156
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of water/steam direct injection on performance and emissions of two-stroke marine diesel engine

ORCID Icon, , , , , & ORCID Icon show all
Pages 843-855 | Received 17 Nov 2020, Accepted 30 Dec 2020, Published online: 15 Feb 2021

References

  • Ayhan, V. 2020. Investigation of electronic controlled direct water injection for performance and emissions of a diesel engine running on sunflower oil methyl ester. Fuel 275:117992. doi:10.1016/j.fuel.2020.117992.
  • Feng, L., J. Tian, W. Long, W. Gong, B. Du, D. Li, and L. Chen. 2016. Decreasing NOx of a low-speed two-stroke marine diesel engine by using in-cylinder emission control measures. Energies 9:304. doi:10.3390/en9040304.
  • Franken, T., F. Mauss, L. Seidel, M. S. Gern, M. Kauf, A. Matrisciano, and A. C. Kulzer. 2020. Gasoline engine performance simulation of water injection and low-pressure exhaust gas recirculation using tabulated chemistry. International Journal of Engine Research 21:1857–77. doi:10.1177/1468087420933124.
  • Gonca, G., B. Sahin, A. Parlak, Y. Ust, V. Ayhan, O. Cesur, and B. Boru. 2015a. Theoretical and experimental investigation of the Miller cycle diesel engine in terms of performance and emission parameters. Applied Energy 138:11–20. doi:10.1016/j.apenergy.2014.10.043.
  • Gonca, G., B. Sahin, Y. Ust, A. Parlak, and A. Safa. 2015b. Comparison of steam injected diesel engine and Miller cycled diesel engine by using two zone combustion model. Journal of the Energy Institute 88:43–52. doi:10.1016/j.joei.2014.04.007.
  • IMO. 2018. Report of the marine environment protection committee on it’s fifty-eighth session - revised MARPOL annex VI. London, UK: Marine Environment Protection Committee
  • Imperato, M., O. Kaario, T. Sarjovaara, and M. Larmi. 2016. Split fuel injection and Miller cycle in a large-bore engine. Applied Energy 162:289–97. doi:10.1016/j.apenergy.2015.10.041.
  • Ji, W., A. Li, X. Lu, Z. Huang, and L. Zhu. 2019. Numerical study on NOx and ISFC co-optimization for a low-speed two-stroke engine via Miller cycle, EGR, intake air humidification, and injection strategy implementation. Applied Thermal Engineering 153:398–408. doi:10.1016/j.applthermaleng.2019.03.035.
  • Lamas, M. I., and C. G. Rodríguez. 2013. Numerical model to study the combustion process and emissions in the Wärtsilä 6L 46 four-stroke marine engine. Polish Maritime Research 20:61–66. doi:10.2478/pomr-2013-0017.
  • Li, C., Y. Wang, B. Jia, and A. P. Roskilly. 2019. Application of Miller cycle with turbocharger and ethanol to reduce NOx and particulates emissions from diesel engine-A numerical approach with model validations. Applied Thermal Engineering 150:904–11. doi:10.1016/j.applthermaleng.2019.01.056.
  • Li, L., and Z. Zhang. 2019. Investigation on steam direct injection in a natural gas engine for fuel savings. Energy 183:958–70. doi:10.1016/j.energy.2019.06.182.
  • Lin, C., and L. Chen. 2008. Comparison of fuel properties and emission characteristics of two- and three-phase emulsions prepared by ultrasonically vibrating and mechanically homogenizing emulsification methods. Fuel 87:2154–61. doi:10.1016/j.fuel.2007.12.017.
  • Liu, X., M. Q. Nguyen, J. Chu, T. Lan, and M. He. 2020. A novel waste heat recovery system combing steam Rankine cycle and organic Rankine cycle for marine engine. Journal of Cleaner Production 265:121502. doi:10.1016/j.jclepro.2020.121502.
  • Mat Nawi, Z., S. K. Kamarudin, S. R. Sheikh Abdullah, and S. S. Lam. 2019. The potential of exhaust waste heat recovery (WHR) from marine diesel engines via organic rankine cycle. Energy 166:17–31. doi:10.1016/j.energy.2018.10.064.
  • Pamminger, M., B. Wang, C. M. Hall, R. Vojtech, and T. Wallner. 2020. The impact of water injection and exhaust gas recirculation on combustion and emissions in a heavy-duty compression ignition engine operated on diesel and gasoline. International Journal of Engine Research 21:1555–73. doi:10.1177/1468087418815290.
  • Parlak, A. 2019. A study on performance and exhaust emissions of the steam injected DI diesel engine running with different diesel- conola oil methyl ester blends. Journal of the Energy Institute 92:717–29. doi:10.1016/j.joei.2018.03.001.
  • Parlak, A., V. Ayhan, O. Cesur, and G. Kökkülünk. 2013. Investigation of the effects of steam injection on performance and emissions of a diesel engine fuelled with tobacco seed oil methyl ester. Fuel Processing Technology 116:101–09. doi:10.1016/j.fuproc.2013.05.006.
  • Raptotasios, S. I., N. F. Sakellaridis, R. G. Papagiannakis, and D. T. Hountalas. 2015. Application of a multi-zone combustion model to investigate the NOx reduction potential of two-stroke marine diesel engines using EGR. Applied Energy 157:814–23. doi:10.1016/j.apenergy.2014.12.041.
  • Saravanan, S. 2015. Effect of EGR at advanced injection timing on combustion characteristics of diesel engine. Alexandria Engineering Journal 54:339–42. doi:10.1016/j.aej.2015.05.001.
  • Senˇcic, T., V. Mrzljak, P. Blecich, and I. Bonefaˇcic. 2019. 2D CFD Simulation of water injection strategies in a large marine engine. Journal of Marine Science and Engineering 9:296. doi:10.3390/jmse7090296.
  • Stratsianis, V., P. Kontoulis, and L. Kaiktsis. 2016. Effects of fuel post-injection on the performance and pollutant emissions of a large marine engine. Journal of Energy Engineering 142. doi:10.1061/(ASCE)EY.1943-7897.0000337.
  • Sun, X., X. Liang, G. Shu, H. Tian, H. Wei, and X. Wang. 2014. Comparison of the two-stage and traditional single-stage thermoelectric generator in recovering the waste heat of the high temperature exhaust gas of internal combustion engine. Energy 77:489–98. doi:10.1016/j.energy.2014.09.032.
  • Sun, X., X. Liang, G. Shu, Y. Wang, Y. Wang, and H. Yu. 2017. Effect of different combustion models and alternative fuels on two-stroke marine diesel engine performance. Applied Thermal Engineering 115:597–606. doi:10.1016/j.applthermaleng.2016.12.093.
  • Wang, J., X. Duan, Y. Liu, W. Wang, J. Liu, M. Lai, Y. Li, G. Guo. 2020. Numerical investigation of water injection quantity and water injection timing on the thermodynamics, combustion and emissions in a hydrogen enriched lean-burn natural gas SI engine. International Journal of Hydrogen Energy 45:17935–52. doi:10.1016/j.ijhydene.2020.04.146.
  • Yang, Z. L., D. Zhang, O. Caglayan, I. D. Jenkinson, S. Bonsall, J. Wang, M. Huang, X. P. Yan. 2012. Selection of techniques for reducing shipping NOx and SOx emissions. Transportation Research Part D: Transport and Environment 17 (6):478–86. doi:10.1016/j.trd.2012.05.010.
  • Yu, H. L., G. Z. Yu, and S. L. Duan. 2014. Effects of exhaust gas recirculation on combustion and emission of a marine diesel engine. Advanced Materials Research 926-930:905–08. doi:10.4028/www.scientific.net/AMR.926-930.905.
  • Zhang, W., Z. Chen, W. Li, G. Shu, B. Xu, and Y. Shen. 2013. Influence of EGR and oxygen-enriched air on diesel engine NO-Smoke emission and combustion characteristic. Applied Energy 107:304–14. doi:10.1016/j.apenergy.2013.02.024.
  • Zhao, R., D. Wen, W. Li, W. Zhuge, Y. Zhang, and Y. Yin. 2020. Characteristic and regulation method of parallel turbocompound engine with steam injection for waste heat recovery. Energy 208:118422. doi:10.1016/j.energy.2020.118422.
  • Zhao, R., Z. Zhang, W. Zhuge, Y. Zhang, and Y. Yin. 2018. Comparative study on different water/steam injection layouts for fuel reduction in a turbocompound diesel engine. Energy Conversion and Management 171:1487–501. doi:10.1016/j.enconman.2018.06.084.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.