433
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Comparative thermodynamic, environmental and sustainability performance assessments of an aero turboprop engine utilizing jet fuel and biofuel

ORCID Icon & ORCID Icon
Pages 1466-1485 | Received 15 Jul 2021, Accepted 05 Nov 2021, Published online: 31 Dec 2021

References

  • 1.HBFM. 1st air maintenance factory directorate. Engine Test Cell Report Document. Eskisehir, Turkey.0000
  • Akdeniz, H. Y., and O. Balli. 2021a. Energetic and exergetic assessment of operating biofuel, hydrogen and conventional JP-8 in a J69 type of aircraft turbojet engine. Journal of Thermal Analysis and Calorimetry 146 (4):1709–21. doi:10.1007/s10973-021-10879-z.
  • Akdeniz, H. Y., and O. Balli. 2021b. Effects of bypass ratio change trend on performance in a military aircraft turbofan engine with comparative assessment. Journal of Energy Resources Technology 143 (12):120905. doi:10.1115/1.4051297.
  • Angulo-Brown, F. 1991. An ecological optimization criterion for finite time heat engines. Journal of Applied Physics 69 (11):7465–69. doi:10.1063/1.347562.
  • Atilgan, R., and O. Turan. 2020. Economy and exergy of aircraft turboprop engine at dynamic loads. Energy 213 (118827):1–11. doi:10.1016/j.energy.2020.118827.
  • Atilgan, R., O. Turan, and H. Aydin. 2019. Dynamic exergo-environmental analysis of a turboprop aircraft enginen at various torques. Energy 186 (115894):1–9. doi:10.1016/j.energy.2019.115894.
  • Atilgan, R., O. Turan, O. Altuntas, H. Aydin, and K. Synylo. 2013. Environmental impact assessment of a turboprop engine with the aid of exergy. Energy 58:664–71. doi:10.1016/j.energy.2013.05.064.
  • Aydin, H., O. Turan, T. H. Karakoc, and A. Midilli. 2013. Exergo-sustainability indicators of a turboprop aircraft for the phasesof a flight. Energy 58:550–60. doi:10.1016/j.energy.2013.04.076.
  • Aygun, H., M. E. Cilgin, and O. Turan. 2021. Exergo-sustainability indicators of a target drone engine at dynamic loads. Energy 221 (119803):1–15. doi:10.1016/j.energy.2021.119803.
  • Baklacioglu, T., O. Turan, and H. Aydin. 2015. Dynamic modeling of exergy efficiency of turboprop engine components using hybrid genetic algorithm-artificial neural networks. Energy 86:709–21. doi:10.1016/j.energy.2015.04.025.
  • Balli, O., and A. Hepbasli. 2013. Energetic and exergetic analyses of T56 turboprop engine. Energy Conversion and Management 73:106–20. doi:10.1016/j.enconman.2013.04.014.
  • Balli, O., and A. Hepbasli. 2014. Exergoeconomic, sustainability and environmental damage costanalyses of T56 turboprop engine. Energy 64:582–600. doi:10.1016/j.energy.2013.09.066.
  • Balli, O., H. Aras, and A. Hepbasli. 2010. Thermodynamic and thermoeconomic analyses of a trigeneration (TRIGEN)system with a gas–diesel engine: Part II – an application. Energy Conversion and Management 51 (11):2260–71. doi:10.1016/j.enconman.2010.03.020.
  • Balli, O., and H. Caliskan. 2021a. On-design and off-design operation performance assessmentsof an aero turboprop engine used on unmanned aerial vehicles (UAVs) in terms of aviation, thermodynamic, environmental and sustainability perspectives. Energy Conversion and Management 243:114403. doi:10.1016/j.enconman.2021.114403.
  • Balli, O., and H. Caliskan. 2021b. Turbofan engine performances from aviation, thermodynamic and environmental perspectives. Energy 232:121031. doi:10.1016/j.energy.2021.121031.
  • Balli, O., S. Ekici, and K. Th. 2021. TF33 engine in every respect: Performance, environmental, and sustainability assessment. Environmental Progress&Sustainable Energy. doi:10.1002/ep.13578.
  • Balli, O., S. Ekici, and T. H. Karakoc. 2021. Achieving a more efficient and greener combined heat and power system driven by a micro gas turbine engine: Issues, oppurtunities, and benefits in the presence of thermodynamic perspective. International Journal of Energy Research 45 (6):8620–38. doi:10.1002/er.6398.
  • Balli, O., Y. Sohret, and H. T. Karakoc. 2018. The effects of hydrogen fuel usage on the exergetic performance of a turbojet engine. International Journal of Hydrogen Energy 43 (23):10848–58. doi:10.1016/j.ijhydene.2017.12.178.
  • Balli, O. 2013. Afterburning effect on the energetic and exergetic performance of an experimental turbojet engine. International Journal of Exergy 14 (2):212–43. doi:10.1504/IJEX.2014.060278.
  • Balli, O. 2017a. Advanced exergy analyses of an aircraft turboprop engine (TPE). Energy 124:599–612. doi:10.1016/j.energy.2017.02.121.
  • Balli, O. 2017b. Advanced exergy analyses to evaluate the performance of a military aircraft turbojet engine (TJE) with afterburner: Splitting exergy destruction into unavoidable/ avoidable and endogenous/exogenous. Applied Thermal Engineering 111:152–69. doi:10.1016/j.applthermaleng.2016.09.036.
  • Balli, O. 2017d. Exergy modeling for evaluating sustainability level of a high by-pass turbofan engine used on commercial aircrafts. Applied Thermal Engineering 123:138–55. doi:10.1016/j.applthermaleng.2017.05.068.
  • Balli, O. 2019. Maximum operation performance evaluation of a turbojet engine designed for missiles and unmanned aerial vehicles (UAV) with exergy analysis methodology. Erciyes University Journal of the Institute of Science and Technology 35 (1):13–32. https://dergipark.org.tr/tr/pub/erciyesfen/issue/44838/505474.
  • Balli, O. 2020a. General aviation and thermodynamic performance analyses of a micro turbojet engine used on drones and unmanned aerial vehicles (UAV). Journal of Aviation Research 2 (2):115–41. https://dergipark.org.tr/tr/pub/jar/issue/56600/726860.
  • Balli, O. 2020b. Performance assessment of a medium-scale turboprop engine designed for unmanned aerial vehicle (UAV) based on exergetic and sustainability metrics. Journal of Thermal Engineering 6 (5):697–711. doi:10.18186/thermal.796753.
  • Balli, O. 2020c. exergetic, exergoeconomic, sustainability and environmental damage cost analyses of j85 turbojet engine with afterburner. International Journal of Turbo & Jet-Engines 37 (2):167–94. doi:10.1515/tjj-2017-0019.
  • Caglayan, H., and H. Caliskan. 2021. Advanced exergy analyses and optimisation of a cogeneration system for ceramic industry by considering endogenous, exogenous, avoidable and unavoidable exergies under different environmental conditions. Renewable and Sustainable Energy Reviews 140 (110730):1–23. doi:10.1016/j.rser.2021.110730.
  • Caliskan, H., H. Hong, and J. K. Jang. 2019. Thermodynamic assessments of the novel cascade air cooling system including solar heating and desiccant cooling units. Energy Conversion and Management 199 (112013):1–8. doi:10.1016/j.enconman.2019.112013.
  • Caliskan, H., I. Dincer, and A. Hepbasli. 2012a. Thermodynamic analyses and assessments of various thermal energy storage systems for buildings. Energy Conversion and Management 62:109–22. doi:10.1016/j.enconman.2012.03.024.
  • Caliskan, H., I. Dincer, and A. Hepbasli. 2012b. A comparative study on energetic, exergetic and environmental performance assessments of novel M-cycle based air coolers for buildings. Energy Conversion and Management 56:69–79. doi:10.1016/j.enconman.2011.11.007.
  • Caliskan, H. 2015. Novel approaches to exergy and economy based enhanced environmental analyses for energy systems. Energy Conversion and Management 89:156–61. doi:10.1016/j.enconman.2014.09.067.
  • Cavalcanti, E. J. C., M. Carvalho, and D. R. S. Silva. 2020. Energy, exergy and exergoenvironmental analyses of a sugarcane bagasse power cogeneration system. Energy Conversion and Management 222:113232. doi:10.1016/j.enconman.2020.113232.
  • Chen, P., G. He, Y. Gao, X. Zhao, and D. Cai. 2020. Conventional and advanced exergy analysis of an air-cooled type of absorption-ejection refrigeration cycle with R290-mineral oil as the working pair. Energy Conversion and Management 210:112703. doi:10.1016/j.enconman.2020.112703.
  • Coban, K., Y. Sohret, C. O. Colpan, and T. H. Karakoc. 2017. Exergetic and exergoeconomic assessment of a small-scale turbojet engine fuelled with biodiesel. Energy 140:1358–67. doi:10.1016/j.energy.2017.05.096.
  • Dallara, A. S. 2011. Aircraft design for reduced climate impact. A Doctoral Dissertation submitted to Department of Aeronautics and Astronautics. Stanford University. http://purl.stanford.edu./yf499mg3300
  • Deloitte, Global Aerospace Market Outlook and Forecast https://aiac.ca/wp-content/uploads/2015/11/AIAC-Phase-3-Report_FINAL.pdf (Ontario, Canada: AIAC) AIAC Phase 3 Accessed1 June 2021
  • Dinc, A., Y. Sohret, and S. Ekici. 2020. Exergy analysis of a three-spool turboprop engine during the flight of a cargo aircraft. Aircraft Engineering and Aerospace Technology 92 (10):1495–503. doi:10.1108/AEAT-05-2020-0087.
  • Dinc, A. 2015a. Sizing of a turboprop unmanned air vehicle and its propulsionsystem. Journal of Thermal Science and Technology 35 (2):53–62.
  • Dinc, A. 2015b. Optimisation of a turboprop UAV for maximumloiter and specific power using genetic algorithm. International Journal of Turbo and Jet Engines 2015:1–9.
  • Dincer, I., and M. A. Rosen. 2005. Thermodynamic aspects of renewables and sustainable development. Renewable and Sustainable Energy Reviews 9 (2):169–89. doi:10.1016/j.rser.2004.02.002.
  • Dincer, I., and M. A. Rosen. 2007. Exergy: Energy environment and sustainable development. First. Oxford, UK: Elsevier. 472: 978-0080445298 .
  • Dogru, M., A. Midilli, and C. R. Howarth. 2002. Gasification of sewage sludge using a throated downdraft gasifier and uncertainty analysis. Fuel Process Technology 75 (1):55–82. doi:10.1016/S0378-3820(01)00234-X.
  • Eggleston, H. S. 2006. Intergovernmental panel on climate change, national greenhouse gas inventories programme, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, available at: http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.htm
  • Ekici, S., I. Orhan, Y. Sohret, O. Altuntas, and T. H. Karakoc. 2019. calculating endogenous and exogenous exergy destruction for an experimental turbojet engine. International Journal of Turbo & Jet-Engines in press. doi:10.1515/tjj-2019-0005.
  • Ekici, S., and Y. Sohret. 2020. A study on the environmental and economic aspects of aircraft emissions at the Antalya International Airport. Environmental Science and Pollution Research. 28(9):10847–59. available at. 10.1007/s11356-020-11306-w.
  • Encarnaçao, A.C.G. 2012. Embrarer Corporate and Business Strategy. May_2012. Embrarer, Sao Paulo, Brazil. Accessed June 1, 2021, https://ri.embraer.com.br/Download.aspx?Arquivo=QrXcOQO4ziDEEV229C/XKg==&IdCanal=Nhqvlo6cT0TV9wfjLtVtLw==
  • Etele, J., and M. A. Rosen. 2001. Sensitivity of exergy efficiencies of aerospace engines toreference environment selection. International Journal of Exergy 1 (2):91–99. doi:10.1016/S1164-0235(01)00014-0.
  • Fuglestvedt, J. S., K. P. Shine, T. Bernsten, J. Cook, D. S. Lee, A. Stanke, R. B. Skeie, H. J. M. Velders, and I. A. Waitz. 2010. Transport impacts on atmosphere and climate: Metrics. Atmospheric Environment 44 (4648):4677. doi:10.1016/j.atmosenv.2009.04.044.
  • Gurbuz, H., Y. Sohret, and H. Akcay. 2019. Environmental and enviroeconomic assessment of an LPG fuelled SI engine at partial load. Journal of Environmental Management 241:631–36. doi:10.1016/j.jenvman.2019.02.113.
  • Habib, Z., R. Parthasarathy, and S. Gollahalli. 2010. Performance and emission characteristics of biofuel in a small-scale gas turbine engine. Applied Energy 87 (5):1701–09. doi:10.1016/j.apenergy.2009.10.024.
  • Hepbasli, A., and O. Akdemir. 2004. Energy and exergy analysis of a ground source (geothermal) heat pump system. Energy Conversion and Management 45:737–53.
  • Ji, Z., M. M. Rokni, J. Qin, S. Zhang, and P. Dong. 2020. Energy and configuration management strategy for battery/fuel cell/jetengine hybrid propulsion and power systems on aircraft. Energy Conversion and Management 225 (113393):1–16. doi:10.1016/j.enconman.2020.113393.
  • Kesgin, U. 2006. Aircraft emissions at Turkish airports. Energy 31 (2):372–84. doi:10.1016/j.energy.2005.01.012.
  • Khounani, Z., H. Hosseinzadeh-Bandbafha, F. Nazemi, M. Shaeifi, K. Karimi, M. Tabatabaei, M. Aghbashlo, and S. S. Lam. 2021. Exergy analysis of a whole-crop safflower biorefinery: A step towards reducing agricultural wastes in a sustainable manner. Journal of Environmental Management 279:111822. doi:10.1016/j.jenvman.2020.111822.
  • Kursun, B. 2021. Theoretical energy and exergy analysis of a combined cooling, heating and power system assisted by a low concentrated photovoltaic recuperator. Energy Conversion and Management 228:113659. doi:10.1016/j.enconman.2020.113659.
  • Lucia, U., and E. Açıkkalp. 2017. Irreversible thermodynamic analysis and application for molecular heat engines, chemical physics. Journal of Colloid and Interface Science 494:47–55. doi:10.1016/j.jcis.2017.01.057.
  • Meyer, L., G. Tsatsaronis, J. Buchgeister, and L. Schebek. 2009. Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems. Energy 34 (1):75–89. doi:10.1016/j.energy.2008.07.018.
  • Rojo, C., X. Vancassel, P. Mirabel, J. L. Ponche, and F. Garnier. 2015. Impact of alternative jet fuels on aircraft-induced aerosols. Fuel 144:335–41. doi:10.1016/j.fuel.2014.12.021.
  • Rosen, M. A. 2002. Assessing energy technologies and environmental impacts with theprinciples of thermodynamics. Applied Energy 72 (1):427–41. doi:10.1016/S0306-2619(02)00004-1.
  • Sehra, A. K., and J. W. Whitlow. 2004. Propulsion and power for 21st century aviation. Progress in Aerospace Sciences 40:199–235.
  • Sohret, Y., and H. Gurbuz. 2021. A comparison of gasoline, liquid petroleum gas, and hydrogen utilization in an spark ignition engine in terms of environmental and economic indicators. Journal of Energy Resources Technology 143 (5):052301. doi:10.1115/1.4048527.
  • Sohret, Y., O. Kıncay, and T. H. Karakoç. 2015. Combustion efficiency analysis and key emission parametersof a turboprop engine at various loads. Journal of the Energy Institute 88 (4):490–99. doi:10.1016/j.joei.2014.09.010.
  • Sohret, Y., Z. M. Sogut, T. H. Karakoc, and O. Turan. 2016. Customised application of exergy analysis method to PW120A turboprop engine for performance evaluation. International Journal of Exergy 20 (1):48–65. doi:10.1504/IJEX.2016.076678.
  • Sohret, Y. 2018. Exergo-sustainability analysis and ecological function of a simple gas turbine aero-engine. Journal of Thermal Engineering 4 (4):2083–95. doi:10.18186/journal-of-thermal-engineering.414990.
  • Toffolo, A., A. Lazzaretto, and A. Lazzaretto. 2002. Evolutionary algorithms for multi-objective energetic and economic optimisation in thermal system design. Energy 27 (6):549–67. doi:10.1016/S0360-5442(02)00009-9.
  • Tuzcu, H., Y. Sohret, and H. Caliskan. 2020. Energy, environment and enviroeconomic analyses and assessments of the turbofan engine used in aviation industry. Environ Prog Sustainable Energy. doi:10.1002/ep.13547.
  • Vogtlander, J. G., and A. Bijma. 2000. The virtual pollution prevention costs ‘99ʹ: A single lca-based indicator for emissions. The International Journal of Life Cycle Assessment 5 (2):113. doi:10.1007/BF02979733.
  • Vogtlander, J. G. 2019 data on eco-costs. Delft University of Technology. (n.d.)
  • Vogtlander, J. G, Baetens, B., Bijma, A., Brandjes, E., Lindeijer, E., Segers, M., Witte, F. 2010. LCA-based assessment of sustainability: The eco-costs/value ratio (EVR). First Brezet, J.C., and Hendiks, Ch.F. The Netherlands: VSSD. 240. https://www.researchgate.net/publication/258220975
  • Winchester, N., R. Malina, M. D. Staples, and S. R. H. Barrett. 2015. The impact of advanced biofuels on aviation emissions and operations in the. U.S. Energy Economics 49:482–91. doi:10.1016/j.eneco.2015.03.024.
  • Yan, Z. 1993. Comment on ‘‘An ecological optimization criterion for finite-time heat engines’’. Journal of Applied Physics [J. Appl. Phys.69, 7465 (1991)]. 73 (7):3583–3583. doi:10.1063/1.354041.
  • Zalazar-García, D., E. Torres, L. Rodriguez-Ortiz, Y. Deng, J. Soria, V. Bucala, R. Rodriguez, and G. Mazza. 2020. Cleaner and sustainable processes for extracting phenolic compounds from bio-waste. Journal of Environmental Management 273:11154. doi:10.1016/j.jenvman.2020.111154.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.