231
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Application of artificial neural network to map the performance characteristics of boiler using different algorithms

, &
Pages 1091-1103 | Received 19 May 2020, Accepted 13 Feb 2021, Published online: 26 Feb 2021

References

  • Anemangely, M., A. Ramezanzadeh, B. Tokhmechi, A. Molaghab, and A. Mohammadian. 2018. Drilling rate prediction from petrophysical logs and mud logging data using an optimized multilayer perceptron neural network. Journal of Geophysics and Engineering 15::1146–59. doi:10.1088/1742-2140/aaac5d.
  • Ashrafi, S. B., M. Anemangely, M. Sabah, and M. J. Ameri. 2019. Application of hybrid artificial neural networks for predicting rate of penetration (ROP): A case study from Marun oil field. Journal of Petroleum Science and Engineering 175:604–23. doi:10.1016/j.petrol.2018.12.013.
  • Bahman, Z. N., and A. Ali. 2011. Accurate prediction of the dew points of acidic combustion gases by using an artificial neural network model. Energy Conversion and Management 52:911–16. doi:10.1016/j.enconman.2010.08.018.
  • Bechtler, H., M. W. Browne, P. K. Bansal, and V. Kecman. 2001. New approach to dynamic modelling of vapour-compression liquid chillers: Artificial neural networks. Applied Thermal Engineering 21:941–53. doi:10.1016/S1359-4311(00)00093-4.
  • Chan, S. Y., and C. K. Chau. 2019. Development of artificial neural network models for predicting thermal comfort evaluation in urban parks in summer and winter. Building and Environment 164:106364. doi:10.1016/j.buildenv.2019.106364.
  • Chandok, J. S., I. N. Kar, and T. Suneet. 2008. Estimation of furnace exit gas temperature (FEGT) using optimized radial basis and back-propagation neural networks. Energy Conversion and Management 49:1989–98. doi:10.1016/j.enconman.2008.03.011.
  • Devadigaa, U., R. R. K. Poojarya, and P. Fernandes. 2019. Artificial neural network technique to predict the properties of multiwall carbon nanotube-fly ash reinforced aluminium composite. Journal of Materials Technology 8 (5):3970–77. doi:10.1016/j.jmrt.2019.07.005.
  • Edwin Jeyaseelan, A., S. Dinesh Kumar, K. Karthick Kumar, and P. Ganesan. 2015. Forecasting the emission parameters and performance of 750 KVA Diesel Generator using Artificial Neural Network. International Journal of Emerging Technology in Computer Science & Electronics 12.27-30
  • Ganesan, P., M. Thirugnanasambandam, S. Rajakarunakaran, and D. Devaraj. 2015b. a. Specific Energy Consumption and CO2 emission reduction analysis in a textile industry. International Journal of Green Energy 12:685–93. doi:10.1080/15435075.2013.829479.
  • Ganesan, P., S. Rajakarunakaran, M. Thirugnanasambandam, and D. Devaraj. 2013. Estimation of energy and carbon saving potential in industrial lighting system. Advanced Materials Research 768:272–79. doi:10.4028/https://www.scientific.net/AMR.768.272.
  • Ganesan, P., S. Rajakarunakaran, M. Thirugnanasambandam, and D. Devaraj. 2015a. Artificial neural network model to predict the diesel electric generator performance and exhaust emissions. Energy 83:115–24. doi:10.1016/j.energy.2015.02.094.
  • Ganjeh, K. A., J. M. N. Mohd, and L. T. Mat. 2012. Modeling and multi-objective exergy based optimization of a combined cycle power plant using a genetic algorithm. Energy Conversion and Management 58:94–103. doi:10.1016/j.enconman.2012.01.002.
  • Ghobadian, B., H. Rahimi, A. M. Nikbakht, G. Najafi, and T. Yusaf. 2009. Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network. Renew Energy 34:976–82. doi:10.1016/j.renene.2008.08.008.
  • Irwin, G., D. Brown, B. W. Hogg, and E. Swidenbank. 1995. Neural network modelling of a 200-MW boiler system. Proc Inst Electr Eng Control Theory Application 142:529–36. doi:10.1049/ip-cta:19952293.
  • Ismail, H. M., H. K. Ng, C. W. Queck, and S. Gan. 2012. Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends. Applied Energy 92:769–77. doi:10.1016/j.apenergy.2011.08.027.
  • Jahangir, M. H., S. M. Mousavi Reineh, and M. Abolghasemi. 2019. Spatial predication of flood zonation mapping in Kan River Basin, Iran, using artificial neural network algorithm. Weather and Climate Extremes 25:100215. doi:10.1016/j.wace.2019.100215.
  • Ji-Chua, Z., S.-S. Shiehb, S.-S. Jangc, C.-I. Chienc, H.-P. Wand, K. Hsu-Hsun, H.-P. Wand, K. Hsu-Hsun, and K. Hsu-Hsun. 2003. Constrained optimization of combustion in a simulated coal-fired boiler using artificial neural network model and information analysis, Fuel. 82(10):693–70. doi:10.1055/s-2003-43238.
  • Kalogirou, S. A. 2001. Artificial neural networks in renewable energy systems applications: A review. Renewable and Sustainable Energy Reviews 5 (4):373–401.
  • Kalogirou Soteris, A. 2001. Artificial neural networks in renewable energy systems applications: A review. Renewable and Sustainable Energy Reviews 5 (4):373–401.
  • Kima, S., S. Panb, and H. Mase. 2019. Artificial neural network-based storm surge forecast model: Practical application to Sakai Minato, Japan. Applied Ocean Research 91:101871. doi:10.1016/j.apor.2019.101871.
  • Kocaarslan, I., C. Ertugrul, and H. Tiryaki. 2006. A fuzzy logic controller application for thermal power plants. Energy Conversion and Management 47:442–58. doi:10.1016/j.enconman.2005.05.010.
  • Kraipat, C. 2006. Predicting properties of biodiesels using statistical models and artificial neural networks. Asian Journal of Energy Environment 7:299–306.
  • Lawan, S. M., W. A. W. Z. Abidin, and T. Masri. 2020. Implementation of a topographic artificial neural network wind speed prediction model for assessing onshore wind power potential in Sibu, Sarawak. The Egyptian Journal of Remote Sensing and Space Sciences 23:21–34. doi:10.1016/j.ejrs.2019.08.003.
  • Liu, X. J., C. W. Guan Ping, and Chan. 2010. Nonlinear multivariable power plant co-ordinate control by constrained predictive scheme. IEEE Transaction on Control System Technology 18:1116–25. doi:10.1109/TCST.2009.2034640.
  • Liu, X. J., X. B. Kong, G. L. Hou, and J. H. Wang. 2013. Modelling of a 1000 MW power plant ultra super-critical boiler system using fuzzy-neural network methods. Energy Conversion and Management 65:518–27. doi:10.1016/j.enconman.2012.07.028.
  • Luca Scapinoa, A., Z. Herbert, C. M. Jan Dirikena, C. Rindt, J. Van Baela, and A. Sciacovelli. 2019. Modeling the performance of a sorption thermal energy storage reactor using artificial neural networks. Applied Energy 253:113–25.
  • Milanic, S., and R. Karba. 1996. Neural network models for predictive control of a thermal plant. Proc. of the Int. Conf. EANN. London, UK. 151–54.
  • Milićević, A., S. Belošević, N. Crnomarković, I. Tomanović, and T. Dragan. 2020. Mathematical modelling and optimisation of lignite and wheat straw co-combustion in 350 MWe boiler furnace. Applied Energy 260:114206. doi:10.1016/j.apenergy.2019.114206.
  • Muller, B., and H. Keller. 1996. Neural networks for combustion process modelling. Proc. of the International Conference, EANN, London, UK. 87–90.
  • Romeo, L. M., and R. Gareta. 2006. Neural network for evaluating boiler behaviour. Applied Thermal Engineering 26 (14–15):1530–36. doi:10.1016/j.applthermaleng.2005.12.006.
  • Rusinowski, H., and W. Stanek. 2007. Neural modelling of steam boilers. Energy Conversion and Management 48:2802–09. doi:10.1016/j.enconman.2007.06.040.
  • Sabah, M., D. A. Mohsen Talebkeikhah, R. K. Wood, M. Anemangely, and A. Younesi. 2019. A machine learning approach to predict drilling rate using petrophysical and mud logging data. Earth Science Informatics 12:319–33. doi:10.1007/s12145-019-00381-4.
  • Saidur, R., M. T. Sambandam, M. Hasanuzzaman, D. Devaraj, S. Rajakarunakaran, and M. D. Islam. 2010. An energy flow analysis in a paper-based industry. Clean Technology Environment Policy 1:462–69.
  • Soteries Kalogirou, A. 2000. Application of artificial neural-networks for energy systems. Applied Energy 67:17–35. doi:10.1016/S0306-2619(00)00005-2.
  • Taheri, M. H., M. Abbasi, and M. K. Jamei. 2019. Using artificial neural network for computing the development length of MHD channel flows. Mechanics Research Communications 99:8–14. doi:10.1016/j.mechrescom.2019.06.003.
  • Tóth, P., A. Garami, and A. Csordás. 2017. Image-based deep neural network prediction of the heat output of a step-grate biomass boiler. Applied Energy 200:155–69. doi:10.1016/j.apenergy.2017.05.080.
  • Umeno, Y., and A. Kubo. 2019. Prediction of electronic structure in atomistic model using artificial neural Network. Computational Materials Science 168:164–71. doi:10.1016/j.commatsci.2019.06.005.
  • Wang, C., Y. Qiao, M. Liu, Y. Zhao, D. Chong, and J. Yan. 2018. Peak shaving operational optimization of supercritical coal-fired power plants by revising control strategy for water-fuel ratio. Applied Energy 216:212–23. doi:10.1016/j.apenergy.2018.02.039.
  • Wang, C., Y. Qiao, M. Liu, Y. Zhao, and J. Yan. 2020. Enhancing peak shaving capability by optimizing reheat-steam temperature control of a double-reheat boiler. Applied Energy 260:114341. doi:10.1016/j.apenergy.2019.114341.
  • Yusuf, Ç., K. Ibrahim, Ç. Adem, and K. Fuat. 2013. Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network. Energy 50:177–86. doi:10.1016/j.energy.2012.10.052.
  • Zhang, Y., H. Chen, B. Yang, F. Shupei, Y. Jie, and Z. Wang. 2018. Prediction of phosphate concentrate grade based on artificial neural network modelling. Results in Physics 11:625–28. doi:10.1016/j.rinp.2018.10.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.