194
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Catalytic upgrading and enhancing the combustion characteristic of pyrolysis oil

, , & ORCID Icon
Pages 1277-1288 | Received 16 Sep 2020, Accepted 22 Feb 2021, Published online: 27 Mar 2021

References

  • Asadieraghi, M., and W. M. A. W. Daud. 2015. In-depth investigation on thermochemical characteristics of palm oil biomasses as potential biofuel sources. Journal of Analytical and Applied Pyrolysis 115:379–91. doi:10.1016/j.jaap.2015.08.017.
  • Ashok, B., A. K. Jeevanantham, K. R. B. Hire, V. Kashyap, and P. Saiteja. 2020. Calibration of idling characteristics for lemon peel oil using central composite design in light commercial vehicle diesel engine. Energy Conversion and Management 221:113183. doi:10.1016/j.enconman.2020.113183.
  • Ates, F., S. Tophanecioglu, and A. E. Putun. 2015. The evaluation of mesoporous materials as catalyst in fast pyrolysis of wheat straw. International Journal of Green Energy 12 (1):57–64. doi:10.1080/15435075.2014.889005.
  • Ba, T., A. Chaala, M. Garcia-Perez, D. Rodrigue, and C. Roy. 2004. Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark. Characterization of water-soluble and water-insoluble fractions. Energy & Fuels 18 (3):704–12. doi:10.1021/ef030118b.
  • Balat, M. 2008. Global trends on the processing of bio-fuels. International Journal of Green Energy 5 (3):212–38. doi:10.1080/15435070802107322.
  • Calabria, R., F. Chiariello, and P. Massoli. 2007. Combustion fundamentals of pyrolysis oil based fuels. Experimental Thermal and Fluid Science 31 (5):413–20. doi:10.1016/j.expthermflusci.2006.04.010.
  • Carlson, T. R., G. A. Tompsett, W. C. Conner, and G. W. Huber. 2009. Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Topics in Catalysis 52 (3):241. doi:10.1007/s11244-008-9160-6.
  • Cheng, Y. T., and G. W. Huber. 2012. Production of targeted aromatics by using Diels–Alder classes of reactions with furans and olefins over ZSM-5. Green Chemistry 14 (11):3114–25. doi:10.1039/c2gc35767d.
  • Comyns, Alan E. 1999. Molecular Sieves: Principles of Synthesis and Identification. R. Szostak. Blackie Academic and Professional, London, 1998. Xiv+ 359 Pages.? 79. ISBN 0‐7514‐0480‐2. Applied Organometallic Chemistry13(3): 209–210. doi.10.1002/(SICI)1099-0739(199903)13:3<209::aid-aoc817>3.0.CO;2–P
  • Czernik, S., and A. V. Bridgwater. 2004. Overview of applications of biomass fast pyrolysis oil. Energy & Fuels 18 (2):590–98. doi:10.1021/ef034067u.
  • David, G. F., V. H. Perez, O. R. Justo, and M. Garcia-Perez. 2017. Effect of acid additives on sugarcane bagasse pyrolysis: Production of high yields of sugars. Bioresource Technology 223:74–83. doi:10.1016/j.biortech.2016.10.051.
  • Elbaz, A. M., A. Gani, N. Hourani, A. H. Emwas, S. M. Sarathy, and W. L. Roberts. 2015. TG/DTG, FT-ICR mass spectrometry, and NMR spectroscopy study of heavy fuel oil. Energy & Fuels 29 (12):7825–35. doi:10.1021/acs.energyfuels.5b01739.
  • Fan, Y., Y. Cai, X. Li, N. Yu, and H. Yin. 2014. Catalytic upgrading of pyrolytic vapors from the vacuum pyrolysis of rape straw over nanocrystalline HZSM-5 zeolite in a two-stage fixed-bed reactor. Journal of Analytical and Applied Pyrolysis 108:185–95. doi:10.1016/j.jaap.2014.05.001.
  • Fanchiang, W.-L., and Y. C. Lin. 2012. Catalytic fast pyrolysis of furfural over H-ZSM-5 and Zn/H-ZSM-5 catalysts. Applied Catalysis. A, General 419:102–10. doi:10.1016/j.apcata.2012.01.017.
  • Galadima, A., and O. Muraza. 2015. In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: A review. Energy Conversion and Management 105:338–54. doi:10.1016/j.enconman.2015.07.078.
  • Gayubo, A. G., A. T. Aguayo, A. Atutxa, R. Aguado, and J. Bilbao. 2004a. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. I. Alcohols and phenols. Industrial & Engineering Chemistry Research 43 (11):2610–18. doi:10.1021/ie030791o.
  • Gayubo, A. G., A. T. Aguayo, A. Atutxa, R. Aguado, M. Olazar, and J. Bilbao. 2004b. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. II. Aldehydes, ketones, and acids. Industrial & Engineering Chemistry Research 43 (11):2619–26. doi:10.1021/ie030792g.
  • Hu, X., Y. Wang, D. Mourant, R. Gunawan, C. Lievens, W. Chaiwat, M. Gholizadeh, L. Wu, X. Li, and C. Li. 2013. Polymerization on heating up of bio‐oil: A model compound study. AIChE Journal 59 (3):888–900. doi:10.1002/aic.13857.
  • Huber, G. W., and A. Corma. 2007. Synergies between bio‐and oil refineries for the production of fuels from biomass. Angewandte Chemie International Edition 46 (38):7184–201. doi:10.1002/anie.200604504.
  • Islam, M. N., M. R. A. Beg, M. R. Islam, and M. Rofiqul Islam. 2005. Pyrolytic oil from fixed bed pyrolysis of municipal solid waste and its characterization. Renewable Energy 30 (3):413–20. doi:10.1016/j.renene.2004.05.002.
  • Jamil, F., M. M. Ahmad, S. Yusup, and B. Abdullah. 2016. Upgrading of bio-oil from palm kernel shell by catalytic cracking in the presence of HZSM-5. International Journal of Green Energy 13 (4):424–29. doi:10.1080/15435075.2014.966370.
  • Karthickeyan, V., S. Thiyagarajan, B. Ashok, V. E. Geo, and A. K. Azad. 2020. Experimental investigation of pomegranate oil methyl ester in ceramic coated engine at different operating condition in direct injection diesel engine with energy and exergy analysis. Energy Conversion and Management 205:112334. doi:10.1016/j.enconman.2019.112334.
  • Li, P., D. Li, H. Yang, X. Wang, and H. Chen. 2016. Effects of Fe-, Zr-, and Co-modified zeolites and pretreatments on catalytic upgrading of biomass fast pyrolysis vapors. Energy & Fuels 30 (4):3004–13. doi:10.1021/acs.energyfuels.5b02894.
  • Li, X. G., Y. Lv, B. G. Ma, S. W. Jian, and H. B. Tan. 2011. Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal. Bioresource Technology 102 (20):9783–87. doi:10.1016/j.biortech.2011.07.117.
  • Liu, C., Y. Long, and Z. Wang. 2018. Optimization of conditions for preparation of ZSM-5@ silicalite-1 core–shell catalysts via hydrothermal synthesis. Chinese Journal of Chemical Engineering 26 (10):2070–76. doi:10.1016/j.cjche.2018.03.030.
  • Mohan, D., C. U. Pittman, and P. H. Steele. 2006. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy and Fuels 20 (3):848–89. doi:10.1021/ef0502397.
  • Mullen, C. A., and A. A. Boateng. 2015. Production of aromatic hydrocarbons via catalytic pyrolysis of biomass over Fe-modified HZSM-5 zeolites. ACS Sustainable Chemistry & Engineering 3 (7):1623–31. doi:10.1021/acssuschemeng.5b00335.
  • Nam, H. V., D. Q. Viet, T. T. Tam, and V. D. S. Tho. 2019b. Kinetic analysis and chemical bond breakage of bagasse pyrolysis process. Vietnam Journal of Chemistry 57 (1):101–07. doi:10.1002/vjch.201960016.
  • Nam, H. V., N. T. Thu, T. T. Tam, and V. D. S. Tho. 2019a. Research the evaporation and residue formation of pyrolysis oil. Vietnam Journal of Chemistry 57 (2e1,2):293–300.
  • Nam, H. V., T. T. Tam, and V. D. S. Tho. 2020. Study on furfural conversion into aromatics over Zn/HZSM-5 and Fe/HZSM-5 catalysts. Vietnam Journal of Chemistry 58 (5):602–09.
  • Nanthagopal, K., B. Ashok, and R. T. K. Raj. 2016. Influence of fuel injection pressures on calophyllum inophyllum methyl ester fuelled direct injection diesel engine. Energy Conversion and Management 116:165–73. doi:10.1016/j.enconman.2016.03.002.
  • Niu, S., K. Han, and C. Lu. 2011. Characteristic of coal combustion in oxygen/carbon dioxide atmosphere and nitric oxide release during this process. Energy Conversion and Management 52 (1):532–37. doi:10.1016/j.enconman.2010.07.028.
  • Oasmaa, A., and S. Czernik. 1999. Fuel oil quality of biomass pyrolysis oils state of the art for the end users. Energy & Fuels 13 (4):914–21. doi:10.1021/ef980272b.
  • Patil, S. K. R., and C. R. F. Lund. 2011. Formation and growth of humins via aldol addition and condensation during acid-catalyzed conversion of 5-hydroxymethylfurfural. Energy & Fuels 25 (10):4745–55. doi:10.1021/ef2010157.
  • Quan, C., N. Gao, and Q. Song. 2016. Pyrolysis of biomass components in a TGA and a fixed-bed reactor: Thermochemical behaviors, kinetics, and product characterization. Journal of Analytical and Applied Pyrolysis 121:84–92. doi:10.1016/j.jaap.2016.07.005.
  • Ren, S., H. Lei, L. Wang, Q. Bu, S. Chen, J. Wu, J. Julson, and R. Ruan. 2012. Biofuel production and kinetics analysis for microwave pyrolysis of Douglas fir sawdust pellet. Journal of Analytical and Applied Pyrolysis 94:163–69. doi:10.1016/j.jaap.2011.12.004.
  • Ren, X., J. Meng, A. M. Moore, J. Chang, J. Gou, and S. Park. 2014. Thermogravimetric investigation on the degradation properties and combustion performance of bio-oils. Bioresource Technology 152:267–74. doi:10.1016/j.biortech.2013.11.028.
  • Saiteja, P., and B. Ashok. n.d.. A critical insight review on homogeneous charge compression ignition engine characteristics powered by biofuels. Fuel 285:119202.
  • Sani, S., M. U. Kaisan, D. M. Kulla, A. I. Obi, A. Jibrin, and B. Ashok. 2018. Determination of physico chemical properties of biodiesel from citrullus lanatus seeds oil and diesel blends. Industrial Crops and Products 122:702–08. doi:10.1016/j.indcrop.2018.06.002.
  • Taarning, E., C. M. Osmundsen, X. Yang, B. Voss, S. I. Andersen, and C. H. Christensen. 2011. Zeolite-catalyzed biomass conversion to fuels and chemicals. Energy & Environmental Science 4 (3):793–804. doi:10.1039/C004518G.
  • Tamilvanan, A., K. Balamurugan, B. Ashok, P. Selvakumar, S. Dhamotharan, M. Bharathiraja, and V. Karthickeyan. 2020. Effect of diethyl ether and ethanol as an oxygenated additive on calophyllum inophyllum biodiesel in CI engine. Environmental Science and Pollution Research 1–19. doi.10.1007/s11356-020-10624-3.
  • Teixeira, I. F., B. T. W. Lo, P. Kostetskyy, L. Ye, C. C. Tang, G. Mpourmpakis, and S. C. E. Tsang. 2018. Direct catalytic conversion of biomass-derived furan and ethanol to ethylbenzene. ACS Catalysis 8 (3):1843–50. doi:10.1021/acscatal.7b03952.
  • Veses, A., B. Puértolas, M. S. Callén, and T. García. 2015. Catalytic upgrading of biomass derived pyrolysis vapors over metal-loaded ZSM-5 zeolites: Effect of different metal cations on the bio-oil final properties. Microporous and Mesoporous Materials 209:189–96. doi:10.1016/j.micromeso.2015.01.012.
  • Vignesh, R., and B. Ashok. 2020. Critical interpretative review on current outlook and prospects of selective catalytic reduction system for De-NOx strategy in compression ignition engine. Fuel 276:117996.
  • Wan, S., and Y. Wang. 2014. A review on ex situ catalytic fast pyrolysis of biomass. Frontiers of Chemical Science and Engineering 8 (3):280–94. doi:10.1007/s11705-014-1436-8.
  • Wang, A., D. Austin, H. Qian, H. Zeng, and H. Song. 2018. Catalytic valorization of furfural under methane environment. ACS Sustainable Chemistry & Engineering 6 (7):8891–903. doi:10.1021/acssuschemeng.8b01257.
  • Wang, K., K. H. Kim, and R. C. Brown. 2014. Catalytic pyrolysis of individual components of lignocellulosic biomass. Green Chemistry 16 (2):727–35. doi:10.1039/C3GC41288A.
  • Wang, L., H. Lei, Q. Bu, S. Ren, Y. Wei, L. Zhu, X. Zhang, Y. Liu, G. Yadavalli, and J. Lee. 2014. Aromatic hydrocarbons production from ex situ catalysis of pyrolysis vapor over Zinc modified ZSM-5 in a packed-bed catalysis coupled with microwave pyrolysis reactor. Fuel 129:78–85. doi:10.1016/j.fuel.2014.03.052.
  • Wang, Z., R. Ma, W. Lin, and W. Song. 2016. Pyrolysis of cellulose under catalysis of SAPO-34, ZSM-5, and Y zeolite via the Py-GC/MS method. International Journal of Green Energy 13 (9):853–58. doi:10.1080/15435075.2015.1088447.
  • Wornat, M. J., B. G. Porter, and N. Y. C. Yang. 1994. Single droplet combustion of biomass pyrolysis oils. Energy & Fuels 8 (5):1131–42. doi:10.1021/ef00047a018.
  • Yin, R., R. Liu, Y. Mei, W. Fei, and X. Sun. 2013. Characterization of bio-oil and bio-char obtained from sweet sorghum bagasse fast pyrolysis with fractional condensers. Fuel 112:96–104. doi:10.1016/j.fuel.2013.04.090.
  • Zhang, H., J. Zheng, and R. Xiao. 2013. Catalytic pyrolysis of willow wood with Me/ZSM-5 (Me= Mg, K, Fe, Ga, Ni) to produce aromatics and olefins. Bioresources 8 (4):5612–21.
  • Zhou, N., S. Liu, Y. Zhang, L. Fan, Y. Cheng, Y. Wang, Y. Liu, P. Chen, and R. Ruan. 2018. Silicon carbide foam supported ZSM-5 composite catalyst for microwave-assisted pyrolysis of biomass. Bioresource Technology 267:257–64. doi:10.1016/j.biortech.2018.07.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.