870
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Multiscale modeling of proton exchange membrane fuel cells by coupling pore-scale models of the catalyst layers and cell-scale models

, , , &
Pages 1147-1160 | Received 06 Jan 2021, Accepted 04 Feb 2021, Published online: 01 May 2021

References

  • Berning, T., D. M. Lu, and N. Djilali. 2002. Three-dimensional computational analysis of transport phenomena in a PEM fuel cell. Journal of Power Sources 106 (1):284–94.
  • Bird, R., W. Stewart, and E. Lightfoot. 2002. Interphase transport in nonisothermal mixtures. In Transport Phenomena, 2nd ed. 679. New York, United States of America: John Wiley & Sons, Inc.. 2007.
  • Borup, R. L., A. Kusoglu, K. C. Neyerlin, R. Mukundan, R. K. Ahluwalia, D. A. Cullen, K. L. More, A. Z. Weber, and D. J. Myers. 2020. Recent developments in catalyst-related PEM fuel cell durability. Current Opinion in Electrochemistry 21:192–200.
  • Broka, K., and P. Ekdunge. 1997. Modelling the PEM fuel cell cathode. Journal of Applied Electrochemistry 27 (3):281–89.
  • Cao, T.-F., Y.-T. Mu, J. Ding, H. Lin, Y.-L. He, and W.-Q. Tao. 2015. Modeling the temperature distribution and performance of a PEM fuel cell with thermal contact resistance. International Journal of Heat and Mass Transfer 87:544–56.
  • Cetinbas, F. C., S. G. Advani, and A. K. Prasad. 2013. A modified agglomerate model with discrete catalyst particles for the PEM fuel cell catalyst layer. Journal of the Electrochemical Society 160 (8):F750–F756.
  • Cetinbas, F. C., S. G. Advani, and A. K. Prasad. 2014. Three dimensional proton exchange membrane fuel cell cathode model using a modified agglomerate approach based on discrete catalyst particles. Journal of Power Sources 250:110–19.
  • Cetinbas, F. C., and R. K. Ahluwalia. 2018. Agglomerates in Polymer Electrolyte Fuel Cell Electrodes: Part II. Transport Characterization. Journal of the Electrochemical Society 165 (13):F1059–F1066.
  • Cetinbas, F. C., R. K. Ahluwalia, N. N. Kariuki, and D. J. Myers. 2018. Agglomerates in polymer electrolyte fuel cell electrodes: Part i. structural characterization. Journal of the Electrochemical Society 165 (13):F1051–F1058.
  • Chan, S., and W. Tun. 2001. Catalyst layer models for proton exchange membrane fuel cells. Chemical Engineering & Technology: Industrial Chemistry-Plant Equipment-Process Engineering-Biotechnology 24 (1):51–57.
  • Chen, L., Y.-L. Feng, C.-X. Song, L. Chen, Y.-L. He, and W.-Q. Tao. 2013. Multi-scale modeling of proton exchange membrane fuel cell by coupling finite volume method and lattice Boltzmann method. International Journal of Heat and Mass Transfer 63:268–83.
  • Chen, L., Q. Kang, and W. Tao. 2019. Pore-scale study of reactive transport processes in catalyst layer agglomerates of proton exchange membrane fuel cells. Electrochimica Acta 306:454–65.
  • Chen, L., R. Zhang, P. He, Q. Kang, Y.-L. He, and W.-Q. Tao. 2018a. Nanoscale simulation of local gas transport in catalyst layers of proton exchange membrane fuel cells. Journal of Power Sources 400:114–25.
  • Chen, L., R. Zhang, Q. Kang, and W.-Q. Tao. 2020. Pore-scale study of pore-ionomer interfacial reactive transport processes in proton exchange membrane fuel cell catalyst layer. Chemical Engineering Journal 391:123590.
  • Chen, L., R. Zhang, T. Min, Q. Kang, and W. Tao. 2018b. Pore-scale study of effects of macroscopic pores and their distributions on reactive transport in hierarchical porous media. Chemical Engineering Journal 349:428–37.
  • Choo, M. J., K. H. Oh, J. K. Park, and H. T. Kim. 2015. Analysis of Oxygen Transport in Cathode Catalyst Layer of Low‐Pt‐Loaded Fuel Cells. ChemElectroChem 2 (3):382–88.
  • Darling, R. M. 2018. A Hierarchical Model for Oxygen Transport in Agglomerates in the Cathode Catalyst Layer of a Polymer-Electrolyte Fuel Cell. Journal of the Electrochemical Society 165 (9):F571–F580.
  • Dobson, P., C. Lei, T. Navessin, and M. Secanell. 2012. Characterization of the PEM fuel cell catalyst layer microstructure by nonlinear least-squares parameter estimation. Journal of the Electrochemical Society 159 (5):B514–B523.
  • Greszler, T. A., D. Caulk, and P. Sinha. 2012. The impact of platinum loading on oxygen transport resistance. Journal of the Electrochemical Society 159 (12):F831–F840.
  • Han, B., C. E. Carlton, A. Kongkanand, R. S. Kukreja, B. R. Theobald, L. Gan, R. O’Malley, P. Strasser, F. T. Wagner, and Y. Shao-Horn. 2015. Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells. Energy & Environmental Science 8 (1):258–66.
  • Hao, L., K. Moriyama, W. Gu, and C.-Y. Wang. 2015. Modeling and Experimental Validation of Pt Loading and Electrode Composition Effects in PEM Fuel Cells. Journal of the Electrochemical Society 162 (8):F854–F867.
  • Hou, Y., H. Deng, F. Pan, W. Chen, Q. Du, and K. Jiao. 2019. Pore-scale investigation of catalyst layer ingredient and structure effect in proton exchange membrane fuel cell. Applied Energy 253:113561.
  • Jiao, K., P. He, Q. Du, and Y. Yin. 2014. Three-dimensional multiphase modeling of alkaline anion exchange membrane fuel cell. International Journal of Hydrogen Energy 39 (11):5981–95.
  • Kongkanand, A., and M. F. Mathias. 2016. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. The Journal of Physical Chemistry Letters 7 (7):1127–37.
  • Kudo, K., R. Jinnouchi, and Y. Morimoto. 2016. Humidity and temperature dependences of oxygen transport resistance of Nafion thin film on platinum electrode. Electrochimica Acta 209:682–90.
  • Kudo, K., T. Suzuki, and Y. Morimoto. 2010. Analysis of oxygen dissolution rate from gas phase into nafion surface and development of an agglomerate model. ECS Transactions 33 (1):1495.
  • Lange, K. J., P.-C. Sui, and N. Djilali. 2011. Pore scale modeling of a proton exchange membrane fuel cell catalyst layer: Effects of water vapor and temperature. Journal of Power Sources 196 (6):3195–203.
  • Lin, T., L. Hu, W. Wisely, X. Gu, J. Cai, S. Litster, and L. B. Kara. 2021. Prediction of high frequency resistance in polymer electrolyte membrane fuel cells using Long Short Term Memory based model. Energy and AI 3: 100045.
  • Liu, H., W. K. Epting, and S. Litster. 2015. Gas transport resistance in polymer electrolyte thin films on oxygen reduction reaction catalysts. Langmuir 31 (36):9853–58.
  • Mench, M. M. 2010. Advanced modeling in fuel cell systems: A review of modeling approaches. Hydrogen and Fuel Cells–Fundamentals, Technologies and Applications 92:89–118.
  • Moreno, N. G., M. C. Molina, D. Gervasio, and J. F. P. Robles. 2015. Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost. Renewable and Sustainable Energy Reviews 52:897–906.
  • Mu, Y.-T., P. He, J. Ding, and W.-Q. Tao. 2017. Modeling of the operation conditions on the gas purging performance of polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy 42 (16):11788–802.
  • Mu, Y.-T., A. Z. Weber, Z.-L. Gu, and W.-Q. Tao. 2019. Mesoscopic modeling of transport resistances in a polymer-electrolyte fuel-cell catalyst layer: Analysis of hydrogen limiting currents. Applied Energy 255:113895.
  • Nonoyama, N., S. Okazaki, A. Z. Weber, Y. Ikogi, and T. Yoshida. 2011. Analysis of oxygen-transport diffusion resistance in proton-exchange-membrane fuel cells. Journal of the Electrochemical Society 158 (4):B416–B423.
  • Ono, Y., A. Ohma, K. Shinohara, and K. Fushinobu. 2013. Influence of equivalent weight of ionomer on local oxygen transport resistance in cathode catalyst layers. Journal of the Electrochemical Society 160 (8):F779–F787.
  • Owejan, J. P., J. E. Owejan, and W. Gu. 2013. Impact of platinum loading and catalyst layer structure on PEMFC performance. Journal of the Electrochemical Society 160 (8):F824–F833.
  • Pauchet, J., M. Prat, P. Schott, and S. P. Kuttanikkad. 2012. Performance loss of proton exchange membrane fuel cell due to hydrophobicity loss in gas diffusion layer: Analysis by multiscale approach combining pore network and performance modelling. International Journal of Hydrogen Energy 37 (2):1628–41.
  • Prasanna, M., E. A. Cho, H. J. Kim, I. H. Oh, T. H. Lim, and S. A. Hong. 2007. Performance of proton-exchange membrane fuel cells using the catalyst-gradient electrode technique. Journal of Power Sources 166 (1):53–58.
  • Sakai, K., K. Sato, T. Mashio, A. Ohma, K. Yamaguchi, and K. Shinohara. 2009. Analysis of reactant gas transport in catalyst layers; effect of Pt-loadings. ECS Transactions 25 (1):1193.
  • Strahl, S., A. Husar, and A. A. Franco. 2014. Electrode structure effects on the performance of open-cathode proton exchange membrane fuel cells: A multiscale modeling approach. International Journal of Hydrogen Energy 39 (18):9752–67.
  • Sun, W., B. A. Peppley, and K. Karan. 2005. An improved two-dimensional agglomerate cathode model to study the influence of catalyst layer structural parameters. Electrochimica Acta 50 (16):3359–74.
  • Suzuki, T., K. Kudo, and Y. Morimoto. 2013. Model for investigation of oxygen transport limitation in a polymer electrolyte fuel cell. Journal of Power Sources 222:379–89.
  • Tao, W. 2001. Numerical heat transfer. Xi’an: Xi’an Jiaotong University Press.
  • Thiele, E. W. 1939. Relation between catalytic activity and size of particle. Industrial and Engineering Chemistry 31 (7):916–20.
  • Udell, K. S. 1985. Heat transfer in porous media considering phase change and capillarity—the heat pipe effect. International Journal of Heat and Mass Transfer 28 (2):485–95.
  • Wang, B., G. Zhang, H. Wang, J. Xuan, and K. Jiao. 2020a. Multi-physics-resolved digital twin of proton exchange membrane fuel cells with a data-driven surrogate model. Energy and AI 1:100004.
  • Wang, C., X. Cheng, X. Yan, S. Shen, C. Ke, G. Wei, and J. Zhang. 2019. Respective Influence of Ionomer Content on Local and Bulk Oxygen Transport Resistance in the Catalyst Layer of PEMFCs with Low Pt Loading. Journal of the Electrochemical Society 166 (4):F239–F245.
  • Wang, Q., M. Eikerling, D. Song, Z. Liu, T. Navessin, Z. Xie, and S. Holdcroft. 2004. Functionally graded cathode catalyst layers for polymer electrolyte fuel cells I. theoretical modeling. Journal of the Electrochemical Society 151 (7):A950–A957.
  • Wang, Y., B. Seo, B. Wang, N. Zamel, K. Jiao, and X. C. Adroher. 2020b. Fundamentals, materials, and machine learning of polymer electrolyte membrane fuel cell technology. Energy and AI 1: 100014.
  • Weber, A. Z., and A. Kusoglu. 2014. Unexplained transport resistances for low-loaded fuel-cell catalyst layers. Journal of Materials Chemistry A 2 (41):17207–11.
  • Wee, J.-H., K.-Y. Lee, and S. H. Kim. 2007. Fabrication methods for low-Pt-loading electrocatalysts in proton exchange membrane fuel cell systems. Journal of Power Sources 165 (2):667–77.
  • Xie, R., R. Ma, S. Pu, L. Xu, D. Zhao, and Y. Huangfu. 2020. Prognostic for fuel cell based on particle filter and recurrent neural network fusion structure. Energy and AI 2:100017.
  • Yarlagadda, V., M. K. Carpenter, T. E. Moylan, R. S. Kukreja, R. Koestner, W. Gu, L. Thompson, and A. Kongkanand. 2018. Boosting fuel cell performance with accessible carbon mesopores. ACS Energy Letters 3 (3):618–21.
  • Ye, Q., and T. Van Nguyen. 2007. Three-dimensional simulation of liquid water distribution in a PEMFC with experimentally measured capillary functions. Journal of the Electrochemical Society 154 (12):B1242–B1251.
  • Yoon, W., and A. Z. Weber. 2011. Modeling low-platinum-loading effects in fuel-cell catalyst layers. Journal of the Electrochemical Society 158 (8):B1007–B1018.
  • Zhang, R., T. Min, L. Chen, Q. Kang, Y.-L. He, and W.-Q. Tao. 2019. Pore-scale and multiscale study of effects of Pt degradation on reactive transport processes in proton exchange membrane fuel cells. Applied Energy 253:113590.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.