma, M. Akram, E. O. Agbonghae, D. B. Ingham, and M. Pourkashanian. 2017. Comparative potential of natural gas, coal and biomass fired power plant with post - combustion CO2 capture and compression. International Journal of Greenhouse Gas Control 63:184–93. doi:10.1016/j.ijggc.2017.05.022.
  • Amutio, M., G. Lopez, R. Aguado, M. Artetxe, J. Bilbao, and M. Olazar. 2011. Effect of vacuum on lignocellulosic biomass flash pyrolysis in a conical spouted bed reactor. Energy & Fuels 25 (9):3950–60. doi:10.1021/ef200712h.
  • Anderson, L. L., M. Callén, W. Ding, J. Liang, A. M. Mastral, M. C. Mayoral, and R. Murillo. 1997. Hydrocoprocessing of scrap automotive tires and coal. Analysis of oils from autoclave coprocessing. Industrial & Engineering Chemistry Research 36 (11):4763–67. doi:10.1021/ie970307f.
  • Arandes, J. M., I. Torre, M. J. Azkoiti, J. Erena, and J. Bilbao. 2008. Effect of atmospheric residue incorporation in the fluidized catalytic cracking (FCC) feed on product stream yields and composition. Energy & Fuels 22 (4):2149–56. doi:10.1021/ef800031x.
  • Audeh, C. A., and T. Y. Yan. 1987. Coprocessing of petroleum residue and coal. Industrial & Engineering Chemistry Research 26 (12):2419–23. doi:10.1021/ie00072a005.
  • Bengoa, C., J. Font, A. Moros, A. Fortuny, A. Fabregat, and F. Giralt. 1996. Performance of different catalysts on the coprocessing of a demineralized catalan lignite. Energy & Fuels 10 (3):679–83. doi:10.1021/ef950146x.
  • Bhattacharya, P., P. H. Steele, E. B. M. Hassan, B. Mitchell, L. Ingram, and C. U. Pittman Jr. 2009. Wood/plastic copyrolysis in an auger reactor: Chemical and physical analysis of the products. Fuel 88 (7):1251–60. doi:10.1016/j.fuel.2009.01.009.
  • Biswas, S. 2013. “Co-cracking of jatropha oil with vacuum residue, high density polyethylene and bagasse to obtain value added fuels and products.” PhD Thesis, IIT Delhi, New Delhi, India.
  • Biswas, S., S. Majhi, P. Mohanty, K. K. Pant, and D. K. Sharma. 2014a. Effect of different catalyst on the co-cracking of Jatropha oil, vacuum residue and high density polyethylene. Fuel 133:96–105. doi:10.1016/j.fuel.2014.04.082.
  • Biswas, S., P. Mohanty, and D. K. Sharma. 2014b. Studies on co-cracking of jatropha oil with bagasse to obtain liquid, gaseous product and char. Renewable Energy 63:308–16. doi:10.1016/j.renene.2013.09.045.
  • Biswas, S., and D. K. Sharma. 2013. Co-cracking of jatropha oil, vacuum residue and HDPE and characterization of liquid, gaseous and char products obtained. Journal of Analytical and Applied Pyrolysis 101:17–27. doi:10.1016/j.jaap.2013.03.003.
  • Biswas, S., D. K. Sharma, and R. Kumar. 2016. Effect of ZSM-5 catalyst on co-cracking of jatropha oil with bagasse. Carbon - Science and Technology 8 (3):46–51.
  • Brebu, M., S. Ucar, C. Vasile, and J. Yanik. 2010. Co-pyrolysis of pine cone with synthetic polymers. Fuel 89 (8):1911–18. doi:10.1016/j.fuel.2010.01.029.
  • Bui, V. N., G. Toussaint, D. Laurenti, C. Mirodatos, and C. Geantet. 2009. Co-processing of pyrolysis bio oils and gas oil for new generation of bio-fuels: Hydrodeoxygenation of guaı¨acol and SRGO mixed feed. Catalysis Today 143 (1–2):172–78. doi:10.1016/j.cattod.2008.11.024.
  • Byambajav, E., and Y. Ohtsuka. 2003. Hydrocracking of asphaltene with metal catalysts supported on SBA-15. Applied Catalysis A: General 252 (1):193–204. doi:10.1016/S0926-860X(03)00469-1.
  • Cai, J., Y. Wang, L. Zhou, and Q. Huang. 2008. Thermogravimetric analysis and kinetics of coal/plastic blends during co-pyrolysis in nitrogen atmosphere. Fuel Processing Technology 89 (1):21–27. doi:10.1016/j.fuproc.2007.06.006.
  • Callejas, M. A., and M. T. Martinez. 1999. Hydrocracking of a Maya residue. Kinetics and product yield distributions. Industrial & Engineering Chemistry Research 38 (9):3285–89. doi:10.1021/ie9900768.
  • Cebrucean, D., V. Cebrucean, and I. Ionel. 2017. Modeling and evaluation of a coal power plant with biomass cofiring and CO2 capture. In Recent advances in carbon capture and storage, ed. Y. Yun, Intechopen. 31-55. doi:10.5772/67188.
  • Ceylan, K., and L. M. Stock. 1991. Reaction pathways during coprocessing. Reaction of Illinois No.6 and Wyodak coals with Lloydminster and Hondo residue under mild conditions. Energy & Fuels 5 (3):482–87. doi:10.1021/ef00027a021.
  • Chanakya, H. N., B. V. V. Reddy, and J. Modak. 2009. Biomethanation of herbaceous biomass residues using 3-zone plug flow like digesters—a case study from India. Renewable Energy 34 (2):416–20. doi:10.1016/j.renene.2008.05.003.
  • Chandaliya, V. K., P. P. Biswas, P. S. Dash, and D. K. Sharma. 2018. Producing low-ash coal by microwave and ultrasonication pretreatment followed by solvent extraction of coal. Fuel 212:422–30. doi:10.1016/j.fuel.2017.10.029.
  • Chang, C. C., and S. W. Wan. 1947. China’s motor fuels from tung oil. Industrial & Engineering Chemistry 39 (12):1543–48. doi:10.1021/ie50456a011.
  • Choi, Y. S., Y. Elkasabi, P. C. Tarves, C. A. Mullen, and A. A. Boateng. 2018. Co-cracking of bio-oil distillate bottoms with vacuum gas oil for enhanced production of light compounds. Journal of Analytical and Applied Pyrolysis 132:65–71. doi:10.1016/j.jaap.2018.03.014.
  • Chuan, L., S. Bin, C. Min, S. Hong-yan, and Q. Guo-he. 2007. Application of Co-Mo/CNT catalyst in hydro-cracking of Gudao vacuum residue. Journal of Fuel Chemistry and Technology 35 (4):407–11.
  • Collot, A. G., Y. Zhuo, D. R. Dugwell, and R. Kandiyoti. 1999. Co-pyrolysis and co-gasification of coal and biomass in bench-scale fixed bed and fluidised bed reactors. Fuel 78 (6):667–79. doi:10.1016/S0016-2361(98)00202-6.
  • Cordero, T., J. Rodrı´guez-Mirasol, J. Pastrana, and J. J. Rodrı́guez. 2004. Improved solid fuels from co-pyrolysis of a high-sulphur content coal and different lignocellulosic wastes. Fuel 83 (11–12):1585–90. doi:10.1016/j.fuel.2004.02.013.
  • Corma, A., G. W. Huber, L. Sauvanaud, and P. O’Connor. 2007. Processing biomass-derived oxygenates in the oil refinery: Catalytic cracking (FCC) reaction pathways and role of catalyst. Journal of Catalysis 247 (2):307–27. doi:10.1016/j.jcat.2007.01.023.
  • Cruz, P. L., D. Iribarren, and J. Dufour. 2019. Life cycle costing and eco-efficiency assessment of fuel production by coprocessing biomass in crude oil refineries. Energies 12 (24):4664. doi:10.3390/en12244664.
  • Cugini, A. V., R. G. Lett, and I. Wender. 1989. Coal/oil coprocessing mechanism studies. Energy & Fuels 3 (2):120–26. doi:10.1021/ef00014a002.
  • Curtis, C. W., K. J. Tsai, and J. A. Guin. 1987. Catalytic coprocessing: Effect of catalyst type and sequencing. Industrial & Engineering Chemistry Research 26 (1):12–18. doi:10.1021/ie00061a003.
  • Cypres, R., and B. Bettens. 1986. Study of the cracking mechanism of phenanthrene and perhydrophenanthrene, labelled in specific positions by 14C and 3H. Fuel 65 (4):507–14. doi:10.1016/0016-2361(86)90041-4.
  • Darmstadt, H., M. Garcia-Perez, A. Chaala, N. Cao, and C. Roy. 2001. Co-pyrolysis under vacuum of sugar cane bagasse and petroleum residue properties of the char and activated char products. Carbon 39 (6):815–5. doi:10.1016/S0008-6223(00)00204-9.
  • Demirbas, A. 2003. Relationships between lignin contents and fixed carbon contents of biomass samples. Energy Conversion and Management 44 (9):1481–86. doi:10.1016/S0196-8904(02)00168-1.
  • Demirbas, A. 2004. Combustion characteristics of different biomass fuels. Progress in Energy and Combustion Science 30 (2):219–30. doi:10.1016/j.pecs.2003.10.004.
  • Devard, A., G. de la Puente, and U. Sedran. 2009. Laboratory evaluation of the impact of the addition of resid in FCC. Fuel Processing Technology 90 (1):51–55. doi:10.1016/j.fuproc.2008.07.009.
  • Dhawan, H., R. Kumar, S. Upadhyayula, K. K. Pant, and D. K. Sharma. 2020. Fractionation of coal through organo-separative refining for enhancing its potential for the CO2-gasification. International Journal of Coal Science & Technology 7 (3):504–15. doi:10.1007/s40789-020-00348-7..
  • Dhawan, H., and D. K. Sharma. 2019. Refining of Indian coals to obtain super clean coals having insignificant amounts of deleterious elements under milder conditions. Mineral Processing and Extractive Metallurgy 1–12. doi:10.1080/25726641.2019.1595310..
  • Dhawan, H., S. Upadhyayula, and D. K. Sharma. 2018a. Design of experiments to optimize the extraction parameters of a power grade Indian coal. International Journal of Coal Science & Technology 5 (4):417–29. doi:10.1007/s40789-018-0216-3.
  • Dhawan, H., S. Upadhyayula, and D. K. Sharma. 2018b. Organo-refining to produce near zero ash coals: determination of elemental concentration in clean coals. Energy & Fuels 32 (6):6535–44. doi:10.1021/acs.energyfuels.8b00549.
  • Dhawan, H., S. Upadhyayula, and D. K. Sharma. 2019. Production of near zero ash coal through ionic liquid promoted organo-refining process. Separation Science and Technology. doi:10.1080/01496395.2019.1675705..
  • Diebold, J. P. 1994. A unified, global model for the pyrolysis of cellulose. Biomass and Bioenergy 7 (1–6):75–85. doi:10.1016/0961-9534(94)00039-V.
  • Dwivedi, G., S. Jain, and M. P. Sharma. 2011. Pongamia as a Source of Biodiesel in India. Smart Grid and Renewable Energy 2 (3):184–89. doi:10.4236/sgre.2011.23022.
  • Fogassy, G., N. Thegarid, G. Toussaint, A. C. van Veen, Y. Schuurman, and C. Mirodatos. 2010. Biomass derived feedstock co-processing with vacuum gas oil for second-generation fuel production in FCC units. Applied Catalysis B: Environmental 96 (3–4):476–85. doi:10.1016/j.apcatb.2010.03.008.
  • Forero-Nuñez, C. A., J. Jochum, and F. E. Sierra. 2015. Effect of particle size and addition of cocoa pod husk on the properties of sawdust and coal pellets. Ingeniería E Investigación 35 (1):17–23. doi:10.15446/ing.investig.v35n1.46157.
  • Fouda, S. A., J. F. Kelly, and P. M. Rahimi. 1989. Effects of coal concentration on coprocessing performance. Energy & Fuels 3 (2):154–60. doi:10.1021/ef00014a008.
  • Garcia-Perez, M., A. Chaala, J. Yang, and C. Toy. 2001. Co-pyrolysis of sugarcane bagasse with petroleum residue. Part 1: Thermogravimetric analysis. Fuel 80 (9):1245–58. doi:10.1016/S0016-2361(00)00215-5.
  • Gunasee, S. D., B. Danon, J. F. Gorgens, and R. Mohee. 2017. Co-pyrolysis of HDPE and cellulose: Synergies during devolatilization and condensation. Journal of Analytical and Applied Pyrolysis 126:307–14. doi:10.1016/j.jaap.2017.05.016.
  • Hajdu, P. E., J. W. Tierney, and I. Wender. 1996. Effect of catalytic hydropretreatment of petroleum vacuum resid on coprocessing with coal. Energy & Fuels 10 (2):493–503. doi:10.1021/ef950180b.
  • Hata, K., K. Wada, and T. Mitsudo. 1998. Iron-catalyzed coprocessing of coals and vacuum residues using syngas-water as a hydrogen source. Energy & Fuels 12 (6):1181–90. doi:10.1021/ef980032w.
  • Haykiri-Acma, H., and S. Yaman. 2010. Interaction between biomass and different rank coals during co-pyrolysis. Renewable Energy 35 (1):288–92. doi:10.1016/j.renene.2009.08.001.
  • Herrick, D. E., J. W. Tierney, I. Wender, G. P. Huffman, and F. E. Huggins. 1990. Activity and characterization of coprocessing catalysts produced from an iron pentacarbonyl precursor. Energy & Fuels 4 (3):231–36. doi:10.1021/ef00021a003.
  • Hirunpraditkoon, S., and A. N. García. 2009. Kinetic study of vetiver grass powder filled polypropylene composites. Thermochimica acta. 482(1–2):30–38.https://www.worldometers.info/coal/. “World Coal Reserves” downloaded on 13 12 2020.
  • Huber, G. W., S. Iborra, and A. Corma. 2006. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chemical Reviews 106 (9):4044–98. doi:10.1021/cr068360d.
  • Huber, G. W., P. O’Connor, and A. Corma. 2007. Processing biomass in conventional oil refineries: Production of high quality diesel by hydrotreating vegetable oils in heavy vacuum oil mixtures. Applied Catalysis A: General 329:120–29. doi:10.1016/j.apcata.2007.07.002.
  • Idris, S. S., N. A. Rahman, K. Ismail, A. B. Alias, Z. A. Rashid, and M. J. Aris. 2010. Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA). Bioresource Technology 101 (12):4584–92. doi:10.1016/j.biortech.2010.01.059.
  • Ikura, M., J. F. Kelly, and C. E. Capes. 1989. Selective oil agglomeration of lignite using vacuum bottoms only as an integral part of co-processing. Energy & Fuels 3 (2):132–36. doi:10.1021/ef00014a004.
  • Ingram, L., D. Mohan, M. Bricka, P. Steele, D. Strobel, D. Crocker, B. Mitchell, J. Mohammad, K. Cantrell, and C. U. Pittman Jr. 2008. Pyrolysis of wood and bark in an auger reactor: Physical properties and chemical analysis of the produced bio-oils. Energy Fuels 2 (1):614–25. doi:10.1021/ef700335k.
  • Kasar, P., and M. Ahmaruzzaman. 2018. Catalytic co-cracking of waste polypropylene and residual fuel oil. Petroleum Science and Technology 36 (18):1455–62. doi:10.1080/10916466.2018.1490757.
  • Katyal, S. 2007. Effect of carbonization temperature on combustion reactivity of bagasse char. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 29 (16):1477–85. doi:10.1080/00908310600710715.
  • Keogh, R. A., R. H. Hardy, and B. H. Davis. 1991. Stable carbon isotope analysis of products from coal/tar sand bitumen coprocessing. Energy & Fuels 5 (2):322–27. doi:10.1021/ef00026a017.
  • Kim, D. W., A. Koriakin, S. Y. Jeong, and C. H. Lee. 2017. Co-processing of heavy oil with wood biomass using supercritical m-xylene and n-dodecane solvents. Korean Journal of Chemical Engineering 34 (7):1961–69. doi:10.1007/s11814-017-0109-y.
  • Koc, A., and A. Y. Bilgesu. 2007. Catalytic and thermal oxidative pyrolysis of LDPE in a continuous reactor system. Journal of Analytical and Applied Pyrolysis 78 (1):7–13. doi:10.1016/j.jaap.2006.03.008.
  • Kumagai, S., K. Fujita, T. Kameda, and T. Yoshioka. 2016. Interactions of beech wood-polyethylene mixtures during co-pyrolysis. Journal of Analytical and Applied Pyrolysis 122:531–40. doi:10.1016/j.jaap.2016.08.012.
  • Kumar, A., N. Kumar, P. Baredar, and A. Shukla. 2015. A review on biomass energy resources, potential, conversion and policy in India. Renewable and Sustainable Energy Reviews 45:530–39. doi:10.1016/j.rser.2015.02.007.
  • Kuznetsov, B. N., V. I. Sharypov, S. A. Kuznetsova, V. E. Taraban’ko, and N. M. Ivanchenko. 2009. The study of different methods of bio-liquids production from wood biomass and from biomass/polyolefine mixtures. International Journal of Hydrogen Energy 34 (16):7051–56. doi:10.1016/j.ijhydene.2008.11.024.
  • Lappas, A. A., S. Bezergianni, and I. A. Vasalos. 2009. Production of biofuels via co-processing in conventional refining processes. Catalysis Today 145 (1–2):55–62. doi:10.1016/j.cattod.2008.07.001.
  • Lázaro, M. J., R. Moliner, I. Suelves, C. Domeño, and C. Nerı́n. 2002. Co-pyrolysis of a mineral waste oil/coal slurry in a continuous-mode fluidized bed reactor. Journal of Analytical and Applied Pyrolysis 65 (2):239–52. doi:10.1016/S0165-2370(02)00003-7.
  • Leng, L., J. Li, X. Yuan, J. Li, P. Han, Y. Hong, F. Wei, and W. Zhou. 2018. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresource Technology 251:49–56. doi:10.1016/j.biortech.2017.12.018.
  • Li, X., L. Li, Z. Huang, D. Yan, H. Yu, and J. He. 2018. Emission characteristics of organic pollutants during coprocessing of coal liquefaction residue in texaco coal−water slurry gasifier. Energy & Fuels 32 (2):2605–11. doi:10.1021/acs.energyfuels.7b03395.
  • Liu, W., C. Hu, Y. Yang, D. Tong, G. Li, and L. Zhu. 2010. Influence of ZSM-5 zeolite on the pyrolytic intermediates from the co-pyrolysis of pubescens and LDPE. Energy Conversion and Management 51 (5):1025–32. doi:10.1016/j.enconman.2009.12.005.
  • Maher, K. D., and D. C. Bressler. 2007. Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresource Technology 98 (12):2351–68. doi:10.1016/j.biortech.2006.10.025.
  • Manurung, R., D. A. Z. Wever, J. Wildschut, R. H. Venderbosch, H. Hidayat, J. E. G. Van Dam, E. J. Leijenhorst, A. A. Broekhuis, and H. J. Heeres. 2009. Valorization of Jatropha curcas L. plant parts: Nut shell conversion to fast pyrolysis oil. Food and Bioproducts Processing 87 (3):187–96. doi:10.1016/j.fbp.2009.06.007.
  • Marin, N., S. Collura, V. I. Sharypov, N. G. Beregovtsova, S. V. Baryshnikov, B. N. Kutnetzov, V. Cebolla, and J. V. Weber. 2002. Copyrolysis of wood biomass and synthetic polymers mixtures. Part II: Characterisation of the liquid phases. Journal of Analytical and Applied Pyrolysis 65 (1):41–55. doi:10.1016/S0165-2370(01)00179-6.
  • Mastral, A. M., M. C. Mayoral, R. Murillo, M. Callen, T. Garcia, M. P. Tejero, and N. Torres. 1998. Evaluation of synergy in tire rubber-coal coprocessing. Industrial & Engineering Chemistry Research 37 (9):3545–50. doi:10.1021/ie980122o.
  • Mastral, A. M., R. Murillo, J. M. Palacios, M. C. Mayoral, and M. Callén. 1997. Iron-catalyzed coal−tire coprocessing. Influence on conversion products distribution. Energy Fuels 11 (4):813–18. doi:10.1021/ef960171i.
  • Matsumura, A., T. Kondo, S. Sato, I. Saito, and W. F. de Souza. 2005a. Hydrocracking Brazilian Marlim vacuum residue with natural limonite. Part 1: Catalytic activity of natural limonite. Fuel 84 (4):411–16. doi:10.1016/j.fuel.2004.09.014.
  • Matsumura, A., T. Kondo, S. Sato, I. Saito, and W. F. de Souza. 2005b. Hydrocracking Marlim vacuum residue with natural limonite. Part 2: Experimental cracking in a slurry-type continuous reactor. Fuel 84 (4):417–21. doi:10.1016/j.fuel.2004.09.015.
  • Melero, J. A., M. M. Clavero, G. Calleja, A. Garcı´a, R. Miravalles, and T. Galindo. 2010. Production of biofuels via the catalytic cracking of mixtures of crude vegetable oils and nonedible animal fats with vacuum gas oil. Energy & Fuels 24 (1):707–17. doi:10.1021/ef900914e.
  • Miller, R. L., G. F. Giacomelli, K. J. McHugh, and R. M. Baldwin. 1989. Coprocessing of coal and residuum under low-severity reaction conditions: Effect of basic nitrogen promoters. Energy Fuels 3 (2):127–31. doi:10.1021/ef00014a003.
  • Miller, R. S., and J. Bellan. 1997. A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics. Combustion Science and Technology 126 (1–6):97–137. doi:10.1080/00102209708935670.
  • Miyake, M., K. Takahashi, J. Higashine, and M. Nomura. 1992. An important factor affecting synergism on coprocessing of Taiheiyo coal with Athabasca oil sand bitumen. Fuel Processing Technology 30 (3):205–13. doi:10.1016/0378-3820(92)90049-V.
  • Mohan, D., C. U. Pittman, and P. H. Steele. 2006. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels 20 (3):848–89. doi:10.1021/ef0502397.
  • Mominou, N., S. B. Xian, and X. Jiaoliang. 2009. Studies on coprocessing vacuum residue oil with plastics using thermogravimetric analysis. Petroleum Science and Technology 27 (6):588–96. doi:10.1080/10916460701857706.
  • Morawski, I., and J. Mosio-Mosiewski. 2005. Study on single-stage hydrocracking of vacuum residue in the suspension of Ni–Mo catalyst. Applied Catalysis A: General 283:147–55. doi:10.1016/j.apcata.2005.01.001.
  • Morawski, I., and J. Mosio-Mosiewski. 2006. Effect of parameters in NI-Mo catalysed hydrocracking of vacuum residue on composition and quality of obtained products. Fuel Processing Technology 87 (7):659–69. doi:10.1016/j.fuproc.2006.01.006.
  • Mosio-Mosiewski, J., M. Warzala, I. Morawski, and T. Dobrzanski. 2007. High-pressure catalytic and thermal cracking of polyethylene. Fuel Processing Technology 88 (4):359–64. doi:10.1016/j.fuproc.2006.10.009.
  • Munadi, F., and D. Supramono. 2020. Activated carbon production through co-pyrolysis of vacuum residue and dehydrated castor oil. Materials Science Forum 988:73–79. doi:10.4028/www.scientific.net/MSF.988.73.
  • Nabeel, A., M. A. Khan, S. Husain, R. Krishanamacharyulu, R. N. Rao, and D. K. Sharma. 2000. Basic studies of coal to enhance its development as a clean fuel. Energy Sources 22 (1):57–65. doi:10.1080/00908310050014216.
  • Nabeel, A., T. A. Khan, and D. K. Sharma. 2009. Non-isothermal kinetic studies of co-combustion and co-cracking of coal and plastic blends using thermogravimetric analysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 31 (9):722–32. doi:10.1080/15567030701752560.
  • Oladejo, J. M., S. Adegbite, C. H. Pang, H. Liu, A. M. Parvez, and T. Wu. 2017. A novel index for the study of synergistic effects during the co-processing of coal and biomass. Applied Energy 188:215–25. doi:10.1016/j.apenergy.2016.12.005.
  • Önal, E., B. B. Uzun, and A. E. Pütün. 2014. Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene. Energy Conversion and Management 78:704–10. doi:10.1016/j.enconman.2013.11.022.
  • Onay, O., E. Bayram, and Ö. M. Koçkar. 2007. Copyrolysis of seyitömer-lignite and safflower seed: Influence of the blending ratio and pyrolysis temperature on product yields and oil characterization. Energy Fuels 21 (5):3049–56. doi:10.1021/ef700230s.
  • Onwudili, J., and T. William. 2007. Reaction mechanisms for the decomposition of phenanthrene and naphthalene under hydrothermal conditions. The Journal of Supercritical Fluids 39 (3):399–408. doi:10.1016/j.supflu.2006.03.014.
  • Orr, E. C., Y. Shi, Q. Ji, L. Shao, M. Villanueva, and E. M. Eyring. 1996. An effective coal liquefaction solvent obtained from the vacuum pyrolysis of waste rubber tires. Energy & Fuels 10 (3):573–78. doi:10.1021/ef950243q.
  • Owens, R. M., and C. W. Curtis. 1994. An investigation of hydrogen transfer from naphthenes during coprocessing. Energy & Fuels 8 (4):823–29. doi:10.1021/ef00046a002.
  • Oyedun, A. O., T. Gebreegziabher, and C. W. Hui. 2013. Co-pyrolysis of biomass and plastics waste: A modeling approach. Chemical Engineering Transactions 35:883–88.
  • Pan, Y. G., E. Velo, and L. Puigjaner. 1996. Pyrolysis of blends of biomass with poor coals. Fuel 75 (4):412–18. doi:10.1016/0016-2361(95)00275-8.
  • Papari, S., and K. Hawboldt. 2015. A review on the pyrolysis of woody biomass to bio-oil: Focus on kinetic models. Renewable and Sustainable Energy Reviews 52:1580–95. doi:10.1016/j.rser.2015.07.191.
  • Parekh, D. B., Y. C. Rotliwala, and P. A. Parikh. 2009. Synergetic pyrolysis of high density polyethylene and Jatropha and Karanj cakes: A thermogravimetric study. Journal of Renewable and Sustainable Energy 1 (33107):1–10. doi:10.1063/1.3153904.
  • Park, D. K., S. D. Kim, S. H. Lee, and J. G. Lee. 2010. Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor. Bioresource Technology 101 (15):6151–56. doi:10.1016/j.biortech.2010.02.087.
  • Patrascu, E., G. Rapeanu, and T. Hopulele. 2009. Current approaches to efficient biotechnological production of ethanol. Innovative Romanian Food Biotechnology 4:1–11.
  • Pinho, A. R., M. B. B. de Almeida, F. L. Mendes, L. C. Casavechia, M. S. Talmadge, C. M. Kinchin, and H. L. Chum. 2017. Fast pyrolysis oil from pinewood chips co-processing with vacuum gas oil in an FCC unit for second generation fuel production. Fuel 188:462–73. doi:10.1016/j.fuel.2016.10.032.
  • Rana, B. S., R. Kumar, R. Tiwari, R. Kumar, R. K. Joshi, M. O. Garg, and A. K. Sinha. 2013. Transportation fuels from co-processing of waste vegetable oil and gas oil mixtures. Biomass and Bioenergy 56:43–52. doi:10.1016/j.biombioe.2013.04.029.
  • Rotliwala, Y. C., and P. A. Parikh. 2011. Study on thermal co-pyrolysis of jatropha deoiled cake and polyolefins. Waste Management & Research 29 (12):1251–61. doi:10.1177/0734242X11406948.
  • Rutkowski, P. 2009. Influence of zinc chloride addition on the chemical structure of bio-oil obtained during co-pyrolysis of wood/synthetic polymer blends. Waste Management 29 (12):2983–93. doi:10.1016/j.wasman.2009.07.013.
  • Rutkowski, P., and A. Kubacki. 2006. Influence of polystyrene addition to cellulose on chemical structure and properties of bio-oil obtained during pyrolysis. Energy Conversion and Management 47 (6):716–31. doi:10.1016/j.enconman.2005.05.017.
  • Sadhukhan, A. K., P. Gupta, T. Goyal, and R. K. Saha. 2008. Modelling of pyrolysis of coal–biomass blends using thermogravimetric analysis. Bioresource Technology 99 (17):8022–26. doi:10.1016/j.biortech.2008.03.047.
  • Saidur, R., E. A. Abdelaziz, A. Demirbas, M. S. Hossain, and S. Mekhilef. 2011. A review on biomass as a fuel for boilers. Renewable and Sustainable Energy Reviews 15 (5):2262–89. doi:10.1016/j.rser.2011.02.015.
  • Schwab, A. W., G. J. Dykstra, E. Selke, S. C. Sorenson, and E. H. Pryde. 1988. Diesel fuel from thermal decomposition of soybean oil. Journal of the American Oil Chemists’ Society 65 (11):1781–86. doi:10.1007/BF02542382.
  • Secer, A., N. Kucet, E. Faki, and A. Hasanoglu. 2018. comparison of co-gasification efficiencies of coal lignocellulosic biomass and biomass hydrolysate for high yield hydrogen production. International Journal of Hydrogen Energy 43 (46):21269–78. doi:10.1016/j.ijhydene.2018.09.144.
  • Sharma, A., B. G. Unni, and H. D. Singh. 1999. A novel fed batch system for bio-methanation of plant biomasses. Journal of Bioscience and Bioengineering 87 (5):678–82. doi:10.1016/S1389-1723(99)80133-9.
  • Sharma, D. K. 1994a. A new process for production of super clean coal for industrial boilers by organosolvo-refining technique. A case for clean coal technology transfer to industries for setting up coal refineries. Indian Journal of Applied Research 39:87–93.
  • Sharma, D. K. 1994b. A newer concept of setting up coal refineries in coal utilizing industries through environmentally sound clean coal technology of organosuper-refining of coals. Journal of Scientific and Industrial Research 53:909–23.
  • Sharma, D. K., H. Dhawan, T. Morgan, and M. Crocker. 2019. Py-GCMS studies of Indian coals and their solvent extracted products. Fuel 256:115981. doi:10.1016/j.fuel.2019.115981.
  • Sharma, D. K., and C. C. Giri. 2016. CO2 gasification reactivity and kinetics studies of raw coal, super clean coal and residual coals obtained after organo-refining (solvent extraction). Journal of Power Technologies 96 (3):157–69.
  • Sharma, D. K., and R. Prasad. 1986. Oil and nonpolluting fuel from latex bearing plants. Biomass 11 (1):75–79. doi:10.1016/0144-4565(86)90022-3.
  • Sharma, S., and A. K. Ghoshal. 2010. Study of kinetics of co-pyrolysis of coal and waste LDPE blends under argon atmosphere. Fuel 89 (12):3943–51. doi:10.1016/j.fuel.2010.06.033.
  • Sharypov, V. I., N. G. Beregovtsova, B. N. Kuznetsov, S. V. Baryshnikov, V. L. Cebolla, J. V. Weber, S. Collura, G. Finqueneisel, and T. Zimny. 2006. Co-pyrolysis of wood biomass and synthetic polymers mixtures Part IV: Catalytic pyrolysis of pine wood and polyolefinic polymers mixtures in hydrogen atmosphere. Journal of Analytical and Applied Pyrolysis 76 (1–2):265–70. doi:10.1016/j.jaap.2005.12.006.
  • Sharypov, V. I., N. G. Beregovtsova, B. N. Kuznetsov, S. V. Baryshnikov, and J. V. Weber. 2008. The scope for distillable liquids generation from biomass and plastics waste via pyrolysis. Journal of Siberian Federal University: Chemistry 1:15–23.
  • Sharypov, V. I., N. G. Beregovtsova, B. N. Kuznetsov, L. Membrado, V. L. Cebolla, N. Marin, and J. V. Weber. 2003. Co-pyrolysis of wood biomass and synthetic polymers mixtures. Part III: Characterisation of heavy products. Journal of Analytical and Applied Pyrolysis 67 (2):325–40. doi:10.1016/S0165-2370(02)00071-2.
  • Sharypov, V. I., N. Marin, N. G. Beregovtsova, S. V. Baryshnikov, B. N. Kuznetsov, V. L. Cebolla, and J. V. Weber. 2002. Co-pyrolysis of wood biomass and synthetic polymer mixtures. Part I: Influence of experimental conditions on the evolution of solids, liquids and gases. Journal of Analytical and Applied Pyrolysis 64 (1):15–28. doi:10.1016/S0165-2370(01)00167-X.
  • Shi, K., T. Wu, H. Zhao, E. Lester, and Y. Wang. 2013. Microwave induced co-processing of biomass/coal blends. Applied Mechanics and Materials 319:227–32. doi:10.4028/www.scientific.net/AMM.319.227.
  • Siddiqui, M. N., and H. H. Redhwi. 2009. Catalytic coprocessing of waste plastics and petroleum residue into liquid fuel oils. Journal of Analytical and Applied Pyrolysis 86 (1):141–47. doi:10.1016/j.jaap.2009.05.002.
  • Šimácek, P., and D. Kubička. 2010. Hydrocracking of petroleum vacuum distillate containing rapeseed oil: Evaluation of diesel fuel. Fuel 89 (7):1508–13. doi:10.1016/j.fuel.2009.09.029.
  • Singh, A., K. Das, and D. K. Sharma. 1984b. Production of furfural, xylose, fermentable sugars and ethanol from agricultural wastes. Journal of Chemical Technology and Biotechnology 24:51–61.
  • Singh, H., S. Mishra, and D. K. Sharma. 2007. Studies on the reaction engineering of combustion and carbonization of Indian coals, depolymerised coals and residual coals obtained after organo-refining. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 29 (12):1151–58. doi:10.1080/009083190910514.
  • Singh, K., and J. Zondlo. 2017. Co-processing coal and torrefied biomass during direct liquefaction. Journal of the Energy Institute 90 (4):497–504. doi:10.1016/j.joei.2016.06.001.
  • Singh., A., K. Das, and D. K. Sharma. 1984a. Integrated process for production of furfural, xylose, glucose, and ethanol by two step acid hydrolysis. Industrial & Engineering Chemistry Product Research and Development 23 (2):257–62. doi:10.1021/i300014a017.
  • Sonobe, T., N. Worasuwannarak, and S. Pipatmanomai. 2008. Synergies in co-pyrolysis of Thai lignite and corncob. Fuel Processing Technology 89 (12):1371–78. doi:10.1016/j.fuproc.2008.06.006.
  • Sousa-Aguiar, E. F., L. G. Appel, P. C. Zonetti, A. D. C. Fraga, A. A. Bicudo, and I. Fonseca. 2014. Some important catalytic challenges in the bioethanol integrated biorefinery. Catalysis Today 234:13–23. doi:10.1016/j.cattod.2014.02.016.
  • Sousa-Aguiar, E. F., V. L. Ximenes, J. M. A. R. de Almeida, P. N. Romano, and Y. Carvalho. 2018. CHAPTER 1: Catalysts for co-processing biomass in oil refining industry, in Sustainable catalysis for biorefineries. 1–24. DOI: 10.1039/9781788013567-00001.
  • Stiller, A. H., D. B. Dadyburjor, J. P. Wann, D. Tian, and J. W. Zondlo. 1996. Co-processing of agricultural with coal and biomass waste. Fuel Processing Technology 49 (1–3):167–75. doi:10.1016/S0378-3820(96)01051-X.
  • Stocker, M. 2008. Biofuels and biomass-to-liquid fuels in the biorefinery: Catalytic conversion of lignocellulosic biomass using porous materials. Angewandte Chemie International Edition 47 (48):9200–11. doi:10.1002/anie.200801476.
  • Suelves, I., R. Moliner, and M. J. Lázaro. 2000. Synergetic effects in the co-pyrolysis of coal and petroleum residues: Influences of coal mineral matter and petroleum residue mass ratio. Journal of Analytical and Applied Pyrolysis 55 (1):29–41. doi:10.1016/S0165-2370(99)00072-8.
  • Sugano, M., H. Andoh, M. Tsubosaka, K. Tanaka, K. Hirano, and K. Mashimo. 2009. Effects of coal rank and reaction conditions upon coprocessing coal with waste tyre. Fuel 88 (12):2437–41. doi:10.1016/j.fuel.2009.04.008.
  • Surasani, V. K., F. Kretschmer, P. Heidecke, M. Peglow, and E. Tsotsas. 2011. Biomass combustion in a fluidized-bed system: An integrated model for dynamic plant simulations. Industrial & Engineering Chemistry Research 50 (17):9936–43. doi:10.1021/ie200537m.
  • Szladow, A. J., R. K. Chan, S. Fouda, and J. F. Kelly. 1989. Kinetics of Heavy Oil/Coal Coprocessing. Energy & Fuels 3 (2):136–43. doi:10.1021/ef00014a005.
  • Tailleur, R. G., and L. Caprioli. 2005. Catalyst pore plugging effects on hydrocracking reactions in an Ebullated bed reactor operation. Catalysis Today 109 (1–4):185–94. doi:10.1016/j.cattod.2005.08.026.
  • Torres, C. M., S. D. Ríos, C. Torras, J. Salvadó, J. M. Mateo-Sanz, and L. Jiménez. 2013. Sustainability analysis of biodiesel production from Cynara Cardunculus crop. Fuel 111:535–42. doi:10.1016/j.fuel.2013.04.021.
  • Tsai, W. T., M. K. Lee, and Y. M. Chang. 2007. Fast pyrolysis of rice husk: Product yields and compositions. Bioresource Technology 98 (1):22–28. doi:10.1016/j.biortech.2005.12.005.
  • Tursi, A. 2019. A review on biomass: Importance, chemistry, classification, and conversion. Biofuel Research Journal 22 (2):962–79. doi:10.18331/BRJ2019.6.2.3.
  • Ulloa, C. A., A. L. Gordon, and X. A. García. 2009. Thermogravimetric study of interactions in the pyrolysis of blends of coal with radiata pine sawdust. Fuel Processing Technology 90 (4):583–90. doi:10.1016/j.fuproc.2008.12.015.
  • vanGrieken, R., D. P. Serrano, J. Aguado, R. Garcı́a, and C. Rojo. 2001. Thermal and catalytic cracking of polyethylene under mild conditions. Journal of Analytical and Applied Pyrolysis 58-59:127–42. doi:10.1016/S0165-2370(00)00145-5.
  • Varshney, R., J. L. Bhagoria, and C. R. Mehta. 2010. Small scale biomass gasification technology in India—an overview. Journal of Management Science and Engineering 3:33–40.
  • Walendziewski, J., and M. Steininger. 2001. Thermal and catalytic conversion of waste polyolefines. Catalysis Today 65 (2–4):323–30. doi:10.1016/S0920-5861(00)00568-X.
  • Xie, C., F. Liu, S. Yu, F. Li, L. Xie, S. Zhang, and J. Yang. 2008. Catalytic cracking of polypropylene into liquid hydrocarbons over Zr and Mo modified MCM-41 mesoporous molecular sieve. Catalysis Communications 10 (1):79–82. doi:10.1016/j.catcom.2008.08.001.
  • Yilgin, M., N. Deveci Duranay, and D. Pehlivan. 2010. Co-pyrolysis of lignite and sugar beet pulp. Energy Conversion and Management 51 (5):1060–64. doi:10.1016/j.enconman.2009.12.010.
  • Zhang, L., C. Xu, and P. Champagne. 2010. Overview of recent advances in thermo-chemical conversion of biomass. Energy Conversion and Management 51 (5):969–82. doi:10.1016/j.enconman.2009.11.038.
  • Zhang, L., S. Xu, W. Zhao, and S. Liu. 2007. Co -pyrolysis of biomass and coal in a free fall reactor. Fuel 86 (3):353–59. doi:10.1016/j.fuel.2006.07.004.
  • Zhang, S., X. Yue, Z. Yin, T. Pan, M. Dong, and T. Sun. 2009. Study of the co-pyrolysis behavior of sewage-sludge/rice-straw and the kinetics. Procedia Earth and Planetary Science 1 (1):661–66. doi:10.1016/j.proeps.2009.09.104.
  • Zhang, Y., Y. Zhang, P. Geng, and R. Liu. 2017. Synergistic co-processing of biomass torrefaction products with coal and coal char. Energy Procedia 142:1382–87. doi:10.1016/j.egypro.2017.12.523.
  • Zhang, Y., Y. Zheng, M. Yang, and Y. Song. 2016. Effect of fuel origin on synergy during co-gasification of biomass and coal in CO2. Bioresource Technology 200:789–94. doi:10.1016/j.biortech.2015.10.076.
  • Zhou, L., T. Luo, and Q. Huang. 2009. Co-pyrolysis characteristics and kinetics of coal and plastic blends. Energy Conversion and Management 50 (3):705–10. doi:10.1016/j.enconman.2008.10.007.
  • Zhou, X., W. Li, R. Mabon, and L. J. Broadbelt. 2016. A critical review on hemicellulose pyrolysis. Energy Technology 4:1–29.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.