5,016
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Aerodynamic performance enhancement and computational methods for H-Darrieus vertical axis wind turbines: Review

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1428-1465 | Received 30 Apr 2021, Accepted 01 Nov 2021, Published online: 16 Feb 2022

References

  • Abbott, I. H., and A. E. Von Doenhoff. 1959. Theory of wing sections: Including a summary of airfoil data. Courier Corporation. 978-0486605869.
  • Abdalrahman, G., W. Melek, and F.-S. Lien. 2017. Pitch angle control for a small-scale Darrieus vertical axis wind turbine with straight blades (H-Type VAWT). Renewable Energy 114:1353–62. doi:10.1016/j.renene.2017.07.068.
  • Abdalrwaf, Wael. 2017. Stresses and frequency shifts in fully extended and folded wind turbine blades . Fort Collins, Colorado: Colorado State University. [Accessed10 December, 2021]. https://mountainscholar.org/bitstream/handle/10217/185728/Abdalrwaf_colostate_0053N_14548.pdf?sequence=1
  • Afzali, F., O. Kapucu, and B. F. Feeny. 2016. “Vibration analysis of vertical-axis wind-turbine blades,” in ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, August 21–24, 2016, Charlotte, North Carolina, USA. USA: American Society of Mechanical Engineers Digital Collection. https://doi.org/10.1115/DETC2016-60374
  • Ageze, M. B., Y. Hu, and A. H. Wu. 2017a. Wind Turbine Aeroelastic Modeling: Basics and Cutting Edge Trends. International Journal of Aerospace Engineering 2017 (5263897):15.
  • Ageze, M. B., Y. Hu, and H. Wu. 2017b. Wind turbine aeroelastic modeling:Basics and cutting edge trends. International Journal of Aerospace Engineering 2017:1–15. doi:10.1155/2017/5263897.
  • Ahmed, M. F., and A. F. A. Gawad. 2016. “Utilization of wind energy in green buildings,” In 12th International Conference of Fluid Dynamics, Le Méridien Pyramids Hotel pp. 19–20. Cairo, Egypt.
  • Almohammadi, K., D. Ingham, L. Ma, and M. Pourkashan. 2013. Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine. Energy 58:483–93. doi:10.1016/j.energy.2013.06.012.
  • Almohammadi, K., D. Ingham, L. Ma, and M. Pourkashanian. 2015. Modeling dynamic stall of a straight blade vertical axis wind turbine. Journal of Fluids and Structures 57:144–58. doi:10.1016/j.jfluidstructs.2015.06.003.
  • Arab, A., M. Javadi, M. Anbarsooz, and M. Moghiman. 2017. A numerical study on the aerodynamic performance and the self-starting characteristics of a Darrieus wind turbine considering its moment of inertia. Renewable Energy 107:298–311. doi:10.1016/j.renene.2017.02.013.
  • Ashby, M. F. 2008. The CES EduPack database of natural and man-made materials. In Granta Material Inspiration, 1st ed., Bioengineering. UK: Cambridge University and Granta Design. https://www.grantadesign.com/download/pdf/biomaterials.pdf
  • Ayati, A. A., K. Steiros, M. A. Miller, S. Duvvuri, and M. Hultmark. 2019. A double-multiple streamtube model for vertical axis wind turbines of arbitrary rotor loading. Wind Energy Science 4 (4):653–62. doi:10.5194/wes-4-653-2019.
  • Balduzzi, F., J. Drofelnik, A. Bianchini, G. Ferrara, L. Ferrari, and M. S. Campobasso. 2017. Darrieus wind turbine blade unsteady aerodynamics: A three-dimensional Navier-Stokes CFD assessment. Energy 128:550–63. doi:10.1016/j.energy.2017.04.017.
  • Batista, N., R. Melício, V. M. Mendes, J. Figueiredo, and A. Reis. 2013. Darrieus wind turbine performance prediction: Computational modeling,” In Technological Innovation for the Internet of Things. DoCEIS 2013. IFIP Advances in Information and Communication Technology, vol. 394, pp. 382–391. Berlin Heidelberg: Springer Berlin Heidelberg.
  • Bazilevs, Y., A. Korobenko, X. Deng, and J. Yan. 2015. Novel structural modeling and mesh moving techniques for advanced fluid–structure interaction simulation of wind turbines. International Journal for Numerical Methods in Engineering 102 (3–4):766–83. doi:10.1002/nme.4738.
  • Bazilevs, Y., A. Korobenko, X. Deng, J. Yan, M. Kinzel, and J. Dabiri. 2014. Fluid–structure interaction modeling of vertical-axis wind turbines. Journal of Applied Mechanics 81 (8). doi:10.1115/1.4027466.
  • Bazilevs, Y., M. C. Hsu, J. Kiendl, R. Wüchner, and K. U. Bletzinger. 2011. 3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades. International Journal for Numerical Methods in Fluids 65 (1‐3):236–53. doi:10.1002/fld.2454.
  • Beardmore, P., and C. Johnson. 1986. The potential for composites in structural automotive applications. Composites Science and Technology 26 (4):251–81. doi:10.1016/0266-3538(86)90002-3.
  • Bedon, G., M. R. Castelli, and E. Benini. 2013. Optimization of a Darrieus vertical-axis wind turbine using blade element–momentum theory and evolutionary algorithm. Renewable Energy 59:184–92. doi:10.1016/j.renene.2013.03.023.
  • Beri, H., and Y. Yao. 2011. Double multiple streamtube model and numerical analysis of vertical axis wind turbine. Energy and Power Engineering 3 (3):262. doi:10.4236/epe.2011.33033.
  • Bhutta, M. M. A., N. Hayat, A. U. Farooq, Z. Ali, S. R. Jamil, and Z. Hussain. 2012. Vertical axis wind turbine–A review of various configurations and design techniques. Renewable and Sustainable Energy Reviews 16 (4):1926–39. doi:10.1016/j.rser.2011.12.004.
  • Bhuvaneswari, C., and R. Rajeswari. 2013. Study analysis of hybrid power plant (wind-solar)-vertical axis wind turbine-giromill darrieus type with evacuated tube collectors. International Journal of Emerging Trends in Electrical and Electronics1 (1):80–83.
  • Bhuyan, S., and A. Biswas. 2014. Investigations on self-starting and performance characteristics of simple H and hybrid H-Savonius vertical axis wind rotors. Energy Conversion and Management 87:859–67. doi:10.1016/j.enconman.2014.07.056.
  • Bianchini, A., F. Balduzzi, G. Ferrara, and L. Ferrari. 2016. Virtual incidence effect on rotating airfoils in Darrieus wind turbines. Energy Conversion and Management 111:329–38. doi:10.1016/j.enconman.2015.12.056.
  • Binici, H., O. Aksogan, and C. Demirhan. 2016. Mechanical, thermal and acoustical characterizations of an insulation composite made of bio-based materials. Sustainable Cities and Society 20:17–26. doi:10.1016/j.scs.2015.09.004.
  • Biswas, A., and R. Gupta. 2014. Unsteady aerodynamics of a twist bladed H-Darrieus rotor in low Reynolds number flow. Journal of Renewable and Sustainable Energy 6 (3):033108. doi:10.1063/1.4878995.
  • Blanchard, J. M. F. A., and A. J. Sobey. 2019. Comparative design of E-glass and flax structures based on reliability.Composite Structures 225 , 111037. https://doi.org/10.1016/j.compstruct.2019.111037
  • Boria, S., C. Santulli, E. Raponi, F. Sarasini, and J. Tirillò. 2019. Evaluation of a new green composite solution for wind turbine blades. Multiscale and Multidisciplinary Modeling, Experiments and Design 2 (2):141–50. doi:10.1007/s41939-019-00043-4.
  • Bose, B. K. 2017. Artificial intelligence techniques in smart grid and renewable energy systems—Some example applications. Proceedings of the IEEE 105 (11):2262–73. doi:10.1109/JPROC.2017.2756596.
  • Boumhaout, M., L. Boukhattem, H. Hamdi, B. Benhamou, and F. A. Nouh. 2017. Thermomechanical characterization of a bio-composite building material: Mortar reinforced with date palm fibers mesh. Construction and Building Materials 135:241–50. doi:10.1016/j.conbuildmat.2016.12.217.
  • Brahimi, T. 2019. Using artificial intelligence to predict wind speed for energy application in Saudi Arabia. Energies 12 (24):4669. doi:10.3390/en12244669.
  • Bravo, A., L. Toubal, D. Koffi, and F. Erchiqui. 2018. Gear fatigue life and thermomechanical behavior of novel green and bio-composite materials VS high-performance thermoplastics. Polymer Testing 66:403–14. doi:10.1016/j.polymertesting.2016.12.031.
  • Brochier, G., P. Fraunie, C. Beguier, and I. Paraschivoiu. 1986. Water channel experiments of dynamic stall on Darrieus wind turbine blades. Journal of Propulsion and Power 2 (5):445–49. doi:10.2514/3.22927.
  • Brown, K., and R. Brooks. 2010. Design and analysis of vertical axis thermoplastic composite wind turbine blade. Plastics, Rubber and Composites 39 (3–5):111–21. doi:10.1179/174328910X12647080902655.
  • Buchner, A.-J., J. Soria, D. Honnery, and A. J. Smits. 2018. Dynamic stall in vertical axis wind turbines: Scaling and topological considerations. Journal of Fluid Mechanics 841:746–66. doi:10.1017/jfm.2018.112.
  • Buturache, A.-N., and S. Stancu. 2021. Wind energy prediction using machine learning. Low Carbon Economy 12 (1):1. doi:10.4236/lce.2021.121001.
  • Cadu, T., M. Berges, O. Sicot, V. Person, B. Piezel, L. Van Schoors, V. Placet, S. Corn, R. Léger, L Divet, et al. 2018. What are the key parameters to produce a high-grade bio-based composite? Application to flax/epoxy UD laminates produced by thermocompression. Composites Part B: Engineering 150:36–46. doi:10.1016/j.compositesb.2018.04.059.
  • Camporeale, S. M., and V. Magi. 2000. Streamtube model for analysis of vertical axis variable pitch turbine for marine currents energy conversion. Energy Conversion and Management 41 (16):1811–27. doi:10.1016/S0196-8904(99)00183-1.
  • Cao, H., X. Wu, H. Ye, S. Hu, L. Lu, and J. Peng. 2018. “Optimization research on lift-type vertical axis wind turbine airfoil by CFD,” In Journal of Physics: Conference Series, 2018. 1064, vol. 1, p. 012072: IOP Publishing. https://iopscience.iop.org/article/10.1088/1742-6596/1064/1/012072
  • Carr, L. W. 1988. Progress in analysis and prediction of dynamic stall. Journal of Aircraft 25 (1):6–17. doi:10.2514/3.45534.
  • Casás, V. D., F. L. Pena, R. J. Duro, and A. Lamas, “Automatic aerodynamic design of a wind turbine through evolutionary techniques,” in 2005 IEEE Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, 2005, pp. 454–59IEEE.https://ieeexplore.ieee.org/document/4062174
  • Castelli, M. R., A. Dal Monte, M. Quaresimin, and E. Benini. 2013. Numerical evaluation of aerodynamic and inertial contributions to Darrieus wind turbine blade deformation. Renewable Energy 51:101–12. doi:10.1016/j.renene.2012.07.025.
  • Castelli, M. R., A. Englaro, and E. Benini. 2011. The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD. Energy 36 (8):4919–34. doi:10.1016/j.energy.2011.05.036.
  • Castelli, M. R., S. De Betta, and E. Benini. 2012. Effect of blade number on a straight-bladed vertical-axis Darrieus wind turbine. World Academy of Science, Engineering and Technology 61:305–11.
  • Chandrasekhar, K., N. Stevanovic, E. J. Cross, N. Dervilis, and K. Worden. 2021. Damage detection in operational wind turbine blades using a new approach based on machine learning. Renewable Energy 168:1249–64. doi:10.1016/j.renene.2020.12.119.
  • Chatterjee, R., “Fundamental concepts of artificial intelligence and its applications,” 2020.
  • Chegdani, F., M. El Mansori, S. Mezghani, and A. Montagne. 2017. Scale effect on tribo-mechanical behavior of vegetal fibers in reinforced bio-composite materials. Composites Science and Technology 150:87–94. doi:10.1016/j.compscitech.2017.07.012.
  • Chehouri, A., R. Younes, A. Ilinca, and J. Perron. 2016. Wind turbine design: Multi‐objective optimization. In Wind turbines. design, control and applications, ed. A. G. Aissaoui, and A. Tahour, IntechOpen . 121–48. https://www.intechopen.com/chapters/50998
  • Chen, J., L. Chen, H. Xu, H. Yang, C. Ye, and D. Liu. 2016. Performance improvement of a vertical axis wind turbine by comprehensive assessment of an airfoil family. Energy 114:318–31. doi:10.1016/j.energy.2016.08.005.
  • Chen, X., M. A. Eder, A. Shihavuddin, and D. Zheng. 2021. A human-cyber-physical system toward intelligent wind turbine operation and maintenance. Sustainability 13 (2):561. doi:10.3390/su13020561.
  • Chen, Y., and Y. Lian. 2015. Numerical investigation of vortex dynamics in an H-rotor vertical axis wind turbine. Engineering Applications of Computational Fluid Mechanics 9 (1):21–32. doi:10.1080/19942060.2015.1004790.
  • Chougule, P., and S. Nielsen, “Overview and design of self-acting pitch control mechanism for vertical axis wind turbine using multi body simulation approach,” In Journal of Physics: Conference Series, 2014, Copenhagen, Denmark, 2014, vol. 524, no. 1, p. 012055. IOP Publishing. https://iopscience.iop.org/article/10.1088/1742-6596/524/1/012055
  • Clifton, A., L. Kilcher, J. Lundquist, and P. Fleming. 2013. Using machine learning to predict wind turbine power output. Environmental Research Letters 8 (2):024009. doi:10.1088/1748-9326/8/2/024009.
  • Dabachi, M. A., A. Rahmouni, and O. Bouksour. 2020. Design and aerodynamic performance of new floating H-darrieus vertical Axis wind turbines. Materials Today: Proceedings 30:899–904.
  • Danao, L. A., N. Qin, and R. Howell. 2012. A numerical study of blade thickness and camber effects on vertical axis wind turbines,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy , vol. 226, no. 7, pp. 867–81. doi:10.1177/0957650912454403.
  • Davies, P., and P. Chauchot. 1999. Composites for marine applications. In Mechanics of composite materials and structures, 249–60. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4489-6_12
  • Davoodi, M., S. Sapuan, D. Ahmad, A. Aidy, A. Khalina, and M. Jonoobi. 2011. Concept selection of car bumper beam with developed hybrid bio-composite material. Materials & Design 32 (10):4857–65. doi:10.1016/j.matdes.2011.06.011.
  • de Santoli, L., A. Albo, D. A. Garcia, D. Bruschi, and F. Cumo. 2014. A preliminary energy and environmental assessment of a micro wind turbine prototype in natural protected areas. Sustainable Energy Technologies and Assessments 8:42–56. doi:10.1016/j.seta.2014.07.002.
  • Delafin, P.-L., T. Nishino, A. Kolios, and L. Wang. 2017. Comparison of low-order aerodynamic models and RANS CFD for full scale 3D vertical axis wind turbines. Renewable Energy 109:564–75. doi:10.1016/j.renene.2017.03.065.
  • Deng, W., Y. Yu, L. Liu, Y. Guo, and H. Zhao. 2020. Research on the dynamical responses of H-type floating VAWT considering the rigid-flexible coupling effect. Journal of Sound and Vibration 469:115162. doi:10.1016/j.jsv.2019.115162.
  • Douak, M., Z. Aouachria, R. Rabehi, and N. Allam. 2018. Wind energy systems: Analysis of the self-starting physics of vertical axis wind turbine. Renewable and Sustainable Energy Reviews 81:1602–10. doi:10.1016/j.rser.2017.05.238.
  • Duflou, J. R., Y. Deng, K. Van Acker, and W. Dewulf. 2012. Do fiber-reinforced polymer composites provide environmentally benign alternatives? A life-cycle-assessment-based study. Mrs Bulletin 37 (4):374–82. doi:10.1557/mrs.2012.33.
  • Dwiyantoro, B. A., and V. Suphandani. 2017. The system design and performance test of hybrid vertical axis wind turbine. In AIP Conference Proceedings. American Institute of Physics . doi:10.1063/1.4981171.
  • Dyachuk, E., and A. Goude. 2015. Numerical validation of a vortex model against experimental data on a straight-bladed vertical axis wind turbine. Energies 8 (10):11800–20. doi:10.3390/en81011800.
  • Eker, B., A. Akdogan, and A. Vardar. 2006. Using of composite material in wind turbine blades. Journal of Applied Sciences 6 (14):2917–21. doi:10.3923/jas.2006.2917.2921.
  • El Baz, A., A. Rafaey, M. Y. Mohammed, and W. Youssef. 2013. “Computational modelling of H-type Darrieus vertical axis wind turbine with multi element airfoil blades,” In Proceedings of ICFD11, Eleventh International Conference of Fluid Dynamics. Alexandria, Egypt.
  • Elalaoui, R. 2019. Investigation and analysis of static and dynamic behaviour of a new natural composite material of a wind turbine blade using the finite element method. International Journal of Renewable Energy Research (IJRER) 9 (1):363–73.
  • Elkhoury, M., T. Kiwata, and E. Aoun. 2015. Experimental and numerical investigation of a three-dimensional vertical-axis wind turbine with variable-pitch. Journal of Wind Engineering and Industrial Aerodynamics 139:111–23. doi:10.1016/j.jweia.2015.01.004.
  • Elsakka, M. M., D. B. Ingham, L. Ma, and M. Pourkashanian. 2019. CFD analysis of the angle of attack for a vertical axis wind turbine blade. Energy Conversion and Management 182:154–65. doi:10.1016/j.enconman.2018.12.054.
  • Eriksson, J. 2020. Machine Learning for Predictive Maintenance on Wind Turbines : Using SCADA Data and the Apache Hadoop Ecosystem. Linköping University. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-164892
  • Feng, F., C. Qu, S. Zhao, Y. Bai, W. Guo, and Y. Li. 2018. Static mechanical properties and modal analysis of a kind of lift-drag combined-type vertical axis wind turbine. International Journal of Rotating Machinery 2018:1–13. doi:10.1155/2018/1840914.
  • Fereidooni, A., F. Nitzsche, and E. Matida . 2014. Aeroelastic study of a vertical axis wind turbine with troposkien shape,” in 32nd ASME Wind Energy Symposium 2014. National Harbor, Maryland, 2014. https://doi.org/10.2514/6.2014-0716
  • Ferrari, G. M. 2012. Development of an Aeroelastic Simulation for the Analysis of Vertical-Axis Wind Turbines. University of Auckland.
  • Ferreira, C. S., H. A. Madsen, M. Barone, B. Roscher, P. Deglaire, and I. Arduin. 2014. Comparison of aerodynamic models for vertical axis wind turbines. In Journal of Physics: Conference Series, vol. 524, 012125, Copenhagen, Denmark: 1IOP Publishing. doi:10.1088/1742-6596/524/1/012125.
  • Ferreira, C. S., H. Bijl, G. Van Bussel, and G Van Kuik. 2007. Simulating dynamic stall in a 2D VAWT: Modeling strategy, verification and validation with particle image velocimetry data. Journal of Physics: Conference Series 751,012023 IOP Publishing
  • Fleming, P., and S. Probert. 1984. The evolution of wind-turbines: An historical review. Applied Energy 18 (3):163–77. doi:10.1016/0306-2619(84)90007-2.
  • Florentin, Y., D. Pearlmutter, B. Givoni, and E. Gal. 2017. A life-cycle energy and carbon analysis of hemp-lime bio-composite building materials. Energy and Buildings 156:293–305. doi:10.1016/j.enbuild.2017.09.097.
  • Friedmann, P. P. 1976. Aeroelastic modeling of large wind turbines. Journal of the American Helicopter Society 21 (4):17–27. doi:10.4050/JAHS.21.17.
  • G. H., Airplane propellers. 1963. Durand WF Ed. Aerodynamic theory. New YorK: Dover Publications;.
  • Gao, L., H. Zhang, Y. Liu, and S. Han. 2015. Effects of vortex generators on a blunt trailing-edge airfoil for wind turbines. Renewable Energy 76:303–11. doi:10.1016/j.renene.2014.11.043.
  • Ghasemian, M., Z. N. Ashrafi, and A. Sedaghat. 2017. A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines. Energy Conversion and Management 149:87–100. doi:10.1016/j.enconman.2017.07.016.
  • Griffith, D. T. 2018. Design studies for deep-water floating offshore vertical axis wind turbines . Albuquerque, NM (United States): Sandia National Lab.(SNL-NM). https://doi.org/10.2172/1459118
  • Guo, J., P. Zeng, and L. Lei. 2019. Performance of a straight-bladed vertical axis wind turbine with inclined pitch axes by wind tunnel experiments. Energy 174:553–61. doi:10.1016/j.energy.2019.02.177.
  • Gupta, R., and A. Biswas. 2010. Computational fluid dynamics analysis of a twisted three-bladed H-Darrieus rotor. Journal of Renewable and Sustainable Energy 2 (4):043111. doi:10.1063/1.3483487.
  • Haggui, M., A. El Mahi, Z. Jendli, A. Akrout, and M. Haddar. 2019. Static and fatigue characterization of flax fiber reinforced thermoplastic composites by acoustic emission. Applied Acoustics 147:100–10. doi:10.1016/j.apacoust.2018.03.011.
  • Hakeem Saleh, A. F. A. 2017. Modal analysis of vertical-axis darrieus wind turbine blade with a troposkein shape. Michigan State University. h ttps://d oi.o rg/1 0.25335/M5C00G
  • Hallonet, A., E. Ferrier, L. Michel, and B. Benmokrane. 2019. Durability and tensile characterization of wet lay-up flax/epoxy composites used for external strengthening of RC structures. Construction and Building Materials 205:679–98. doi:10.1016/j.conbuildmat.2019.02.040.
  • Hamdan, A., and F. Mustapha. 2017. The macro fiber composite (MFC) bonded effect analysis on the micro energy harvester performance and structural health monitoring system of woven kenaf turbine blade for vertical axis wind turbine application. Innovation in Smart Materials and Structural Health Monitoring for Composite Applications 13:141.
  • Hamdan, A., F. Mustapha, K. Ahmad, and A. M. Rafie. 2014. A review on the micro energy harvester in Structural Health Monitoring (SHM) of biocomposite material for Vertical Axis Wind Turbine (VAWT) system: A Malaysia perspective. Renewable and Sustainable Energy Reviews 35:23–30. doi:10.1016/j.rser.2014.03.050.
  • Hameed, M. S., S. K. Afaq, and F. Shahid. 2015. Finite element analysis of a composite VAWT blade. Ocean Engineering 109:669–76. doi:10.1016/j.oceaneng.2015.09.032.
  • Hand, B., G. Kelly, and A. Cashman. 2021. Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review. Renewable and Sustainable Energy Reviews 139:110699. doi:10.1016/j.rser.2020.110699.
  • Hansen, M. O. L., J. N. Sørensen, S. Voutsinas, N. Sørensen, and H. A. Madsen. June 2006. State of the art in wind turbine aerodynamics and aeroelasticitys. Progress in Aerospace Science 42(4):285–330. doi:10.1016/j.paerosci.2006.10.002.
  • Hara, Y., K. Hara, and T. Hayashi. 2012. Moment of inertia dependence of vertical axis wind turbines in pulsating winds. International Journal of Rotating Machinery 2012:1–12. doi:10.1155/2012/910940.
  • Hashem, I., and M. Mohamed. 2018. Aerodynamic performance enhancements of H-rotor Darrieus wind turbine. Energy 142:531–45. doi:10.1016/j.energy.2017.10.036.
  • Hilewit, D., E. Matida, A. Fereidooni, H. Abo El Ella, and F. Nitzsche. 2019. Numerical investigations of a novel vertical axis wind turbine using Blade Element Theory‐Vortex Filament Method (BET‐VFM). Energy science & engineering. Vol. 76,2498–2509
  • Hirsch, I. H., and A. Mandal. 1987. A Cascade Theory for the Aerodynamic Performance of Darrieus Wind Turbines. Wind Engineering 11 (3): 164–175. http://www.jstor.org/stable/43749306
  • Howard, B. 2017. Iran’s centuries-old windmills may soon stop turning. National Geographic .
  • Howell, R., N. Qin, J. Edwards, and N. Durrani. 2010. Wind tunnel and numerical study of a small vertical axis wind turbine. Renewable Energy 35 (2):412–22. doi:10.1016/j.renene.2009.07.025.
  • Hwang, I. S., S. Y. Min, I. O. Jeong, Y. H. Lee, and S. J. Kim. 2006. Efficiency improvement of a new vertical axis wind turbine by individual active control of blade motion. In Smart structures and materials 2006: Smart structures and integrated systems, Vol. 6173, San Diego, California, United States: International Society for Optics and Photonics.https://doi.org/10.1117/12.658935
  • Immarigeon, J., R. Holt, A. Koul, L. Zhao, W. Wallace, and J. Beddoes. 1995. Lightweight materials for aircraft applications. Materials Characterization 35 (1):41–67. doi:10.1016/1044-5803(95)00066-6.
  • IRENA. 2019. Future of wind: Deployment, investment, technology, grid integration and socio-economic aspects(A global energy transformation paper). Abu Dhabi: International Renewable Energy Agency.
  • Islam, M., D. S.-K. Ting, and A. Fartaj. 2008. Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines. Renewable and Sustainable Energy Reviews 12 (4):1087–109. doi:10.1016/j.rser.2006.10.023.
  • Jahanmiri, M., A. Shooshtaryrezvany, and M. Nirooei. 2016. A computational study of the effect of blade thickness on performance of vertical axis wind turbine. IOSR Journal of Mechanical and Civil Engineering 13 (5):57–65. doi:10.9790/1684-1305025765.
  • Jayabalan, J., D. Yildirim, D. Kim, and P. Samui. 2017. Design optimization of a wind turbine using artificial intelligence. In Mathematical concepts and applications in mechanical engineering and mechatronics, 38–66. IGI Global.
  • Jeannin, Thomas., Berges, Michaël., Gabrion, Xavier., Léger, Romain., Person, Véronique., Corn, Stéphane., Piezel, Benoit., Ienny, Patrick., Fontaine, Stéphane., Placet, Vincent.2019. Influence of hydrothermal ageing on the fatigue behaviour of a unidirectional flax-epoxy laminate. In Composites Part B: Engineering 174. d oi.o rg/1 0.1016/j.c ompositesb.2019.107056
  • Jiang, Y., C. He, P. Zhao, and T. Sun. 2020. Investigation of blade tip shape for improving VAWT performance. Journal of Marine Science and Engineering 8 (3):225. doi:10.3390/jmse8030225.
  • Kalagi, G. R., R. Patil, and N. Nayak. 2018. Experimental study on mechanical properties of natural fiber reinforced polymer composite materials for wind turbine blades. Materials Today: Proceedings 5 (1):2588–96.
  • Kalkanis, K., C. Psomopoulos, S. Kaminaris, G. Ioannidis, and P. Pachos. 2019. Wind turbine blade composite materials-End of life treatment methods. Energy Procedia 157:1136–43. doi:10.1016/j.egypro.2018.11.281.
  • Khodadadi, Amin, Gholamhossein Liaghat, Ahmad Reza Bahramian, Hamed Ahmadi, Yavar Anani, Samaneh Asemani, Omid Razmkhah, . 2019. High velocity impact behavior of Kevlar/rubber and Kevlar/epoxy composites: A comparative study. Composite Structures 216:159–167. doi:10.1016/j.compstruct.2019.02.080.
  • Kim, D., and M. Gharib. 2013. Efficiency improvement of straight-bladed vertical-axis wind turbines with an upstream deflector. Journal of Wind Engineering and Industrial Aerodynamics 115:48–52. doi:10.1016/j.jweia.2013.01.009.
  • Kim, D., and M. Gharib. 2014. Unsteady loading of a vertical-axis turbine in the interaction with an upstream deflector. Experiments in Fluids 55 (1):1658. doi:10.1007/s00348-013-1658-4.
  • Kirke, B., and L. Lazauskas. 2011. Limitations of fixed pitch Darrieus hydrokinetic turbines and the challenge of variable pitch. Renewable Energy 36 (3):893–97. doi:10.1016/j.renene.2010.08.027.
  • Kiwata, T., T. Yamada, T. Kita, S. Takata, N. Komatsu, and S. Kimura. 2010. Performance of a vertical axis wind turbine with variable-pitch straight blades utilizing a linkage mechanism. Journal of Environment and Engineering 5 (1):213–25. doi:10.1299/jee.5.213.
  • Kong, C., J. Bang, and Y. Sugiyama. 2005. Structural investigation of composite wind turbine blade considering various load cases and fatigue life. Energy 30 (11–12):2101–14. doi:10.1016/j.energy.2004.08.016.
  • Kumar, P. M., S. R. Rashmitha, N. Srikanth, and T.-C. Lim. 2017a. Wind tunnel validation of double multiple streamtube model for vertical axis wind turbine. Smart Grid and Renewable Energy 8 (12):412–24.
  • Kumar, P. M., S. R. Rashmitha, N. Srikanth, and T.-C. Lim. 2017b. Wind tunnel validation of double multiple streamtube model for vertical axis wind turbine. Smart Grid and Renewable Energy 8 (12):412. doi:10.4236/sgre.2017.812027.
  • Kusnick, J., and D. Adams. 2012. Vertical axis wind turbine operational modal analysis in sheared wind flow. In Topics in experimental dynamics substructuring and wind turbine dynamics, Vol. 2, 333–344. Springer New York. doi:10.1007/978-1-4614-2422-2_29.
  • Lanting, Z. 2012. Research on structural lay-up optimum design of composite wind turbine blade. Energy Procedia 14:637–42. doi:10.1016/j.egypro.2011.12.988.
  • Lanzafame, R., S. Mauro, and M. Messina. 2014. 2D CFD modeling of H-Darrieus wind turbines using a transition turbulence model. Energy Procedia 45:131–40. doi:10.1016/j.egypro.2014.01.015.
  • Latoufis, K., V. Riziotis, S. Voutsinas, and N. Hatziargyriou, “Effects of leading edge erosion on the power performance and acoustic noise emissions of locally manufactured small wind turbine blades,” in Journal of Physics: Conference Series, 2019, vol. 1222, no. 1. IOP Publishing. doi:10.1088/1742-6596/1222/1/012010.
  • Lau, K.-T., P.-Y. Hung, M.-H. Zhu, and D. Hui. 2018. Properties of natural fibre composites for structural engineering applications. Composites Part B: Engineering 136:222–33. doi:10.1016/j.compositesb.2017.10.038.
  • Lee, Y.-J., Y.-T. Jhan, and C.-H. Chung. 2012. Fluid–structure interaction of FRP wind turbine blades under aerodynamic effect. Composites Part B: Engineering 43 (5):2180–91. doi:10.1016/j.compositesb.2012.02.026.
  • Li, C., Y. Xiao, Y.-L. Xu, Y.-X. Peng, G. Hu, and S. Zhu. 2018. Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations. Applied Energy 212:1107–25. doi:10.1016/j.apenergy.2017.12.035.
  • Li, Q. A., T. Maeda, Y. Kamada, Y. Hiromori, A. Nakai, and T. Kasuya. 2017. Study on stall behavior of a straight-bladed vertical axis wind turbine with numerical and experimental investigations. Journal of Wind Engineering and Industrial Aerodynamics 164:1–12. doi:10.1016/j.jweia.2017.02.005.
  • Li, Q. A, Maeda, Takao, Kamada, Yasunari, Shimizu, Kento, Ogasawara, Tatsuhiko, Nakai, Alisa, Kasuya, Takuji. 2017. Effect of rotor aspect ratio and solidity on a straight-bladed vertical axis wind turbine in three-dimensional analysis by the panel method. Energy 121:1–9. doi:10.1016/j.energy.2016.12.112.
  • Li, Qing'an, Maeda, Takao, Kamada, Yasunari, Shimizu, Kento, Ogasawara, Tatsuhiko, Nakai, Alisa, Kasuya, Takuji. 2014. Aerodynamic models and wind tunnel for straight-bladed vertical axis wind turbines. J. Eng 4 (6):35–44.
  • Li, Qing'an, Takao Maeda, Yasunari Kamada, Junsuke Murata, Toshiaki Kawabata, Kento Shimizu, Tatsuhiko Ogasawara, Alisa Nakai, Takuji Kasuya. 2016. Wind tunnel and numerical study of a straight-bladed vertical axis wind turbine in three-dimensional analysis (Part II: For predicting flow field and performance). Energy 104:295–307. doi:10.1016/j.energy.2016.03.129.
  • Li, Qing'an, Takao, Maeda, Yasunari, Kamada, Yasunari, Kamada, Junsuke, Murata, Toshiaki, Kawabata, Kento, Shimizu, Tatsuhiko, Ogasawara, Alisa, Nakai, Takuji, Kasuya. 2016. Wind tunnel and numerical study of a straight-bladed vertical axis wind turbine in three-dimensional analysis (Part I: For predicting aerodynamic loads and performance). In Energy, Vol. 106 (Elsevier). 443–452 . doi:10.1016/j.energy.2016.03.089.
  • Li, Y., and S. M. Calisal. 2010. Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine. Renewable Energy 35 (10):2325–34. doi:10.1016/j.renene.2010.03.002.
  • Li, Yan. 2019. Straight-bladed vertical axis wind turbines: History, performance, and applications, In Rotating machinery. Getu, Hailu: IntechOpen. doi:10.5772/intechopen.84761.
  • Lin, J., Y.-L. Xu, and Y. Xia. 2019. Structural Analysis of Large-Scale Vertical Axis Wind Turbines Part II: Fatigue and Ultimate Strength Analyses. Energies 12 (13):2584. doi:10.3390/en12132584.
  • Liu, K., M. Yu, and W. Zhu. 2019. Enhancing wind energy harvesting performance of vertical axis wind turbines with a new hybrid design: A fluid-structure interaction study. Renewable Energy 140:912–27. doi:10.1016/j.renene.2019.03.120.
  • Liu, Y., H. Cheng, X. Kong, Q. Wang, and H. Cui. 2019. Intelligent wind turbine blade icing detection using supervisory control and data acquisition data and ensemble deep learning. Energy Science & Engineering 7 (6):2633–45. doi:10.1002/ese3.449.
  • Lositaño, I. C. M., and L. A. M. Danao. 2018a. Modelling the Performance of a Vertical Axis Wind Turbine with Cambered Tubercle Leading Edge Blades. In The World Congress on Engineering, 73–86. Springer, Singapore. https://doi.org/10.1007/978-981-32-9531-5_6
  • Lositaño, I. C. M., and L. A. M. Danao 2018 , “The performance of a vertical axis wind turbine with camber and tubercle leading edge as blade passive motion controls,” in Proceedings of the World Congress on Engineering July 4–6, 2018 London, U.K, 2018b, vol. II.
  • Lositaño, I. C. M., and L. A. M. Danao. 2019. Steady wind performance of a 5 kW three-bladed H-rotor Darrieus Vertical Axis Wind Turbine (VAWT) with cambered tubercle leading edge (TLE) blades. Energy 175:278–91. doi:10.1016/j.energy.2019.03.033.
  • Lotfi, A., H. Li, D. V. Dao, and G. Prusty. 2019. Natural fiber–reinforced composites: A review on material, manufacturing, and machinability. Journal of Thermoplastic Composite Materials. 0892705719844546. https://doi.org/10.1177/0892705719844546
  • Ma, L., X. Wang, J. Zhu, and S. Kang. 2019. Dynamic stall of a vertical-axis wind turbine and its control using plasma actuation. Energies 12 (19):3738. doi:10.3390/en12193738.
  • Ma, N., H. Lei, Z. Han, D. Zhou, Y. Bao, K. Zhang, L. Zhou, C Chen. 2018. Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio. Energy 150:236–52. doi:10.1016/j.energy.2018.02.115.
  • MacPhee, D. W., and A. Beyene. 2016. Fluid–structure interaction analysis of a morphing vertical axis wind turbine. Journal of Fluids and Structures 60:143–59. doi:10.1016/j.jfluidstructs.2015.10.010.
  • MacPhee, D., and A. Beyene. 2013. Fluid‐structure interaction of a morphing symmetrical wind turbine blade subjected to variable load. International Journal of Energy Research 37 (1):69–79. doi:10.1002/er.1925.
  • Mahesh, V., S. Joladarashi, and S. M. Kulkarni. 2019. An experimental investigation on low-velocity impact response of novel jute/rubber flexible bio-composite. Composite Structures 225:111190. doi:10.1016/j.compstruct.2019.111190.
  • Manwell, J. F., J. G. McGowan, and A. L. Rogers. 2010. Wind energy explained: Theory, design and application, 2nd. John Wiley & Sons. 978-0-470-01500-1.
  • Marshall, J. G., and M. Imregun. 1996. A review of aeroelasticity methods with emphasis on turbomachinery applications. Journal of Fluids and Structures 10 (3):237–67. doi:10.1006/jfls.1996.0015.
  • Martinez, C., F. Asare Yeboah, S. Herford, M. Brzezinski, and V. Puttagunta. 2019. Predicting wind turbine blade erosion using machine learning. SMU Data Science Review 2 (2):17.
  • Mat Daud, S. Z., F. Mustapha, and Z. Adzis. 2018. Lightning strike evaluation on composite and biocomposite vertical-axis wind turbine blade using structural health monitoring approach. Journal of Intelligent Material Systems and Structures 29 (17):3444–55. doi:10.1177/1045389X17754259.
  • Mazarbhuiya, H. M. S. M., A. Biswas, and K. K. Sharma. 2020a. Low wind speed aerodynamics of asymmetric blade H-Darrieus wind turbine-its desired blade pitch for performance improvement in the built environment. Journal of the Brazilian Society of Mechanical Sciences and Engineering 42:1–16. doi:10.1007/s40430-020-02408-0.
  • Mazarbhuiya, H. M. S. M., A. Biswas, and K. K. Sharma. 2020b. Blade thickness effect on the aerodynamic performance of an asymmetric NACA six series blade vertical axis wind turbine in low wind speed. International Journal of Green Energy 17 (2):171–79. doi:10.1080/15435075.2020.1712214.
  • Mazarbhuiya, H. M. S. M., A. Biswas, and K. K. Sharma. 2020c. A 2D numerical simulation of blade twist effect on the aerodynamic performance of an asymmetric blade vertical axis wind turbine in low wind speed. EAI Endorsed Transactions on Energy Web 7 (28). doi:10.4108/eai.13-7-2018.162828.
  • McGregor, O., M. Duhovic, A. Somashekar, and D. Bhattacharyya. 2017. Pre-impregnated natural fibre-thermoplastic composite tape manufacture using a novel process. Composites Part A: Applied Science and Manufacturing 101:59–71. doi:10.1016/j.compositesa.2017.05.025.
  • Meana-Fernández, A., I. Solís-Gallego, J. M. F. Oro, K. M. A. Díaz, and S. Velarde-Suárez. 2018. Parametrical evaluation of the aerodynamic performance of vertical axis wind turbines for the proposal of optimized designs. Energy 147:504–17. doi:10.1016/j.energy.2018.01.062.
  • Meng, J., and D. Sun. 2017. Research on vibration suppression of wind turbine blade based on bamboo wall three-layer damping structure. Journal of Vibroengineering 19 (1):87–99. doi:10.21595/jve.2016.17378.
  • Mishnaevsky, L., K. Branner, H. N. Petersen, J. Beauson, M. McGugan, and B. F. Sørensen. 2017. Materials for wind turbine blades: An overview. Materials 10 (11):1285. doi:10.3390/ma10111285.
  • Mohamed, M., A. Ali, and A. Hafiz. 2015. CFD analysis for H-rotor Darrieus turbine as a low speed wind energy converter. Engineering Science and Technology, an International Journal 18 (1):1–13. doi:10.1016/j.jestch.2014.08.002.
  • Mohamed, M., A. Dessoky, and F. Alqurashi. 2019. Blade shape effect on the behavior of the H-rotor Darrieus wind turbine: Performance investigation and force analysis. Energy 179:1217–34. doi:10.1016/j.energy.2019.05.069.
  • Mohamed, M. 2012. Performance investigation of H-rotor Darrieus turbine with new airfoil shapes. Energy 47 (1):522–30. doi:10.1016/j.energy.2012.08.044.
  • Mohamed, M. 2013. Impacts of solidity and hybrid system in small wind turbines performance. Energy 57:495–504. doi:10.1016/j.energy.2013.06.004.
  • Mohamed, O. S., A. A. Ibrahim, A. K. Etman, A. A. Abdelfatah, and A. M. Elbaz. 2020. Numerical investigation of Darrieus wind turbine with slotted airfoil blades. Energy Conversion and Management: X 5:100026. doi:10.1016/j.ecmx.2019.100026.
  • Mohammed, A. A., H. M. Ouakad, A. Z. Sahin, and H. Bahaidarah. 2019. Vertical axis wind turbine aerodynamics: Summary and review of momentum models. Journal of Energy Resources Technology 141 (5). doi:10.1115/1.4042643.
  • Möllerström, E., P. Gipe, J. Beurskens, and F. Ottermo. 2019. A historical review of vertical axis wind turbines rated 100 kW and above. Renewable and Sustainable Energy Reviews 105:1–13. doi:10.1016/j.rser.2018.12.022.
  • Mortazavi, S. M., M. R. Soltani, and H. Motieyan. 2015. A Pareto optimal multi-objective optimization for a horizontal axis wind turbine blade airfoil sections utilizing exergy analysis and neural networks. Journal of Wind Engineering and Industrial Aerodynamics 136:62–72. doi:10.1016/j.jweia.2014.10.009.
  • Mukherjee, P., S. Jain, and U. Saha, “Influence of Tip Speed Ratio on the Flow Behaviour of a Darrieus Wind Turbine,” in 6th International and 43rd National Conference on Fluid Mechanics and Fluid Power, MNNITA, Allahabad, India, Dec, 2016, pp. 15–17.
  • Muzammil, W., M. M. Rahman, A. Fazlizan, M. Ismail, H. Phang, and M. Elias. 2019. Nanotechnology in Renewable Energy: Critical Reviews for Wind Energy. In Nanotechnology: Applications in Energy, 49–71. Springer International Publishing. doi:10.1007/978-3-319-99602-8_3.
  • Naccache, G., and M. Paraschivoiu. 2018. Parametric study of the dual vertical axis wind turbine using CFD. Journal of Wind Engineering and Industrial Aerodynamics 172:244–55. doi:10.1016/j.jweia.2017.11.007.
  • Nader, N., and A. Jendoubi. 2018. “Study of a vertical axis wind turbine for low speed regions in Saudi Arabia,” In Proceedings of the 5th International Conference of Fluid Flow, Heat and Mass Transfer (FFHMT’18) . doi:10.11159/FFHMT18.139.
  • Negnevitsky, M., P. Mandal, and A. K. Srivastava. 2009. “Machine learning applications for load, price and wind power prediction in power systems,” In 15th International Conference on Intelligent System Applications to Power Systems 2009,1–6. IEEE. doi:10.1109/ISAP.2009.5352820.
  • Neville, A. J. 2019. Structural analysis and scaling of vertical axis wind turbine blades. The UNSW Canberra at ADFA Journal of Undergraduate Engineering Research 12 (1).
  • Nobile, R., M. Vahdati, J. Barlow, and A. Mewburn-Crook. 2011. Dynamic stall for a vertical axis wind turbine in a two-dimensional study. World Renewable Energy Congress-Sweden8-13 May; Vol. 57, Linköping; Sweden. 4225–4232, 978-91-7393-070-3. Linköping University Electronic Press.
  • Owens, B. C., D. Griffith, and J. Murray. 2014. Fully Coupled Aeroelastic Design Tool Development for Vertical-axis Wind Turbines. Albuquerque, NM (United States): Sandia National Lab. (SNL-NM).
  • Owens, B. C., and D. T. Griffith. 2014. “Aeroelastic stability investigations for large-scale vertical axis wind turbines,” In Journal of Physics: Conference Series(Online), vol. 524, no. 1, 012092: IOP Publishing. doi:10.1088/1742-6596/524/1/012092.
  • Ozdamar, G., M. Mertcan, and A. Ozdamar. 2018. Numerical Comparison of the Effect of Blade Material on Wind Turbine Efficiency. Acta Physica Polonica A 134 (1):156–58. doi:10.12693/APhysPolA.134.156.
  • Papathanassiou, S., A. G. Kladas, and J. A. Tegopoulos. 2001. Applications of artificial intelligence techniques in wind power generation. Integrated Computer-Aided Engineering 8 (3):231–42. doi:10.3233/ICA-2001-8305.
  • Paraschivoiu, I., P. Desy, and C. Masson. 1988. Blade tip, finite aspect ratio, and dynamic stall effects on the Darrieus rotor. Journal of Propulsion and Power 4 (1):73–80. doi:10.2514/3.23034.
  • Paraschivoiu, I. 1988. Double-multiple streamtube model for studying vertical-axis wind turbines. Journal of Propulsion and Power 4 (4):370–77. doi:10.2514/3.23076.
  • Park, H. 2016. A study on structural design and analysis of small wind turbine blade with natural fibre (flax) composite. Advanced Composite Materials 25 (2):125–42. doi:10.1080/09243046.2015.1052186.
  • Parker, C. M., and M. C. Leftwich. 2016. The effect of tip speed ratio on a vertical axis wind turbine at high Reynolds numbers. Experiments in Fluids 57 (5):74. doi:10.1007/s00348-016-2155-3.
  • Pasqualetti, M., R. Richter, and P. Gipe. 2004. History of wind energy. Encyclopedia of Energy 6:419–33.
  • Pawsey, N. C. K. 2002. Development and evaluation of passive variable-pitch vertical axis wind turbines. The University of New South Wales. http://unsworks.unsw.edu.au/fapi/datastream/unsworks:528/SOURCE01
  • Peng, H., Z. Han, H. Liu, K. Lin, and H. Lam. 2020. Assessment and optimization of the power performance of twin vertical axis wind turbines via numerical simulations. Renewable Energy 147:43–54. doi:10.1016/j.renene.2019.08.124.
  • Posa, A. 2020. Influence of Tip Speed Ratio on wake features of a Vertical Axis Wind Turbine. Journal of Wind Engineering and Industrial Aerodynamics 197:104076. doi:10.1016/j.jweia.2019.104076.
  • Psomopoulos, C. S., K. Kalkanis, S. Kaminaris, G. C. Ioannidis, and P. Pachos. 2019. A Review of the Potential for the Recovery of Wind Turbine Blade Waste Materials. Recycling 4 (1):7. doi:10.3390/recycling4010007.
  • Qin, N., R. Howell, N. Durrani, K. Hamada, and T. Smith. 2011. Unsteady flow simulation and dynamic stall behaviour of vertical axis wind turbine blades. Wind Engineering 35 (4):511–27. doi:10.1260/0309-524X.35.4.511.
  • Rafiee, R., M. Tahani, and M. Moradi. 2016. Simulation of aeroelastic behavior in a composite wind turbine blade. Journal of Wind Engineering and Industrial Aerodynamics 151:60–69. doi:10.1016/j.jweia.2016.01.010.
  • Ramirez-Tejeda, K., D. A. Turcotte, and S. Pike. 2017. Unsustainable Wind Turbine Blade Disposal Practices in the United States: A Case for Policy Intervention and Technological Innovation. NEW SOLUTIONS: A Journal of Environmental and Occupational Health Policy 26 (4):581–98. doi:10.1177/1048291116676098.
  • Reddy, A., V. Indragandhi, L. Ravi, and V. Subramaniyaswamy. 2019. Detection of Cracks and damage in wind turbine blades using artificial intelligence-based image analytics. Measurement 147:106823. doi:10.1016/j.measurement.2019.07.051.
  • Reddy, T. R., and B. Kumar. 2014. Effect of blade thickness of vertical axis wind turbine on power generation. International J of Engineering Research & Technology (IJERT) 3 (10):932–36.
  • Réquilé, S., A. Le Duigou, A. Bourmaud, and C. Baley. 2019. Deeper insights into the moisture-induced hygroscopic and mechanical properties of hemp reinforced biocomposites. Composites Part A: Applied Science and Manufacturing 123:278–85. doi:10.1016/j.compositesa.2019.05.006.
  • Rezaeiha, A., H. Montazeri, and B. Blocken. 2018a. Characterization of aerodynamic performance of vertical axis wind turbines: Impact of operational parameters. Energy Conversion and Management 169:45–77. doi:10.1016/j.enconman.2018.05.042.
  • Rezaeiha, A., H. Montazeri, and B. Blocken. 2018b. Towards accurate CFD simulations of vertical axis wind turbines at different tip speed ratios and solidities: Guidelines for azimuthal increment, domain size and convergence. Energy Conversion and Management 156:301–16. doi:10.1016/j.enconman.2017.11.026.
  • Rezaeiha, A., I. Kalkman, and B. Blocken. 2017a. Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine. Applied Energy 197:132–50. doi:10.1016/j.apenergy.2017.03.128.
  • Rezaeiha, A., I. Kalkman, and B. Blocken. 2017b. CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment. Renewable Energy 107:373–85. doi:10.1016/j.renene.2017.02.006.
  • Ribeiro, A., A. Awruch, and H. Gomes. 2012. An airfoil optimization technique for wind turbines. Applied Mathematical Modelling 36 (10):4898–907. doi:10.1016/j.apm.2011.12.026.
  • Richter, K., A. Le Pape, T. Knopp, M. Costes, V. Gleize, and A. D. Gardner. 2011. Improved two-dimensional dynamic stall prediction with structured and hybrid numerical methods. Journal of the American Helicopter Society 56 (4):1–12. doi:10.4050/JAHS.56.042007.
  • Rishmany, J., M. Daaboul, I. Tawk, and N. Saba, 0000. “Optimization of a vertical axis wind turbine using FEA, multibody dynamics and wind tunnel testing.”
  • Rossetti, A., and G. Pavesi. 2013. Comparison of different numerical approaches to the study of the H-Darrieus turbines start-up. Renewable Energy 50:7–19. doi:10.1016/j.renene.2012.06.025.
  • Roy, S., and U. K. Saha. 2013. Numerical investigation to assess an optimal blade profile for the drag based vertical axis wind turbine. In ASME international mechanical engineering congress and exposition, Vol. 9, 56284, American Society of Mechanical Engineers. https://doi.org/10.1115/IMECE2013-64001
  • Saber, H., E. Attia, and H. El Gamal. 2015. Analysis of straight bladed vertical axis wind turbine. International Journal of Engineering Research & Technology (IJERT) 4 (07): 2278–0181. https://www.ijert.org/research/analysis-of-straight-bladed-vertical-axis-wind-turbine-IJERTV4IS070453.pdf
  • Saenz-Aguirre, A., E. Zulueta, U. Fernandez-Gamiz, J. Lozano, and J. M. Lopez-Guede. 2019. Artificial neural network based reinforcement learning for wind turbine yaw control. Energies 12 (3):436. doi:10.3390/en12030436.
  • Sagharichi, A., M. J. Maghrebi, and A. ArabGolarcheh. 2016. Variable pitch blades: An approach for improving performance of Darrieus wind turbine. Journal of Renewable and Sustainable Energy 8 (5):053305. doi:10.1063/1.4964310.
  • Sagharichi, A., M. Zamani, and A. Ghasemi. 2018. Effect of solidity on the performance of variable-pitch vertical axis wind turbine. Energy 161:753–75. doi:10.1016/j.energy.2018.07.160.
  • Salman, R. K., and W. Bdaiwi. 2019. “Estimating the effect of rotor diameter on the physical properties of NACA0015 airfoil-based vertical-axis wind turbine,” In Journal of Physics: Conference Series, vol. 1178, no. 1, p. 012003. IOP Publishing. doi:10.1088/1742-6596/1178/1/012003.
  • Sanjay, M., P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, and S. Pradeep. 2018. Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production 172:566–81. doi:10.1016/j.jclepro.2017.10.101.
  • Schubel, P. J., and R. J. Crossley. 2012. Wind turbine blade design. Energies 5 (9):3425–49. doi:10.3390/en5093425.
  • Sengupta, A., A. Biswas, and R. Gupta. 2016. Studies of some high solidity symmetrical and unsymmetrical blade H-Darrieus rotors with respect to starting characteristics, dynamic performances and flow physics in low wind streams. Renewable Energy 93:536–47. doi:10.1016/j.renene.2016.03.029.
  • Sengupta, A., A. Biswas, and R. Gupta. 2017. The aerodynamics of high solidity unsymmetrical and symmetrical blade H-Darrieus rotors in low wind speed conditions. Journal of Renewable and Sustainable Energy 9 (4):043307. doi:10.1063/1.4999965.
  • Setiawan, A., M. Al Gifari, and I. Hamidah. 2018. Performance of LLBC-based rotor blade for low speed wind turbine. In MATEC web of conferences, Vol. 197, 08004 doi:https://doi.org/10.1051/matecconf/201819708004. EDP Sciences.
  • Shaaban, S., A. Albatal, and M. Mohamed. 2018. Optimization of H-Rotor Darrieus turbines’ mutual interaction in staggered arrangements. Renewable Energy 125:87–99. doi:10.1016/j.renene.2018.02.094.
  • Shah, D. U., P. J. Schubel, and M. J. Clifford. 2013. Can flax replace E-glass in structural composites? A small wind turbine blade case study. Composites Part B: Engineering 52:172–81. doi:10.1016/j.compositesb.2013.04.027.
  • Shams, S., A. Molaei, and B. Mirzavand. 2019. Torsional aeroelasticity of a flexible vawt blade using a combined aerodynamic method by considering post-stall and local reynolds regime. Journal of Applied and Computational Mechanics. doi:10.22055/JACM.2019.30011.1677.
  • Shuqin, L. 2011. Magnetic Suspension and Self-pitch for Vertical-axis Wind Turbines. Fundamental and Advanced Topics in Wind Power Rupp, Carriveau (IntechOpen). 233–348. https://www.intechopen.com/chapters/16250
  • Siavash, N. K., B. Ghobadian, G. Najafi, A. Rohani, T. Tavakoli, E. Mahmoodi, R. Mamat, M Mazlan. 2021. Prediction of power generation and rotor angular speed of a small wind turbine equipped to a controllable duct using artificial neural network and multiple linear regression. Environmental Research 196:110434. doi:10.1016/j.envres.2020.110434.
  • Singh, M., A. Biswas, and R. Misra. 2015. Investigation of self-starting and high rotor solidity on the performance of a three S1210 blade H-type Darrieus rotor. Renewable Energy 76:381–87. doi:10.1016/j.renene.2014.11.027.
  • Soraghan, C. E., W. E. Leithead, J. Feuchtwang, and H. Yue. June. 2013. Double multiple streamtube model for variable pitch vertical axis wind turbines,” In 31st AIAA Applied Aerodynamics Conference. https://doi.org/10.2514/6.2013-2802
  • Spentzos, A., G. Barakos, K. Badcock, B. Richards, P. Wernert, S. Schreck, M Raffel, . 2005. Investigation of three-dimensional dynamic stall using computational fluid dynamics. AIAA Journal. 43(5):1023–33. doi:10.2514/1.8830.
  • Stetco, A., F. Dinmohammadi, X. Zhao, V. Robu, D. Flynn, M. Barnes, J. Keane, G Nenadic, . 2019. Machine learning methods for wind turbine condition monitoring: A review. Renewable Energy 133:620–35. doi:10.1016/j.renene.2018.10.047.
  • Steve, Sawyer. 2017. Global Wind Report 2017. Global Wind Energy Council.https://gwec.net/wp-content/uploads/2020/11/GWEC_Global_Wind_2017_Report.pdf
  • Subramanian, A., S. A. Yogesh, H. Sivanandan, A. Giri, M. Vasudevan, V. Mugundhan, R. K Velamati. 2017. Effect of airfoil and solidity on performance of small scale vertical axis wind turbine using three dimensional CFD model. Energy 133:179–90. doi:10.1016/j.energy.2017.05.118.
  • Sun, X., Y. Chen, Y. Cao, G. Wu, Z. Zheng, and D. Huang. 2016. Research on the aerodynamic characteristics of a lift drag hybrid vertical axis wind turbine. Advances in Mechanical Engineering 8 (1):1687814016629349. doi:10.1177/1687814016629349.
  • Sunny, K. A., P. Kumar, N. M. Kumar, and S. Priscilla. 2018. Computational analysis of three blade vertical axis wind turbine. Progress in Industrial Ecology, an International Journal 12 (1–2):120–37. doi:10.1504/PIE.2018.095882.
  • Supeni, E., J. Epaarachchi, M. Islam, and K. Lau, “Development of artificial neural network model in predicting performance of the smart wind turbine blade,” 2014.
  • Tarfaoui, M., O. Shah, and M. Nachtane. 2019. Design and optimization of composite offshore wind turbine blades. Journal of Energy Resources Technology 141 (5):051204. doi:10.1115/1.4042414.
  • Teksin, S., N. Azginoglu, and S. Akansu. 2022. Structure estimation of vertical axis wind turbine using artificial neural network. Alexandria Engineering Journal 61 (1):305–14. doi:10.1016/j.aej.2021.05.002.
  • Templin, R. J., “Aerodynamic performance theory for the NRC vertical-axis,” national aeronautical establishment, OttawaNASA STI/Recon technical report N76, 1974.
  • Thomas, L., and M. Ramachandra. 2018. Advanced materials for wind turbine blade-A review. Materials Today: Proceedings 5 (1):2635–40.
  • Tirandaz, M. R., and A. Rezaeiha. 2021. Effect of airfoil shape on power performance of vertical axis wind turbines in dynamic stall: Symmetric Airfoils. Renewable Energy 173:422–41. doi:10.1016/j.renene.2021.03.142.
  • Tjiu, W., T. Marnoto, S. Mat, M. H. Ruslan, and K. Sopian. 2015a. Darrieus vertical axis wind turbine for power generation II: Challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development. Renewable Energy 75:560–71. doi:10.1016/j.renene.2014.10.039.
  • Tjiu, W., T. Marnoto, S. Mat, M. H. Ruslan, and K. Sopian. 2015b. Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations. Renewable Energy 75:50–67. doi:10.1016/j.renene.2014.09.038.
  • Veers, P. S., T. D. Ashwill, H. J. Sutherland, D. L. Laird, D. W. Lobitz, D. A. Griffin, J. F. Mandell, W. D. Musial, K. Jackson, M Zuteck, et al. 2003. Trends in the design, manufacture and evaluation of wind turbine blades. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology. 6(3):245–59. doi:10.1002/we.90.
  • Verkinderen, E., and B. Imam. 2015. A simplified dynamic model for mast design of H-Darrieus vertical axis wind turbines (VAWTs). Engineering Structures 100:564–76. doi:10.1016/j.engstruct.2015.06.041.
  • Viharos, Z. J., G. Erdős, A. Kovács, and L. Monostori, “AI supported maintenance and reliability system in wind energy production,” in European Wind Energy Conference and Exhibition (EWEC) Warsaw, Poland, 2010.
  • Vlasveld, E., F. Huijs, F. Savenije, and B. Paillard, “Coupled Dynamics of a Vertical Axis Wind Turbine (VAWT) with active blade pitch control on a semi-submersible floater,” in ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering. Madrid, Spain, 2018: American Society of Mechanical Engineers Digital Collection. https://doi.org/10.1115/OMAE2018-78058
  • Wang, H., B. Zhang, Q. Qiu, and X. Xu. 2017. Flow control on the NREL S809 wind turbine airfoil using vortex generators. Energy 118:1210–21. doi:10.1016/j.energy.2016.11.003.
  • Wang, L., A. Kolios, P.-L. Delafin, T. Nishino, and T. Bird. 2015. Fluid structure interaction modelling of a novel 10MW vertical-axis wind turbine rotor based on computational fluid dynamics and finite element analysis, 2015. France, Paris: Annual Event. EWEA.
  • Wang, Z., and M. Zhuang. 2017. Leading-edge serrations for performance improvement on a vertical-axis wind turbine at low tip-speed-ratios. Applied Energy 208:1184–97. doi:10.1016/j.apenergy.2017.09.034.
  • Wang, Z., Y. Wang, and M. Zhuang. 2018. Improvement of the aerodynamic performance of vertical axis wind turbines with leading-edge serrations and helical blades using CFD and Taguchi method. Energy Conversion and Management 177:107–21. doi:10.1016/j.enconman.2018.09.028.
  • Wilson, R. E., and P. Lissaman. 1974. Applied aerodynamics of wind power machines. Corvallis: Oregon State University.
  • Wong, K. H., W. T. Chong, N. L. Sukiman, S. C. Poh, Y.-C. Shiah, and C.-T. Wang. 2017. Performance enhancements on vertical axis wind turbines using flow augmentation systems: A review. Renewable and Sustainable Energy Reviews 73:904–21. doi:10.1016/j.rser.2017.01.160.
  • Xu, Z., Q. Wang, K.-L. Huangfu, and Y.-J. Zhong. 2011. Influence of various flaps on performance of vertical axis wind turbines. Dongli Gongcheng Xuebao(Journal of Chinese Society of Power Engineering) 31 (9):715–19.
  • Yakhot, V., and S. A. Orszag. 1986. Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing 1 (1):3–51. doi:10.1007/BF01061452.
  • Yamada, T., T. Kiwata, T. Kita, M. Hirai, N. Komatsu, and T. Kono. 2012. Overspeed control of a variable-pitch vertical-axis wind turbine by means of tail vanes. Journal of Environment and Engineering 7 (1):39–52. doi:10.1299/jee.7.39.
  • Yang, Y., Z. Guo, Y. Zhang, H. Jinyama, and Q. Li. 2017. Numerical investigation of the tip vortex of a straight-bladed vertical axis wind turbine with double-blades. Energies 10 (11):1721. doi:10.3390/en10111721.
  • Yee, K. H., and C. Y. Long. 2015. “Performance comparison of a small scale vertical axis wind turbine,” in The 3rd National Graduate Conference (NatGrad2015), Universiti Tenaga Nasional, Putrajaya Campus. 8-9 April 2015, 8–9.Malaysia.
  • Yi, Lee Zhou, and Choe-Yung Teoh. 2018. In , Vol. 217, 01003. EDP Sciences.https://doi.org/10.1051/matecconf/201821701003
  • Yıldızhan, Ş., A. Çalık, M. Özcanlı, and H. Serin. 2018. Bio-composite materials: A short review of recent trends, mechanical and chemical properties, and applications. European Mechanical Science 2 (3):83–91. doi:10.26701/ems.369005.
  • Yoo, J., S. J. Chang, S. Wi, and S. Kim. 2019. Spent coffee grounds as supporting materials to produce bio-composite PCM with natural waxes. Chemosphere 235:626–35. doi:10.1016/j.chemosphere.2019.06.195.
  • Zamani, M., M. J. Maghrebi, and S. R. Varedi. 2016. Starting torque improvement using J-shaped straight-bladed Darrieus vertical axis wind turbine by means of numerical simulation. Renewable Energy 95:109–26. doi:10.1016/j.renene.2016.03.069.
  • Zanforlin, S., and S. Deluca. 2018. Effects of the Reynolds number and the tip losses on the optimal aspect ratio of straight-bladed vertical axis wind turbines. Energy 148:179–95. doi:10.1016/j.energy.2018.01.132.
  • Zangenberg, J., P. Brøndsted, and M. Koefoed. 2014. Design of a fibrous composite preform for wind turbine rotor blades. Materials & Design (1980-2015) 56:635–41. doi:10.1016/j.matdes.2013.11.036.
  • Zannetti, L., F. Gallizio, and G Ottino. 2007. Vortex capturing vertical axis wind turbine. Journal of Physics: Conference Series 751,012029 IOP Publishing
  • Zhao, Z., D. Su, T. Wang, B. Xu, H. Wu, and Y. Zheng. 2019. A blade pitching approach for vertical axis wind turbines based on the free vortex method. Journal of Renewable and Sustainable Energy 11 (5):053301. doi:10.1063/1.5099411.
  • Zhao, Z., R. Wang, W. Shen, T. Wang, B. Xu, Y. Zheng, S Qian. 2018. Variable pitch approach for performance improving of straight-bladed VAWT at rated tip speed ratio. Applied Sciences. 8(6):957. doi:10.3390/app8060957.
  • Zhao, Z., S. Qian, W. Shen, T. Wang, B. Xu, Y. Zheng, R Wang. 2017. Study on variable pitch strategy in H-type wind turbine considering effect of small angle of attack. Journal of Renewable and Sustainable Energy. 9(5):053302. https://doi.org/10.3390/app8060957
  • Zhao, Z.,R.Wang, W.Shen, T.Wang, B.Xu, Y.Zheng, and S.Qian.(2018). Variable pitch approach for performance improving of straight-bladed VAWT at rated tip speed ratio. Applied Sciences. 8 (6). https://doi.org/10.3390/app8060957
  • Ziane, K., A. Ilinca, S. S. Karganroudi, and M. Dimitrova. 2021. Neural network optimization algorithms to predict wind turbine blade fatigue life under variable hygrothermal conditions. Eng 2 (3):278–95. doi:10.3390/eng2030018.