223
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Performance analysis of a novel hybrid power generation system integrated diesel generator with compressed heat energy storage

, , ORCID Icon, , , , & show all
Pages 879-895 | Received 19 Nov 2020, Accepted 22 Jan 2021, Published online: 30 Mar 2021

References

  • Barbour, E., D. Mignard, Y. Ding, and Y. Li. 2015. Adiabatic Compressed Air Energy Storage with packed bed thermal energy storage. Applied Energy 155:804–15. doi:10.1016/j.apenergy.2015.06.019.
  • Bejan, A., I. Dincer, S. Lorente, A. F. Miguel, and A. H. Reis. 2004. Porous and Complex Flow Structures in Modern Technologies. ed. New York: Spinger.
  • Benato, A., and A. Stoppato. 2018. Pumped Thermal Electricity Storage: A technology overview. Thermal Science and Engineering Progress 6:301–15. doi:10.1016/j.tsep.2018.01.017.
  • Center, N. M. 2020. Monthly average temperature of Hangzhou. 11 October, 2020. http://www.nmc.cn/publish/forecast/AZJ/hangzhou.html.
  • Chen, L. X., P. Hu, P. P. Zhao, M. N. Xie, and F. X. Wang. 2018. Thermodynamic analysis of a High Temperature Pumped Thermal Electricity Storage (HT-PTES) integrated with a parallel organic Rankine cycle (ORC). Energy Conversion and Management 177:150–60. doi:10.1016/j.enconman.2018.09.049.
  • Dal Magro, F., M. Jimenez-Arreola, and A. Romagnoli. 2017. Improving energy recovery efficiency by retrofitting a PCM-based technology to an ORC system operating under thermal power fluctuations. Applied Energy 208:972–85. doi:10.1016/j.apenergy.2017.09.054.
  • Das, B. K., and F. Zaman. 2019. Performance analysis of a PV/Diesel hybrid system for a remote area in Bangladesh: Effects of dispatch strategies, batteries, and generator selection. Energy 169:263–76. doi:10.1016/j.energy.2018.12.014.
  • Erdoğan, S., M. K. Balki, S. Aydın, and C. Sayın. 2020. Performance, emission and combustion characteristic assessment of biodiesels derived from beef bone marrow in a diesel generator. Energy 207. doi:10.1016/j.energy.2020.118300.
  • Frate, G. F., M. Antonelli, and U. Desideri. 2017. A novel Pumped Thermal Electricity Storage (PTES) system with thermal integration. Applied Thermal Engineering 121:1051–58. doi:10.1016/j.applthermaleng.2017.04.127.
  • Gür, T. M. 2018. Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage. Energy & Environmental Science 11 (10):2696–767. doi:10.1039/c8ee01419a.
  • Hänchen, M., S. Brückner, and A. Steinfeld. 2011. High-temperature thermal storage using a packed bed of rocks – Heat transfer analysis and experimental validation. Applied Thermal Engineering 31 (10):1798–806. doi:10.1016/j.applthermaleng.2010.10.034.
  • Jockenhöfer, H., W.-D. Steinmann, and D. Bauer. 2018. Detailed numerical investigation of a pumped thermal energy storage with low temperature heat integration. Energy 145:665–76. doi:10.1016/j.energy.2017.12.087.
  • Kusakana, K. 2015. Optimization of the daily operation of a hydrokinetic–diesel hybrid system with pumped hydro storage. Energy Conversion and Management 106:901–10. doi:10.1016/j.enconman.2015.10.021.
  • Lacroix, M. 1993. Numerical simulation of a shell-and-tube latent heat thermal energy storage unit. Solar Energy Materials 50 (4):357–67. doi:10.1016/0038-092X(93)90029-N.
  • Li, C., D. Zhou, H. Wang, H. Cheng, and D. Li. 2019. Feasibility assessment of a hybrid PV/diesel/battery power system for a housing estate in the severe cold zone—A case study of Harbin, China. Energy 185:671–81. doi:10.1016/j.energy.2019.07.079.
  • Li, Y., A. Sciacovelli, X. Peng, J. Radcliffe, and Y. Ding. 2016. Integrating compressed air energy storage with a diesel engine for electricity generation in isolated areas. Applied Energy 171:26–36. doi:10.1016/j.apenergy.2016.02.109.
  • Li, Z., X. Yu, L. Wang, Y. Lu, R. Huang, J. Chang, and R. Jiang. 2020. Effects of fluctuating thermal sources on a shell-and-tube latent thermal energy storage during charging process. Energy 199. doi:10.1016/j.energy.2020.117400.
  • Meier, A., C. Winkler, and D. Wuillemin. 1991. Experiment for modelling high temperature rock bed storage. Solar Energy Materials 24 (1–4):255–64. doi:10.1016/0165-1633(91)90066-T.
  • Mohammadkhani, F., and M. Yari. 2019. A 0D model for diesel engine simulation and employing a transcritical dual loop Organic Rankine Cycle (ORC) for waste heat recovery from its exhaust and coolant: Thermodynamic and economic analysis. Applied Thermal Engineering 150:329–47. doi:10.1016/j.applthermaleng.2018.12.158.
  • Munro, R. G. 1997. Evaluated Material Properties for a Sintered a-Alumina. Journal of the American Ceramic Society 80 (8):1919–28. doi:10.1111/j.1151-2916.1997.tb03074.x.
  • Pereira da Cunha, J., and P. Eames. 2016. Thermal energy storage for low and medium temperature applications using phase change materials – A review. Applied Energy 177:227–38. doi:10.1016/j.apenergy.2016.05.097.
  • Rahman, M. M., A. O. Oni, E. Gemechu, and A. Kumar. 2020. Assessment of energy storage technologies: A review. Energy Conversion and Management 223. doi:10.1016/j.enconman.2020.113295.
  • Renedo, C. J., A. Ortiz, M. Mañana, D. Silió, and S. Pérez. 2006. Study of different cogeneration alternatives for a Spanish hospital center. Energy and Buildings 38 (5):484–90. doi:10.1016/j.enbuild.2005.08.011.
  • Schimpf, S., and R. Span. 2015. Simulation of a solar assisted combined heat pump – Organic rankine cycle system. Energy Conversion and Management 102:151–60. doi:10.1016/j.enconman.2015.01.083.
  • Sciacovelli, A., Y. Li, H. Chen, Y. Wu, J. Wang, S. Garvey, and Y. Ding. 2017. Dynamic simulation of Adiabatic Compressed Air Energy Storage (A-CAES) plant with integrated thermal storage – Link between components performance and plant performance. Applied Energy 185:16–28. doi:10.1016/j.apenergy.2016.10.058.
  • Sedaghat, B., A. Jalilvand, and R. Noroozian. 2012. Design of a multilevel control strategy for integration of stand-alone wind/diesel system. International Journal of Electrical Power & Energy Systems 35 (1):123–37. doi:10.1016/j.ijepes.2011.10.005.
  • Shah, M. M. 1978. A general correlation for heat transfer during film condensation inside pipes. International Journal of Heat and Mass Transfer 22 (4):547–56. doi:10.1016/0017-9310(79)90058-9.
  • Staub, S., P. Bazan, K. Braimakis, D. Müller, C. Regensburger, D. Scharrer, B. Schmitt, D. Steger, R. German, S. Karellas, et al. 2018. Reversible Heat Pump–Organic Rankine Cycle Systems for the Storage of Renewable Electricity. Energies 11 (6):6. doi:10.3390/en11061352.
  • Steinmann, W. D. 2014. The CHEST (Compressed Heat Energy STorage) concept for facility scale thermo mechanical energy storage. Energy 69:543–52. doi:10.1016/j.energy.2014.03.049.
  • Steinmann, W.-D. 2017. Thermo-mechanical concepts for bulk energy storage. Renewable and Sustainable Energy Reviews 75:205–19. doi:10.1016/j.rser.2016.10.065.
  • Steinmann, W.-D., D. Bauer, H. Jockenhöfer, and M. Johnson. 2019. Pumped thermal energy storage (PTES) as smart sector-coupling technology for heat and electricity. Energy 183:185–90. doi:10.1016/j.energy.2019.06.058.
  • Turton, R., R. C. Bailie, and W. B. Whiting. 2013. Analysis, synthesis and design of chemical processes. 4th ed ed. New Jersey: Prentice Hall PTR.
  • Vallis, A. G., T. C. Zannis, E. A. Yfantis, E. G. Pariotis, J. S. Katsanis, and K. D. Asimakopoulou. 2020. Thermo-Economic Study of a Regenerative Dual-Loop ORC System Coupled to the Main Diesel Engines of a General Support Vessel. Energies 13 (11):11. doi:10.3390/en13112991.
  • Wang, -W.-W., K. Zhang, L.-B. Wang, and Y.-L. He. 2013. Numerical study of the heat charging and discharging characteristics of a shell-and-tube phase change heat storage unit. Applied Thermal Engineering 58 (1–2):542–53. doi:10.1016/j.applthermaleng.2013.04.063.
  • Welzl, M., F. Heberle, and D. Brüggemann. 2020. Experimental evaluation of nucleate pool boiling heat transfer correlations for R245fa and R1233zd(E) in ORC applications. Renewable Energy 147:2855–64. doi:10.1016/j.renene.2018.09.093.
  • Yang, J., Z. Sun, B. Yu, and J. Chen. 2018. Experimental comparison and optimization guidance of R1233zd(E) as a drop-in replacement to R245fa for organic Rankine cycle application. Applied Thermal Engineering 141:10–19. doi:10.1016/j.applthermaleng.2018.05.105.
  • Yu, X., Z. Li, Y. Lu, R. Huang, and A. P. Roskilly. 2019. Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery. Energy 170:1098–112. doi:10.1016/j.energy.2018.12.196.
  • Zanganeh, G., A. Pedretti, A. Haselbacher, and A. Steinfeld. 2015. Design of packed bed thermal energy storage systems for high-temperature industrial process heat. Applied Energy 137:812–22. doi:10.1016/j.apenergy.2014.07.110.
  • Zbogar, A., F. J. Frandsen, P. A. Jensen, and P. Glarborg. 2005. Heat transfer in ash deposits: A modelling tool-box. Progress in Energy and Combustion Science 31 (5–6):371–421. doi:10.1016/j.pecs.2005.08.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.