210
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Statistical and experimental investigation of the influence of fuel injection strategies on gasoline/diesel RCCI combustion and emission characteristics in a diesel engine

, ORCID Icon, & ORCID Icon
Pages 1229-1248 | Received 16 Oct 2020, Accepted 20 Feb 2021, Published online: 16 Mar 2021

References

  • Agarwal, A. K., A. Dhar, D. K. Srivastava, R. K. Maurya, and A. P. Singh. 2013. Effect of fuel injection pressure on diesel particulate size and number distribution in a CRDI single cylinder research engine. Fuel 107:84–89. doi:10.1016/j.fuel.2013.01.077.
  • Agarwal, A. K., A. Dhar, J. G. Gupta, W. I. Kim, C. S. Lee, and S. Park. 2014. Effect of fuel injection pressure and injection timing on spray characteristics and particulate size–number distribution in a biodiesel fuelled common rail direct injection diesel engine. Applied Energy 130:212–21. doi:10.1016/j.apenergy.2014.05.041.
  • Balusamy, T., and R. Marappan. 2010. Effect of injection time and injection pressure on CI engine fuelled with methyl ester of Thevetia peruviana seed oil. International Journal of Green Energy 7 (4):397–409. doi:10.1080/15435075.2010.493811.
  • Caresana, F. 2011. Impact of biodiesel bulk modulus on injection pressure and injection timing. The effect of residual pressure. Fuel 90 (2):477–85. doi:10.1016/j.fuel.2010.10.005.
  • Chen, P.-C., Wei-Cheng Wang, L. William, Roberts, and Tiegang Fang. 2013. Spray and atomization of diesel fuel and its alternatives from a single-hole injector using a common rail fuel injection system. Fuel 103:850–61. doi:10.1016/j.fuel.2012.08.013.
  • Cui, Y., Q. Wang, H. Liu, Z. Zheng, H. Wang, Z. Yue, and M. Yao. 2020. Development of the ignition delay prediction model of n-butane/hydrogen mixtures based on artificial neural network. Energy and AI 2:100033. doi:10.1016/j.egyai.2020.100033.
  • Deb, M., A. Majumder, G. R. K. Rahul Banerjee, Sastry, P. K. Bose, and G. R. K. Sastry. 2014. A Taguchi-fuzzy based multi-objective optimization study on the soot-NOx-BTHE characteristics of an existing CI engine under dual fuel operation with hydrogen. International Journal of Hydrogen Energy 39 (35):20276–93. doi:10.1016/j.ijhydene.2014.09.171.
  • Deep, A., S. S. Sandhu, and S. Chander. 2017. Experimental investigations on the influence of fuel injection timing and pressure on single cylinder CI engine fueled with 20% blend of castor biodiesel in diesel. Fuel 210:15–22. doi:10.1016/j.fuel.2017.08.023.
  • Ganesan, V. 2012. Internal combustion engines. In Tata Mc Graw Hill, New Delhi, 4th edition, 429–30
  • Gugulothu, S. K. 2020. Performance and emission analysis of SOME (Schleichera oleosa oil methyl ester) on DI diesel engine. SN Applied Sciences 2 (4):1–13. doi:10.1007/s42452-020-2494-9.
  • Gugulothu, S. K., and K. H. C. Reddy. 2016. CFD simulation of in-cylinder flow on different piston bowl geometries in a DI diesel engine. Journal of Applied Fluid Mechanics 9 (3):1147–55. doi:10.18869/acadpub.jafm.68.228.24397.
  • Gugulothu, S. K., and M. Siva Surya. 2018. Engine performance and emission characteristics of four-stroke single cylinder diesel engine by using rice bran oil as fuel. J Appl Mech Eng 7:303.
  • Gugulothu, S. K., N. P. Kishore, V. P. Babu, and G. Sapre. 2019. CFD analysis on different piston bowl geometries by using split injection techniques. Acta Mechanica Malaysia 2 (1):23–28. doi:10.26480/amm.01.2019.23.28.
  • Gugulothu, S.K., Ramachander, J. & Kumar, A.K. Predicting the engine trade-off study and performance characteristics using different blends of methyl Ester fish oil and higher alcohol with aid of artificial neural network based multi objective optimization. Springer, Berlin, Heidelberg, Heat Mass Transfer (2021). https://doi.org/10.1007/s00231-020-03013–6
  • Hwang, J., Q. Donghui, Y. Jung, and C. Bae. 2014. Effect of injection parameters on the combustion and emission characteristics in a common-rail direct injection diesel engine fueled with waste cooking oil biodiesel. Renewable Energy 63:9–17. doi:10.1016/j.renene.2013.08.051.
  • Jaichandar, S., P. Senthil Kumar, and K. Annamalai. 2012. Combined effect of injection timing and combustion chamber geometry on the performance of a biodiesel fueled diesel engine. Energy 47 (1):388–94. doi:10.1016/j.energy.2012.09.059.
  • Jayashankara, B. and Ganesan, V., 2010. Effect of fuel injection timing and intake pressure on the performance of a DI diesel engine–A parametric study using CFD. Energy Conversion and Management, 51(10), pp.1835–1848
  • Jayashankara, B., and V. Ganesan. 2010. Effect of fuel injection timing and intake pressure on the performance of a DI diesel engine–A parametric study using CFD. Energy Conversion and Management 51 (10):1835–48. doi:10.1016/j.enconman.2009.11.006.
  • Jia, M., M. Xie, T. Wang, and Z. Peng. 2011. The effect of injection timing and intake valve close timing on performance and emissions of diesel PCCI engine with a full engine cycle CFD simulation. Applied Energy 88 (9):2967–75. doi:10.1016/j.apenergy.2011.03.024.
  • Jinghua, Z., H. Wei, Li Xuejun, Xie Fangxi, and Jue Li. “Study about effects of EGR and injection parameters on the combustion and emissions of high-pressure common-rail diesel engine.” In 2010 The 2nd International Conference on Industrial Mechatronics and Automation, Wuhan, China, vol. 1, pp. 290–94. IEEE, 2010.
  • Kannan, G. R., and R. Anand. 2012. Effect of injection pressure and injection timing on DI diesel engine fuelled with biodiesel from waste cooking oil. Biomass & Bioenergy 46:343–52. doi:10.1016/j.biombioe.2012.08.006.
  • Kapoor, M., Kumar, N., Verma, A.S., Gautam, G. and Padap, A.K., 2020. Performance and Emission Analysis of Compression Ignition Engine With Neem Methyl Ester Mixed With Cerium Oxide (CeO2) Nanoparticles. Journal of Energy Resources Technology, 142(8)
  • Karthic, S. V., M. Senthil Kumar, G. Nataraj, and P. Pradeep. 2019. Experimental investigations on the influence of hydrogen and LPG mixtures on performance behavior of a mahua bio oil-powered dual fuel engine. International Journal of Green Energy 16 (12):878–89. doi:10.1080/15435075.2019.1641713.
  • Kumar Agarwal, A., D. Kumar Shrivastava, A. Dhar, R. K. Maurya, P. C. Shukla, and A. P. Singh. 2013. Effect of fuel injection timing and pressure on combustion, emissions and performance characteristics of a single cylinder diesel engine. Fuel vol.111:374–83. doi:10.1016/j.fuel.2013.03.016.
  • Kuti, O. A., J. Zhu, K. Nishida, X. Wang, and Z. Huang. 2013. Characterization of spray and combustion processes of biodiesel fuel injected by diesel engine common rail system. Fuel 104:838–46. doi:10.1016/j.fuel.2012.05.014.
  • Latchubugata, C.S., Kondapaneni, R.V., Patluri, K.K., Virendra, U. and Vedantam, S., 2018. Kinetics and optimization studies using Response Surface Methodology in biodiesel production using heterogeneous catalyst. Chemical Engineering Research and Design, 135, pp.129–139
  • Leermakers, C. A. J., B. Van Den Berge, C. C. M. Luijten, L. M. T. Somers, L. P. H. De Goey, and B. A. Albrecht. 2011. Gasoline–diesel dual fuel: Effect of injection timing and fuel balance (No. 2011-01-2437). SAE Technical Paper 3 (4):1-10.
  • Martín, J., Novella, R., García, A., Carreño, R., Heuser, B., Kremer, F. and Pischinger, S., 2016. Thermal analysis of a light-duty CI engine operating with diesel-gasoline dual-fuel combustion mode. Energy, 115, pp.1305–1319
  • Mohebbi, M., M. Reyhanian, V. Hosseini, M. F. M. Said, and A. A. Aziz. 2018. Performance and emissions of a reactivity controlled light duty diesel engine fueled with n-butanol-diesel and gasoline. Applied Thermal Engineering 134:214–28. doi:10.1016/j.applthermaleng.2018.02.003.
  • Mustafi, N. N., R. R. Raine, and S. Verhelst. 2013. Combustion and emissions characteristics of a dual fuel engine operated on alternative gaseous fuels. Fuel 109:669–78. doi:10.1016/j.fuel.2013.03.007.
  • No, S. Y. 2019. Application of bioethanol to advanced CI engines; dual fuel and RCCI combustion modes–a review. International Journal of Green Energy 16 (14):1105–30. doi:10.1080/15435075.2019.1653878.
  • Özcanlı, M., A. Keskin, and K. Aydın. 2011. Biodiesel production from terebinth (Pistacia terebinthus) oil and its usage in diesel engine. International Journal of Green Energy 8 (5):518–28. doi:10.1080/15435075.2011.588766.
  • Prasath, K. A., and A. Ramesh. 2018. A low pressure direct gas injection system for a four stroke LPG: Diesel dual fuel engine. International Journal of Green Energy 15 (4):223–31. doi:10.1080/15435075.2016.1206016.
  • Qi, D., M. Leick, Y. Liu, and F. Lee Chia-fon. 2011. Effect of EGR and injection timing on combustion and emission characteristics of split injection strategy DI-diesel engine fueled with biodiesel. Fuel 90 (5):1884–91. doi:10.1016/j.fuel.2011.01.016.
  • Raeiea, N., Sajjad Emami, Omid Karimi Sadaghiyania, S. Emami, and O. Karimi Sadaghiyani. 2014. Effects of injection timing, before and after top dead center on the propulsion and power in a diesel engine. Propulsion and Power Research 3 (2):59–67. doi:10.1016/j.jppr.2014.06.001.
  • Ramachander, J., S. K. Gugulothu, G. R. K. Sastry, J. K. Panda, and M. S. Surya. 2021. Performance and emission predictions of a CRDI engine powered with diesel fuel: A combined study of injection parameters variation and Box-Behnken response surface methodology-based optimization. Fuel 290:120069. doi:10.1016/j.fuel.2020.120069.
  • Sayin, C., and M. Canaksi. 2009. Effects of injection timing on the engine performance and exhaust emissions of a dual-fuel diesel engine. Energy Conversion and Management 50 (1):203–13. doi:10.1016/j.enconman.2008.06.007
  • Sayin, C., M. Ilhan, M. Canakci, and M. Gumus. 2009. Effect of injection timing on the exhaust emissions of a diesel engine using diesel–methanol blends. Renewable Energy 34 (5):1261–69. doi:10.1016/j.renene.2008.10.010.
  • Singh, A., S. Sinha, A. K. Choudhary, H. Panchal, M. Elkelawy, and K. K. Sadasivuni. 2020. Optimization of performance and emission characteristics of CI engine fueled with Jatropha biodiesel produced using a heterogeneous catalyst (CaO). Fuel 280:118611. doi:10.1016/j.fuel.2020.118611.
  • Surya, M. S., G. Prasanthi, and S. K. Gugulothu. 2021. Investigation of mechanical and wear behaviour of Al7075/SiC composites using response surface methodology. In Silicon, 1–11. Springer, Netherlands.
  • Vipavanich, C., S. Chuepenge, and S. Skullung. 2018. Heat release analysis and thermal efficiency of a single cylinder diesel dual fuel engine with gasoline port injection. Case Study in Thermal Engineering 12:143–48. doi:10.1016/j.csite.2018.04.011.
  • Wamankar, A. K., A. K. Satapathy, and S. Murugan. 2015. Experimental investigation of the effect of compression ratio, injection timing & pressure in a DI (direct injection) diesel engine running on carbon black-water-diesel emulsion. Energy 93:511–20. doi:10.1016/j.energy.2015.09.068.
  • Wang, X., Z. Huang, O. A. Kuti, Wu Zhang, and Keiya Nishida. 2010. Experimental and analytical study on biodiesel and diesel spray characteristics under ultra-high injection pressure. International Journal of Heat and Fluid Flow 31 (4):659–66. doi:10.1016/j.ijheatfluidflow.2010.03.006.
  • Xu, Y., H. Kang, J. Gong, S. Zhang, and X. Li. 2018. A study on the combustion strategy of gasoline/diesel dual-fuel engine. Fuel 225:426–35. doi:10.1016/j.fuel.2018.03.166.
  • Youn, I. M., S. H. Park, H. G. Roh, and C. S. Lee. 2011. Investigation on the fuel spray and emission reduction characteristics for dimethyl ether (DME) fueled multi-cylinder diesel engine with common-rail injection system. Fuel Processing Technology 92 (7):1280–87. doi:10.1016/j.fuproc.2011.01.018.
  • Yu, R. C., and S. M. Shahed. 1981. Effects of injection timing and exhaust gas recirculation on emissions from a DI diesel engine. In SAE Transactions, 90 (4):3873-3883.
  • Zhang, G., X. Qiao, X. Miao, J. Hong, and J. Zheng. 2012. Effects of highly dispersed spray nozzle on fuel injection characteristics and emissions of heavy-duty diesel engine. Fuel 102:666–73. doi:10.1016/j.fuel.2012.07.053.
  • Zhang, Y., S. Xu, S. Zhong, X. S. Bai, H. Wang, and M. Yao. 2020. Large eddy simulation of spray combustion using flamelet generated manifolds combined with artificial neural networks. Energy and AI 2:100021. doi:10.1016/j.egyai.2020.100021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.