390
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Design and study of a combining energy harvesting system based on thermoelectric and flapping triboelectric nanogenerator

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 1302-1308 | Received 24 Nov 2020, Accepted 12 Mar 2021, Published online: 06 Apr 2021

References

  • Chandrasekhar,A., V.Vivekananthan, and S.-J.Kim. 2020. Afully packed spheroidal hybrid generator for water wave energy harvesting and self-powered position tracking. Nano Energy 69:104439. doi:10.1016/j.nanoen.2019.104439.
  • Chen,J., Y.Huang, N.Zhang, H.Zou, R.Liu, C.Tao, X.Fan, and Z.L.Wang. 2016. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nature Energy 1:1–8. doi:10.1038/nenergy.2016.138.
  • Crespo,C.T. 2018. Potentiality of cufeo2-delafossite as asolar energy converter. Solar Energy 163:162–66. doi:10.1016/j.solener.2018.01.091.
  • Dong,M., -R.-R.Huang, Y.Zheng, S.-J.Zhao, and J.Chen. 2016. Discussion development of internet of things and wisdom agriculture. Modern Agricul- Tural Science and Technology 197:340–342.
  • Hwang,J., J.An, A.Aziz, J.Kim, S.Jeong, and J.Song. 2019. Interworking models of smart city with heterogeneous internet of things standards. IEEE Communications Magazine 57:74–79. doi:10.1109/MCOM.2019.1800677.
  • Jung,Y.S., D.H.Jeong, S.B.Kang, F.Kim, M.H.Jeong, K.-S.Lee, J.S.Son, J.M.Baik, J.-S.Kim, and K.J.Choi. 2017. Wearable solar thermoelectric generator driven by unprecedentedly high temperature difference. Nano Energy 40:663–72. doi:10.1016/j.nanoen.2017.08.061.
  • Karthick,K., S.Suresh, G.C.Joy, and R.Dhanuskodi. 2019. Experimental investigation of solar reversible power generation in thermoelectric generator (teg) using thermal energy storage. Energy for Sustainable Development 48:107–14. doi:10.1016/j.esd.2018.11.002.
  • Kim,M.-K., M.-S.Kim, S.-E.Jo, and Y.-J.Kim. 2016. Triboelectric–thermoelectric hybrid nanogenerator for harvesting frictional energy. Smart Materials and Structures 25:125007. doi:10.1088/0964-1726/25/12/125007.
  • Klochko,N., K.Klepikova, V.Kopach, I.Tyukhov, V.Starikov, D.Sofronov, I.Khrypunova, D.Zhadan, S.Petrushenko, S.Dukarov, etal. 2019. Development of semi-transparent ZnO/fto solar thermoelectric nanogenerator for energy efficient glazing. Solar Energy 184:230–39. doi:10.1016/j.solener.2019.04.002.
  • Kraemer,D., B.Poudel, H.-P.Feng, J.C. Caylor, B.Yu, X.Yan, Y.Ma, X.Wang, D.Wang, A.Muto, etal. 2011. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nature Materials 10:532–38. doi:10.1038/nmat3013.
  • Liu,C., F.Li, C.Zhao, W.Ye, K.Wang, Y.Dong, and W.Gao. 2019. Experimental research of thermal electric power generation from ship incinerator exhaust heat. E&ES 227:022031.
  • Liu,C., and W.Z. Li. 2015. An experimental study of a two-stage thermoelectric generator using heat pipe in vehicle exhaust. Distributed Generation and Alternative Energy Journal 30:15–37. doi:10.1080/21563306.2015.11101969.
  • Liu,C., X.Pan, X.Zheng, Y.Yan, and W.Li. 2016. An experimental study of anovel prototype for two-stage thermoelectric generator from vehicle exhaust. Journal of the Energy Institute 89:271–81. doi:10.1016/j.joei.2015.01.019.
  • Liu,C., W.Ye, J.Liu, G.Lv, T.Zhao, and D.Jingming. 2020. Study on teg-orc combined cycle performance for cascade recovery from vessel various waste heat. Chinese Journal of Engineering 4,43.
  • Liu,C., and W.Zhong Li. 2013. An experimental study of anovel prototype for thermoelectric power generation from vehicle exhaust. Distributed Generation and Alternative Energy Journal 28:32–48. doi:10.1080/21563306.2013.10750234.
  • Ma,M., Z.Zhang, Q.Liao, G.Zhang, F.Gao, X.Zhao, Q.Zhang, X.Xun, Z.Zhang, and Y.Zhang. 2017. Integrated hybrid nanogenerator for gas energy recycle and purification. Nano Energy 39:524–31. doi:10.1016/j.nanoen.2017.07.003.
  • Rodskar,E., R.Volden, and E.Skjong. 2017. Sailing into the future: Industrial internet of things at sea with x-connect. IEEE Electrification Magazine 5:33–39. doi:10.1109/MELE.2017.2718831.
  • Sun,W., Z.Ding, Z.Qin, F.Chu, and Q.Han. 2020. Wind energy harvesting based on fluttering double-flag type triboelectric nanogenerators. Nano Energy 70:104526. doi:10.1016/j.nanoen.2020.104526.
  • Via,S. 2001. Sympatric speciation in animals: The ugly duckling grows up. Trends in Ecology & Evolution 16:381–90. doi:10.1016/S0169-5347(01)02188-7.
  • Wang,H., Q.Zhu, Z.Ding, Z.Li, H.Zheng, J.Fu, C.Diao, X.Zhang, J.Tian, and Y.Zi. 2019. A fully-packaged ship-shaped hybrid nanogenerator for blue energy harvesting toward seawater self-desalination and self-powered positioning. Nano Energy 57:616–24. doi:10.1016/j.nanoen.2018.12.078.
  • Wang,J., W.Ding, L.Pan, C.Wu, H.Yu, L.Yang, R.Liao, and Z.L. Wang. 2018. Self-powered wind sensor system for detecting wind speed and direction based on atriboelectric nanogenerator. ACS Nano 12:3954–63. doi:10.1021/acsnano.8b01532.
  • Wang,S., X.Wang, Z.L. Wang, and Y.Yang. 2016. Efficient scavenging of solar and wind energies in asmart city. ACS Nano 10:5696–700. doi:10.1021/acsnano.6b02575.
  • Wang,Y., J.Wang, X.Xiao, S.Wang, P.T. Kien, J.Dong, J.Mi, X.Pan, H.Wang, and M.Xu. 2020a. Multi-functional wind barrier based on triboelectric nanogenerator for power generation, self-powered wind speed sensing and highly efficient windshield. Nano Energy 73, 104736.
  • Wang,Y., E.Yang, T.Chen, J.Wang, Z.Hu, J.Mi, X.Pan, and M.Xu. 2020b. Anovel humidity resisting and wind direction adapting flag-type triboelectric nanogenerator for wind energy harvesting and speed sensing. Nano Energy 78:105279. doi:10.1016/j.nanoen.2020.105279.
  • Ye,W., C.Liu, J.Liu, C.Zhao, T.Dai, and K.Ma. 2020. Experimental study on the utilization of waste heat from ships using the combined system of thermoelectric power generation and organic rankine cycle. Journal of Xi’an Jiaotong University 54:50–57.
  • Zhang,L., B.Meng, Y.Xia, Z.Deng, H.Dai, P.Hagedorn, Z.Peng, and L.Wang. 2020. Galloping triboelectric nanogenerator for energy harvesting under low wind speed. Nano Energy 70:104477. doi:10.1016/j.nanoen.2020.104477.
  • Zheng,L., G.Cheng, J.Chen, L.Lin, J.Wang, Y.Liu, H.Li, and Z.L. Wang. 2015. Ahybridized power panel to simultaneously generate electricity from sunlight, raindrops, and wind around the clock. Advanced Energy Materials 5:1501152. doi:10.1002/aenm.201501152.
  • Zheng,X., C.Liu, R.Boukhanouf, Y.Yan, and W.Li. 2014a. Experimental study of adomestic thermoelectric cogeneration system. Applied Thermal Engineering 62:69–79. doi:10.1016/j.applthermaleng.2013.09.008.
  • Zheng,X., C.Liu, Y.Yan, and Q.Wang. 2014b. Areview of thermoelectrics research–recent developments and potentials for sustainable and renewable energy applications. Renewable and Sustainable Energy Reviews 32:486–503. doi:10.1016/j.rser.2013.12.053.
  • Zhu,G., J.Chen, T.Zhang, Q.Jing, and Z.L. Wang. 2014. Radial-arrayed rotary electrification for high performance triboelectric generator. Nature Communica- Tions 5:1–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.