552
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Influential aspects on melting and solidification of PCM energy storage containers in building envelope applications

ORCID Icon & ORCID Icon
Pages 966-986 | Received 01 Sep 2020, Accepted 01 Feb 2021, Published online: 30 Mar 2021

References

  • Abd Rashid, A. F., and S. Yusoff. 2015. A review of life cycle assessment method for building industry. Renewable and Sustainable Energy Reviews 45:244–48. doi:10.1016/j.rser.2015.01.043.
  • Abdulateef, A. M., J. Abdulateef, S. Mat, K. Sopian, B. Elhub, and M. A. Mussa. 2018a. Experimental and numerical study of solidifying phase-change material in a triplex-tube heat exchanger with longitudinal/triangular fins. International Communications in Heat and Mass Transfer 90:73–84. doi:10.1016/j.icheatmasstransfer.2017.10.003.
  • Abdulateef, A. M., J. Abdulateef, K. Sopian, S. Mat, and A. Ibrahim. 2019. Optimal fin parameters used for enhancing the melting and solidification of phase-change material in a heat exchanger unite. Case Studies in Thermal Engineering 14:100487. doi:10.1016/j.csite.2019.100487.
  • Abdulateef, A. M., S. Mat, J. Abdulateef, K. Sopian, and A. A. Al-Abidi. 2018b. Geometric and design parameters of fins employed for enhancing thermal energy storage systems: A review. Renewable and Sustainable Energy Reviews 82:1620–35. doi:10.1016/j.rser.2017.07.009.
  • Adesina, A. 2019. Use of phase change materials in concrete: Current challenges. Renewable Energy Environment Sustainablity 4:9. doi:10.1051/rees/2019006.
  • Alizadeh, M., K. Hosseinzadeh, M. H. Shahavi, and D. D. Ganji. 2019. Solidification acceleration in a triplex-tube latent heat thermal energy storage system using V-shaped fin and nano-enhanced phase change material. Applied Thermal Engineering 163:114436. doi:10.1016/j.applthermaleng.2019.114436.
  • Al-Yasiri, Q., M. A. Al- Furaiji, and A. K. Alshara. 2019. Comparative study of building envelope cooling loads in Al-Amarah city, Iraq. Journal of Engineering Science and Technology 51 (5):632–48. doi:10.5614/j.eng.technol.sci.2019.51.5.3.
  • Al-Yasiri, Q., and M. Szabó. 2021. Incorporation of phase change materials into building envelope for thermal comfort and energy saving: A comprehensive analysis. Journal of Building Engineering 36:102122. doi:10.1016/j.jobe.2020.102122.
  • Arshad, A., H. M. Ali, M. Ali, and S. Manzoor. 2017. Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices: Effect of pin thickness and PCM volume fraction. Applied Thermal Engineering 112:143–55. doi:10.1016/j.applthermaleng.2016.10.090.
  • Azuatalam, D., W.-L. Lee, F. De Nijs, and A. Liebman. 2020. Reinforcement learning for whole-building HVAC control and demand response. Energy and AI 2:100020. doi:10.1016/j.egyai.2020.100020.
  • Babapoor, A., M. Azizi, and G. Karimi. 2015. Thermal management of a Li-ion battery using carbon fiber-PCM composites. Applied Thermal Engineering 82:281–90. doi:10.1016/j.applthermaleng.2015.02.068.
  • Bista, S., S. E. Hosseini, E. Owens, and G. Phillips. 2018. Performance improvement and energy consumption reduction in refrigeration systems using phase change material (PCM). Applied Thermal Engineering 142:723–35. doi:10.1016/j.applthermaleng.2018.07.068.
  • Biswas, K., S. Shrestha, D. Hun, and J. Atchley. 2019. Thermally anisotropic composites for improving the energy efficiency of building envelopes. Energies 12 (19):3783. doi:10.3390/en12193783.
  • Bland, A., M. Khzouz, T. Statheros, and E. I. Gkanas. 2017. PCMs for residential building applications: A short review focused on disadvantages and proposals for future development. Buildings 7. doi:10.3390/buildings7030078.
  • Bouhal, T., Z. Meghari, T. El Rhafiki, T. Kousksou, A. Jamil, and G. E. Ben. 2018. Parametric CFD analysis and impact of PCM intrinsic parameters on melting process inside enclosure integrating fins: Solar building applications. Journal of Building Engineering 20:634–46. doi:10.1016/j.jobe.2018.09.016.
  • Browne, M. C., E. Boyd, and S. J. McCormack. 2017. Investigation of the corrosive properties of phase change materials in contact with metals and plastic. Renewable Energy 108:555–68. doi:10.1016/j.renene.2017.02.082.
  • Ç, Y., M. Arıcı, S. Nižetić, and A. Shahsavar. 2020. Numerical investigation of natural convection behavior of molten PCM in an enclosure having rectangular and tree-like branching fins. Energy 207:118223. doi:10.1016/j.energy.2020.118223.
  • Cao, X., Y. Yuan, B. Xiang, L. Sun, and Z. Xingxing. 2018. Numerical investigation on optimal number of longitudinal fins in horizontal annular phase change unit at different wall temperatures. Energy and Buildings 158:384–92. doi:10.1016/j.enbuild.2017.10.029.
  • Cellat, K., F. Tezcan, B. Beyhan, G. Kardaş, and H. Paksoy. 2017. A comparative study on corrosion behavior of rebar in concrete with fatty acid additive as phase change material. Construction and Building Materials 143:490–500. doi:10.1016/j.conbuildmat.2017.03.165.
  • Chandel, S. S., and T. Agarwal. 2017. Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials. Renewable and Sustainable Energy Reviews 67:581–96. doi:10.1016/j.rser.2016.09.070.
  • Chen, X., Q. Zhang, Z. J. Zhai, and X. Ma. 2019. Potential of ventilation systems with thermal energy storage using PCMs applied to air conditioned buildings. Renewable Energy 138:39–53. doi:10.1016/j.renene.2019.01.026.
  • Cheng, W., B. Xie, R. Zhang, Z. Xu, and Y. Xia. 2015. Effect of thermal conductivities of shape stabilized PCM on under-floor heating system. Applied Energy 144:10–18. doi:10.1016/j.apenergy.2015.01.055.
  • D’Alessandro, A., A. L. Pisello, C. Fabiani, F. Ubertini, L. F. Cabeza, and F. Cotana. 2018. Multifunctional smart concretes with novel phase change materials: Mechanical and thermo-energy investigation. Applied Energy 212:1448–61. doi:10.1016/j.apenergy.2018.01.014.
  • Dannemand, M., J. B. Johansen, and S. Furbo. 2016. Solidification behavior and thermal conductivity of bulk sodium acetate trihydrate composites with thickening agents and graphite. Solar Energy Materials and Solar Cells 145:287–95. doi:10.1016/j.solmat.2015.10.038.
  • De Gracia, A. 2019. Dynamic building envelope with PCM for cooling purposes – Proof of concept. Applied Energy 235:1245–53. doi:10.1016/j.apenergy.2018.11.061.
  • Devanuri, J. K., U. M. Gaddala, and V. Kumar. 2020. Investigation on compatibility and thermal reliability of phase change materials for low-temperature thermal energy storage. Materials for Renewable and Sustainable Energy 9 (4):1–16. doi:10.1007/s40243-020-00184-4.
  • Dhaidan, N. S. 2017. Nanostructures assisted melting of phase change materials in various cavities. Applied Thermal Engineering 111:193–212. doi:10.1016/j.applthermaleng.2016.09.093.
  • Dheep, G. R., and A. Sreekumar. 2018. Investigation on thermal reliability and corrosion characteristics of glutaric acid as an organic phase change material for solar thermal energy storage applications. Applied Thermal Engineering 129:1189–96. doi:10.1016/j.applthermaleng.2017.10.133.
  • Dindi, A., N. Lopez Ferber, D. Gloss, E. Rilby, and N. Calvet. 2020. Compatibility of an Aluminium-Silicon metal alloy-based phase change material with coated stainless-steel containers. Journal of Energy Storage 32:101961. doi:10.1016/j.est.2020.101961.
  • El Omari, K., T. Kousksou, and Y. Le Guer. 2011. Impact of shape of container on natural convection and melting inside enclosures used for passive cooling of electronic devices. Applied Thermal Engineering 31 (14–15):3022–35. doi:10.1016/j.applthermaleng.2011.05.036.
  • Elarga, H., S. Fantucci, V. Serra, R. Zecchin, and E. Benini. 2017. Experimental and numerical analyses on thermal performance of different typologies of PCMs integrated in the roof space. Energy and Buildings 150:546–57. doi:10.1016/j.enbuild.2017.06.038.
  • Erlbeck, L., P. Schreiner, K. Schlachter, P. Dörnhofer, F. Fasel, F. J. Methner, and M. Rädle. 2018. Adjustment of thermal behavior by changing the shape of PCM inclusions in concrete blocks. Energy Conversion and Management 158:256–65. doi:10.1016/j.enconman.2017.12.073.
  • Fallahi, A., G. Guldentops, M. Tao, S. Granados-Focil, and S. Van Dessel. 2017. Review on solid-solid phase change materials for thermal energy storage: Molecular structure and thermal properties. Applied Thermal Engineering 127:1427–41. doi:10.1016/j.applthermaleng.2017.08.161.
  • Ferrer, G., A. Solé, C. Barreneche, I. Martorell, and L. F. Cabeza. 2015. Corrosion of metal containers for use in PCM energy storage. Renewable Energy 76:465–69. doi:10.1016/j.renene.2014.11.036.
  • Frazzica, A., V. Brancato, V. Palomba, D. La Rosa, F. Grungo, L. Calabrese, and E. Proverbio. 2019. Thermal performance of hybrid cement mortar-PCMs for warm climates application. Solar Energy Materials and Solar Cells 193:270–80. doi:10.1016/j.solmat.2019.01.022.
  • Frigione, M., M. Lettieri, and A. Sarcinella. 2019. Phase change materials for energy efficiency in buildings and their use in mortars. Materials (Basel) 12 (8):1260. doi:10.3390/ma12081260.
  • Giro-Paloma, J., C. Barreneche, M. Martínez, B. Šumiga, L. F. Cabeza, and A. I. Fernández. 2015. Comparison of phase change slurries: Physicochemical and thermal properties. Energy 87:223–27. doi:10.1016/j.energy.2015.04.071.
  • Hagenau, M., and M. Jradi. 2020. Dynamic modeling and performance evaluation of building envelope enhanced with phase change material under Danish conditions. Journal of Energy Storage 30:101536. doi:10.1016/j.est.2020.101536.
  • Hasan, A., K. A. Al-Sallal, H. Alnoman, Y. Rashid, and S. Abdelbaqi. 2016. Effect of phase change materials (PCMs) integrated into a concrete block on heat gain prevention in a hot climate. Sustain 8. doi:10.3390/su8101009.
  • Hasan, M. I., H. O. Basher, and A. O. Shdhan. 2018. Experimental investigation of phase change materials for insulation of residential buildings. Sustainable Cities and Society 36:42–58. doi:10.1016/j.scs.2017.10.009.
  • He, Y., L. Xiao, Y. Yang, and J. Wang. 2020. PCM thermal conductivity effect on mechanism of PV/PCM thermal control characteristics. International Journal of Green Energy 17 (12):783–92. doi:10.1080/15435075.2020.1798769.
  • Hirmiz, R., H. M. Teamah, M. F. Lightstone, and J. S. Cotton. 2020. Analytical and numerical sizing of phase change material thickness for rectangular encapsulations in hybrid thermal storage tanks for residential heat pump systems. Applied Thermal Engineering 170:114978. doi:10.1016/j.applthermaleng.2020.114978.
  • Höhlein, S., A. König-Haagen, and D. Brüggemann. 2018. Macro-encapsulation of inorganic phase-change materials (PCM) in metal capsules. Materials (Basel) 11 (9):11. doi:10.3390/ma11091752.
  • Hosseinzadeh, K., M. A. Erfani Moghaddam, A. Asadi, A. R. Mogharrebi, B. Jafari, and M. R. Hasani. 2020a. Effect of two different fins (longitudinal-tree like) and hybrid nano-particles (MoS2-TiO2) on solidification process in triplex latent heat thermal energy storage system. Alexandria Engineering Journal 60:1967–79. doi:10.1016/j.aej.2020.12.001.
  • Hosseinzadeh, K., M. A. E. Moghaddam, A. Asadi, A. R. Mogharrebi, and D. D. Ganji. 2020b. Effect of internal fins along with Hybrid Nano-Particles on solid process in star shape triplex Latent Heat Thermal Energy Storage System by numerical simulation. Renewable Energy 154:497–507. doi:10.1016/j.renene.2020.03.054.
  • Hosseinzadeh, K., A. R. Mogharrebi, A. Asadi, M. Paikar, and D. D. Ganji. 2020c. Effect of fin and hybrid nano-particles on solid process in hexagonal triplex latent heat thermal energy storage system. Journal of Molecular Liquids 300:112347. doi:10.1016/j.molliq.2019.112347.
  • Hu, Z., A. Li, R. Gao, and H. Yin. 2015. A comparison study on melting inside the rectangular and curved unit with a vertical heating wall. Journal of Thermal Analysis and Calorimetry 122:831–42. doi:10.1007/s10973-015-4754-2.
  • International Energy Agency (IEA). 2013. Technology roadmap. Energy Efficient Building Envelopes. doi:10.1007/SpringerReference_7300.
  • International Energy Agency, UN Environment Programme. 2019 global status report for buildings and construction: Towards a zero-emission, efficient and resilient buildings and construction sector. 2019.
  • Ismail, K. A. R., and R. I. R. Moraes. 2009. A numerical and experimental investigation of different containers and PCM options for cold storage modular units for domestic applications. International Journal of Heat and Mass Transfer 52 (19–20):4195–202. doi:10.1016/j.ijheatmasstransfer.2009.04.031.
  • Ji, C., Z. Qin, Z. Low, S. Dubey, F. H. Choo, and F. Duan. 2018. Non-uniform heat transfer suppression to enhance PCM melting by angled fins. Applied Thermal Engineering 129:269–79. doi:10.1016/j.applthermaleng.2017.10.030.
  • Jurčević, M., S. Nižetić, M. Arıcı, and P. Ocłoń. 2020. Comprehensive analysis of preparation strategies for phase change nanocomposites and nanofluids with brief overview of safety equipment. Journal of Cleaner Production 274:122963. doi:10.1016/j.jclepro.2020.122963.
  • Kahwaji, S., M. B. Johnson, A. C. Kheirabadi, D. Groulx, and M. A. White. 2017. Fatty acids and related phase change materials for reliable thermal energy storage at moderate temperatures. Solar Energy Materials and Solar Cells 167:109–20. doi:10.1016/j.solmat.2017.03.038.
  • Koukou, M. K., G. Dogkas, M. G. Vrachopoulos, J. Konstantaras, C. Pagkalos, V. N. Stathopoulos, P. K. Pandis, K. Lymperis, L. Coelho, A. Rebola, et al. 2020. Experimental assessment of a full scale prototype thermal energy storage tank using paraffin for space heating application. International Journal of Thermofluids 1–2:100003. doi:10.1016/j.ijft.2019.100003.
  • Kumar, S., S. Arun Prakash, V. Pandiyarajan, N. B. Geetha, V. Antony Aroul Raj, and R. Velraj. 2019. Effect of phase change material integration in clay hollow brick composite in building envelope for thermal management of energy efficient buildings. Journal of Building Physics 43:351–64. doi:10.1177/1744259119867462.
  • Kusama, Y., and Y. Ishidoya. 2017. Thermal effects of a novel phase change material (PCM) plaster under different insulation and heating scenarios. Energy and Buildings 141:226–37. doi:10.1016/j.enbuild.2017.02.033.
  • Laaouatni, A., N. Martaj, R. Bennacer, M. Lachi, M. El Omari, and M. El Ganaoui. 2019. Thermal building control using active ventilated block integrating phase change material. Energy and Buildings 187:50–63. doi:10.1016/j.enbuild.2019.01.024.
  • Li, D., B. Wang, Q. Li, C. Liu, M. Arıcı, and Y. Wu. 2019. A numerical model to investigate non-gray photothermal characteristics of paraffin-containing glazed windows. Solar Energy 194:225–38. doi:10.1016/j.solener.2019.10.073.
  • Li, M., Q. Guo, and Q. Chen. 2019. Thermal conductivity improvement of heat-storage composite filled with milling modified carbon nanotubes. International Journal of Green Energy 16 (15):1617–23. doi:10.1080/15435075.2019.1681426.
  • Liu, Z., Z. (Jerry) Yu, T. Yang, D. Qin, S. Li, G. Zhang, F. Haghighat, and M. M. Joybari. 2018. A review on macro-encapsulated phase change material for building envelope applications. Building and Environment 144:281–94. doi:10.1016/j.buildenv.2018.08.030.
  • Lu, S., Y. Li, X. Kong, B. Pang, Y. Chen, and S. Zheng. 2017. A review of PCM energy storage technology used in buildings for the global warming solution. In Energy solut. to combat glob. warm., ed. X. Zhang and I. Dincer, 611–44. Cham: Springer International Publishing. doi:10.1007/978-3-319-26950-4_31.
  • Luo, X. J., L. O. Oyedele, A. O. Ajayi, O. O. Akinade, J. M. D. Delgado, H. A. Owolabi, and A. Ahmed. 2020. Genetic algorithm-determined deep feedforward neural network architecture for predicting electricity consumption in real buildings. Energy and AI 2:100015. doi:10.1016/j.egyai.2020.100015.
  • Madad, A., T. Mouhib, and A. Mouhsen. 2018. Phase change materials for building applications: A thorough review and new perspectives. Buildings 8 (5):63. doi:10.3390/buildings8040063.
  • Mahdi, J. M., S. Lohrasbi, D. D. Ganji, and E. C. Nsofor. 2018. Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger. International Journal of Heat and Mass Transfer 124:663–76. doi:10.1016/j.ijheatmasstransfer.2018.03.095.
  • Martinelli, M., F. Bentivoglio, A. Caron-Soupart, R. Couturier, J.-F. Fourmigue, and P. Marty. 2016. Experimental study of a phase change thermal energy storage with copper foam. Applied Thermal Engineering 101:247–61. doi:10.1016/j.applthermaleng.2016.02.095.
  • Mendecka, B., R. Cozzolino, M. Leveni, and G. Bella. 2019. Energetic and exergetic performance evaluation of a solar cooling and heating system assisted with thermal storage. Energy 176:816–29. doi:10.1016/j.energy.2019.04.024.
  • Mevada, D., H. Panchal, K. K. Sadasivuni, M. Israr, M. Suresh, S. Dharaskar, and H. Thakkar. 2020. Effect of fin configuration parameters on performance of solar still: A review. Groundwater for Sustainable Development 10:100289. doi:10.1016/j.gsd.2019.100289.
  • Mohseni, E., and W. Tang. 2020. Parametric analysis and optimisation of energy efficiency of a lightweight building integrated with different configurations and types of PCM. Renewable Energy 168:865–77. doi:10.1016/j.renene.2020.12.112.
  • Mousavi, S., M. Siavashi, and M. M. Heyhat. 2019. Numerical melting performance analysis of a cylindrical thermal energy storage unit using nano-enhanced PCM and multiple horizontal fins. Numerical Heat Transfer, Part A: Applications 75 (8):560–77. doi:10.1080/10407782.2019.1606634.
  • Murali, G., K. Mayilsamy, and T. V. Arjunan. 2015. An experimental study of PCM-incorporated thermosyphon solar water heating system. International Journal of Green Energy 12:978–86. doi:10.1080/15435075.2014.888663.
  • Nakhchi, M. E., and J. A. Esfahani. 2020. Improving the melting performance of PCM thermal energy storage with novel stepped fins. Journal of Energy Storage 30:101424. doi:10.1016/j.est.2020.101424.
  • Navarro, L., A. D. Gracia, A. Castell, and C. Lf. 2016. Experimental study of an active slab with PCM coupled to a solar air collector for heating purposes. Energy and Buildings 128:12–21. doi:10.1016/j.enbuild.2016.06.069.
  • Ostrý, M., S. Bantová, and K. Struhala. 2019. Tests on material compatibility of phase change materials and selected plastics. Molecules 24 (7):24. doi:10.3390/molecules24071398.
  • Ostrý, M., S. Bantová, and K. Struhala. 2020. Compatibility of phase change materials and metals: Experimental evaluation based on the corrosion rate. Molecules 25 (12):2823. doi:10.3390/molecules25122823.
  • Patel, J. R., V. Joshi, and M. K. Rathod. 2020. Thermal performance investigations of the melting and solidification in differently shaped macro-capsules saturated with phase change material. Journal of Energy Storage 31:101635. doi:10.1016/j.est.2020.101635.
  • Pereira Da Cunha, J., and P. Eames. 2016. Thermal energy storage for low and medium temperature applications using phase change materials – A review. Applied Energy 177:227–38. https://doi.org/10.1016/j.apenergy.2016.05.097.
  • Plytaria, M. T., C. Tzivanidis, E. Bellos, I. Alexopoulos, and K. A. Antonopoulos. 2019. Thermal behavior of a building with incorporated phase change materials in the South and the North Wall. Computation 7. doi:10.3390/computation7010002.
  • Raam Dheep, G., and A. Sreekumar. 2019. Thermal reliability and corrosion characteristics of an organic phase change materials for solar space heating applications. Journal of Energy Storage 23:98–105. doi:10.1016/j.est.2019.03.009.
  • Rathore, P. K. S., and S. K. Shukla. 2019. Potential of macroencapsulated pcm for thermal energy storage in buildings: A comprehensive review. Construction and Building Materials 225:723–44. doi:10.1016/j.conbuildmat.2019.07.221.
  • Rathore, P. K. S., and S. K. Shukla. 2020. An experimental evaluation of thermal behavior of the building envelope using macroencapsulated PCM for energy savings. Renewable Energy 149:1300–13. doi:10.1016/j.renene.2019.10.130.
  • Reddy, R. M., N. Nallusamy, and K. H. Reddy. 2014. The effect of PCM capsule material on the thermal energy storage system performance. ISRN Renewable Energy 2014:1–6. doi:10.1155/2014/529280.
  • Ren, Q., P. Guo, and J. Zhu. 2020. Thermal management of electronic devices using pin-fin based cascade microencapsulated PCM/expanded graphite composite. International Journal of Heat and Mass Transfer 149:1–16. doi:10.1016/j.ijheatmasstransfer.2019.119199.
  • Salgado, R., H. Akbari, M. C. Brown, I. Reid, and S. J. McCormack Study of Corrosion Effect of Micronal® Phase Change Materials (PCM) with different metal samples. Renew. Energy Sustain. Build., Springer; 2020, p. 709–17.
  • Saxena, R., D. Rakshit, and S. C. Kaushik. 2020. Experimental assessment of Phase Change Material (PCM) embedded bricks for passive conditioning in buildings. Renewable Energy 149:587–99. doi:10.1016/j.renene.2019.12.081.
  • Shahcheraghian, A., R. Ahmadi, and A. Malekpour. 2020. Utilising latent thermal energy storage in building envelopes to minimise thermal loads and enhance comfort. Journal of Energy Storage 33:102119. doi:10.1016/j.est.2020.102119.
  • Shin, D. H., J. Park, S. H. Choi, H. S. Ko, S. W. Karng, and Y. Shin. 2019. A new type of heat storage system using the motion of phase change materials in an elliptical-shaped capsule. Energy Conversion and Management 182:508–19. doi:10.1016/j.enconman.2018.12.091.
  • Silva, T., R. Vicente, F. Rodrigues, A. Samagaio, and C. Cardoso. 2015. Performance of a window shutter with phase change material under summer mediterranean climate conditions. Applied Thermal Engineering 84:246–56. doi:10.1016/j.applthermaleng.2015.03.059.
  • Singh Rathore, P. K., S. K. Shukla, and N. K. Gupta. 2020. Potential of microencapsulated PCM for energy savings in buildings: A critical review. Sustainable Cities and Society 53:101884. doi:10.1016/j.scs.2019.101884.
  • Song, M., F. Niu, N. Mao, Y. Hu, and S. Deng. 2018. Review on building energy performance improvement using phase change materials. Energy and Buildings 158:776–93. doi:10.1016/j.enbuild.2017.10.066.
  • Soudian, S., and U. Berardi. 2019. Assessing the effect of night ventilation on PCM performance in high-rise residential buildings. Journal of Building Physics 43 (3):229–49. doi:10.1177/1744259119848128.
  • Struhala, K., S., . O. Bantová, and M. PCMs IN BUILDINGS: COMPATIBILITY WITH CONTAINER MATERIALS AND ANALYSIS OF ENVIRONMENTAL IMPACTS. Int. Conf. Build. Environ. 2019, 7TH Novemb., Bratislava: Sciendo; 2020, p. 177–82.  Bratislava, Slovak University of Technology, Slovakia.
  • Sun, X., M. A. Medina, K. O. Lee, and X. Jin. 2018. Laboratory assessment of residential building walls containing pipe-encapsulated phase change materials for thermal management. Energy 163:383–91. doi:10.1016/j.energy.2018.08.159.
  • Thapa, S., S. Chukwu, A. Khaliq, and L. Weiss. 2014. Fabrication and analysis of small-scale thermal energy storage with conductivity enhancement. Energy Conversion and Management 79:161–70. doi:10.1016/j.enconman.2013.12.019.
  • Tian, -L.-L., X. Liu, S. Chen, and Z.-G. Shen. 2020. Effect of fin material on PCM melting in a rectangular enclosure. Applied Thermal Engineering 167:114764. doi:10.1016/j.applthermaleng.2019.114764.
  • Tunçbilek, E., M. Arıcı, S. Bouadila, and S. Wonorahardjo. 2020a. Seasonal and annual performance analysis of PCM-integrated building brick under the climatic conditions of Marmara region. Journal of Thermal Analysis and Calorimetry 141 (1):613–24. doi:10.1007/s10973-020-09320-8.
  • Tunçbilek, E., M. Arıcı, M. Krajčík, S. Nižetić, and H. Karabay. 2020b. Thermal performance based optimization of an office wall containing PCM under intermittent cooling operation. Applied Thermal Engineering 179:115750. doi:10.1016/j.applthermaleng.2020.115750.
  • Ushak, S., P. Marín, Y. Galazutdinova, L. F. Cabeza, M. M. Farid, and M. Grágeda. 2016. Compatibility of materials for macroencapsulation of inorganic phase change materials: Experimental corrosion study. Applied Thermal Engineering 107:410–19. doi:10.1016/j.applthermaleng.2016.06.171.
  • Vasu, A., F. Y. Hagos, M. M. Noor, R. Mamat, W. H. Azmi, A. A. Abdullah, and T. K. Ibrahim. 2017. Corrosion effect of phase change materials in solar thermal energy storage application. Renewable and Sustainable Energy Reviews 76:19–33. doi:10.1016/j.rser.2017.03.018.
  • Yu, J., K. Leng, H. Ye, X. Xu, Y. Luo, J. Wang, X. Yang, Q. Yang, and W. Gang. 2020. Study on thermal insulation characteristics and optimized design of pipe-embedded ventilation roof with outer-layer shape-stabilized PCM in different climate zones. Renewable Energy 147:1609–22. doi:10.1016/j.renene.2019.09.115.
  • Zarei, M. J., H. Bazai, M. Sharifpur, O. Mahian, and B. Shabani. 2020. The effects of fin parameters on the solidification of PCMs in a fin-enhanced thermal energy storage system. Energies 13. doi:10.3390/en13010198.
  • Zayed, M. E., J. Zhao, W. Li, A. H. Elsheikh, A. M. Elbanna, L. Jing, and A. E. Geweda. 2020. Recent progress in phase change materials storage containers: Geometries, design considerations and heat transfer improvement methods. Journal of Energy Storage 30:101341. doi:10.1016/j.est.2020.101341.
  • Zeinelabdein, R., S. Omer, and G. Gan. 2018. Critical review of latent heat storage systems for free cooling in buildings. Renewable and Sustainable Energy Reviews 82:2843–68. doi:10.1016/j.rser.2017.10.046.
  • Zhang, C., J. Li, and Y. Chen. 2020. Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins. Applied Energy 259:114102. doi:10.1016/j.apenergy.2019.114102.
  • Zhang, S., W. Wu, and S. Wang. 2018. Experimental investigations of Alum/expanded graphite composite phase change material for thermal energy storage and its compatibility with metals. Energy 161:508–16. doi:10.1016/j.energy.2018.07.075.
  • Zhao, L., Y. Xing, and X. Liu. 2020. Experimental investigation on the thermal management performance of heat sink using low melting point alloy as phase change material. Renewable Energy 146:1578–87. doi:10.1016/j.renene.2019.07.115.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.