905
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Performance analysis and comparison of cryogenic CO2 capture system

, , , ORCID Icon, , & show all
Pages 822-833 | Received 05 Nov 2020, Accepted 06 Jan 2021, Published online: 08 Apr 2021

References

  • Bains, P., P. Psarras, and J. Wilcox. 2017. CO2 capture from the industry sector. Progress in Energy and Combustion Science 63:146–72. doi:10.1016/j.pecs.2017.07.001.
  • Bandehali, S., A. Moghadassi, F. Parvizian, S. M. Hosseini, T. Matsuura, and E. Joudaki. 2020. Advances in high carbon dioxide separation performance of poly (ethylene oxide)-based membranes. Journal of Energy Chemistry 46:30–52. doi:10.1016/j.jechem.2019.10.019.
  • Berstad, D., R. Anantharaman, and P. Nekså. 2013. Low-temperature CO2 capture technologies – Applications and potential. International Journal of Refrigeration 36 (5):1403–16. doi:10.1016/j.ijrefrig.2013.03.017.
  • Brunetti, A., F. Scura, G. Barbieri, and E. Drioli. 2010. Membrane technologies for CO2 separation. Journal of Membrane Science 359 (1–2):115–25. doi:10.1016/j.memsci.2009.11.040.
  • Bui, M., C. S. Adjiman, A. Bardow, E. J. Anthony, A. Boston, S. Brown, … N. Mac Dowell. 2018. Carbon capture and storage (CCS): The way forward. Energy & Environmental Science 11 (5):1062–176. doi:10.1039/c7ee02342a.
  • Burt, S., A. Baxter, and L. Baxter. 2009. Cryogenic CO2 capture to control climate change emissions. Paper presented at the Proceedings of the 34th International Technical Conference on Clean Coal & Fuel Systems, Clearwater, FL, May 31–June 4.
  • Clodic, D., and M. Younes. 2002. A new method for CO2 capture: Frosting CO2 at atmospheric pressure. Paper presented at the Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Kyoto, Japan, October 1–4.
  • Ding, M. L., R. W. Flaig, H. L. Jiang, and O. M. Yaghi. 2019. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chemical Society Reviews 48 (10):2783–828. doi:10.1039/c8cs00829a.
  • Giauque, W. F., and C. J. Egan. 1937. Carbon dioxide. The heat capacity and vapor pressure of the solid. The heat of sublimation. Thermodynamic and spectroscopic values of the entropy. The Journal of Chemical Physics 5 (1):45–54. doi:10.1063/1.1749929.
  • Hees, W. G., and C. M. Monroe (2012). U.S. Patent No. 8163070.
  • Hepburn, C., E. Adlen, J. Beddington, E. A. Carter, S. Fuss, N. Mac Dowell, C. K. Williams, P. Smith, and C. K. Williams. 2019. The technological and economic prospects for CO2 utilization and removal. Nature 575 (7781):87–97. doi:10.1038/s41586-019-1681-6.
  • International Energy Agency. 2008. CO2 capture and storage: A key carbon abatement option. Paris: OECD Publishing.
  • Kuramochi, T., A. Ramirez, W. Turkenburg, and A. Faaij. 2012. Effect of CO2 capture on the emissions of air pollutants from industrial processes. International Journal of Greenhouse Gas Control 10:310–28. doi:10.1016/j.ijggc.2012.05.022.
  • Ladner, D. R.2008. Performance and mass vs. operating temperature for pulse tube and Stirling cryocoolers. Paper presented at the Proceedings of the 16th International Cryocooler Conference, Atlanta, Georgia.
  • Lampert, K., and A. Ziebik. 2007. Comparative analysis of energy requirements of CO2 removal from metallurgical fuel gases. Energy 32 (4):521–27. doi:10.1016/j.energy.2006.08.003.
  • Le Moullec, Y. 2012. Assessment of carbon capture thermodynamic limitation on coal-fired power plant efficiency. International Journal of Greenhouse Gas Control 7:192–201. doi:10.1016/j.ijggc.2011.10.002.
  • Lemmon, E., I. Bell, M. Huber, and M. McLinden. 2010. NIST standard reference database 23: Reference fluid thermodynamic and transport properties-REFPROP (Version 9.1). National Institute of Standards and Technology.
  • Naletov, V. A., V. L. Lukyanov, N. N. Kulov, A. Y. Naletov, and M. B. Glebov. 2014. An experimental study of desublimation of carbon dioxide from a gas mixture. Theoretical Foundations Of Chemical Engineering 48 (3):312–19. doi:10.1134/S0040579514030142.
  • Niu, L., Z. G. Zhong, X. F. Hong, S. T. Chen, and Y. Hou. 2020. Numerical study on two-phase expansion performance and quantitative analysis of wetness loss in cryogenic turbo-expander. Cryogenics 110:11. doi:10.1016/j.cryogenics.2020.103123.
  • Ochedi, F. O., J. L. Yu, H. Yu, Y. X. Liu, and A. Hussain. 2020. Carbon dioxide capture using liquid absorption methods: A review. Environmental Chemistry Letters 33. doi:10.1007/s10311-020-01093-8.
  • Pacio, J. C., and C. A. Dorao. 2011. A review on heat exchanger thermal hydraulic models for cryogenic applications. Cryogenics 51 (7):366–79. doi:10.1016/j.cryogenics.2011.04.005.
  • Palizdar, A., T. Ramezani, Z. Nargessi, S. AmirAfshar, M. Abbasi, and A. Vatani. 2019. Advanced exergoeconomic evaluation of a mini-scale nitrogen dual expander process for liquefaction of natural gas. Energy 168:542–57. doi:10.1016/j.energy.2018.11.058.
  • Rao, M., A. Fernandes, P. Pronk, and P. V. Aravind. 2019. Design, modelling and techno-economic analysis of a solid oxide fuel cell-gas turbine system with CO2 capture fueled by gases from steel industry. Applied Thermal Engineering 148:1258–70. doi:10.1016/j.applthermaleng.2018.11.108.
  • Sarkar, J. 2018. Generalized pinch point design method of subcritical-supercritical organic Rankine cycle for maximum heat recovery. Energy 143:141–50. doi:10.1016/j.energy.2017.10.057.
  • Song, C. F., Q. L. Liu, N. Ji, S. Deng, J. Zhao, and Y. Kitamura. 2017. Advanced cryogenic CO2 capture process based on Stirling coolers by heat integration. Applied Thermal Engineering 114:887–95. doi:10.1016/j.applthermaleng.2016.12.049.
  • Song, C. F., Q. L. Liu, S. Deng, H. L. Li, and Y. Kitamura. 2019. Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges. Renewable & Sustainable Energy Reviews 101:265–78. doi:10.1016/j.rser.2018.11.018.
  • Song, C. F., Y. Kitamura, S. H. Li, and K. Ogasawara. 2012. Design of a cryogenic CO2 capture system based on Stirling coolers. International Journal of Greenhouse Gas Control 7:107–14. doi:10.1016/j.ijggc.2012.01.004.
  • Span, R., and W. Wagner. 1996. A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple‐Point Temperature to 1100 K at Pressures up to 800 MPa. Journal of Physical & Chemical Reference Data 25:1509-96. doi:10.1063/1.555991
  • Swanson, C. E., J. W. Elzey, R. E. Hershberger, R. J. Donnelly, and J. Pfotenhauer. 2012. Thermodynamic analysis of low-temperature carbon dioxide and sulfur dioxide capture from coal-burning power plants. Physical Review E 86 (1):016103. doi:10.1103/PhysRevE.86.016103.
  • Tian, H., K. Kang, L. Shi, and R. Sun. 2020. Parameter analysis of CO2 capture with anti-sublimation process. Energy Engineering: Journal of the Association of Energy Engineering 117 (5):267–77. doi:10.32604/EE.2020.011440.
  • Wang, Y. N., J. M. Pfotenhauer, X. Q. Zhi, L. M. Qiu, and J. F. Li. 2018. Transient model of carbon dioxide desublimation from nitrogen-carbon dioxide gas mixture. International Journal of Heat and Mass Transfer 127:339–47. doi:10.1016/j.ijheatmasstransfer.2018.07.068.
  • Willson, P., G. Lychnos, A. Clements, S. Michailos, C. Font-Palma, M. E. Diego, J. Howe, and J. Howe. 2019. Evaluation of the performance and economic viability of a novel low temperature carbon capture process. International Journal of Greenhouse Gas Control 86:1–9. doi:10.1016/j.ijggc.2019.04.001.
  • Xu, J. X., and W. S. Lin. 2017. A CO2 cryogenic capture system for flue gas of an LNG-fired power plant. International Journal of Hydrogen Energy 42 (29):18674–80. doi:10.1016/j.ijhydene.2017.04.135.
  • Yousef, A. M., W. M. El-Maghlany, Y. A. Eldrainy, and A. Attia. 2018. New approach for biogas purification using cryogenic separation and distillation process for CO2 capture. Energy 156:328–51. doi:10.1016/j.energy.2018.05.106.
  • Yuan, L. C., J. M. Pfotenhauer, and L. M. Qiu. 2014. A preliminary investigation of cryogenic CO2 capture utilizing a reverse brayton cycle. Advances in Cryogenic Engineering 1573:1107–14. doi:10.1063/1.4860829.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.