565
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Mass transport and performance of proton exchange membrane fuel cell considering the influence of porosity distribution of gas diffusion layer

ORCID Icon, , , , , & show all
Pages 1503-1511 | Received 05 Jul 2021, Accepted 01 Nov 2021, Published online: 11 Dec 2021

References

  • Banerjee, R., J. Hinebaugh, H. Liu, R. Yip, N. Ge, and A. Bazylak. 2016. Heterogeneous porosity distributions of polymer electrolyte membrane fuel cell gas diffusion layer materials with rib-channel compression. International Journal of Energy Research 41:14885–96.
  • Chang, H., C. Lin, M. Chang, H. Shiu, W. Chang, and F. Tsau. 2011. Optimization of polytetrafluoroethylene content in cathode gas diffusion layer by the evaluation of compression effect on the performance of a proton exchange membrane fuel cell. Journal of Power Sources 196 (8):3773–80. doi:10.1016/j.jpowsour.2010.12.090.
  • Chen, F., M. H. Chang, and P. T. Hsieh. 2008. Two-phase transport in the cathode gas diffusion layer of PEM fuel cell with a gradient in porosity. International Journal of Hydrogen Energy 33 (10):2525–29. doi:10.1016/j.ijhydene.2008.02.077.
  • Chu, H. S., C. Yeh, and F. Chen. 2003. Effects of porosity change of gas diffuser on performance of proton exchange membrane fuel cell. Journal of Power Sources 123 (1):1–9. doi:10.1016/S0378-7753(02)00605-5.
  • Dong, H., and H. Kim. 2015. Effect of compression on water transport in gas diffusion layer of polymer electrolyte membrane fuel cell using lattice Boltzmann method. Journal of Power Sources 294:393–405. doi:10.1016/j.jpowsour.2015.06.080.
  • Fang, W. Z., Y. Q. Tang, L. Chen, Q. J. Kang, and W. Q. Tao. 2018. Influences of the perforation on effective transport properties of gas diffusion layers. International Journal of Heat and Mass Transfer 126:243–55. doi:10.1016/j.ijheatmasstransfer.2018.05.016.
  • Jiao, K., I. E. Alaefour, and X. Li. 2011. Three-dimensional non-isothermal modeling of carbon monoxide poisoning in high temperature proton exchange membrane fuel cells with phosphoric acid doped polybenzimidazole membranes. Fuel 90 (2):568–82. doi:10.1016/j.fuel.2010.10.018.
  • Jiao, K., and X. Li. 2009. Three-dimensional multiphase modeling of cold start processes in polymer electrolyte membrane fuel cells. Electrochimica Acta 54 (27):6876–91. doi:10.1016/j.electacta.2009.06.072.
  • Ko, D., S. Doh, H. S. Park, and M. H. Kim. 2018. The effect of through plane pore gradient GDL on the water distribution of PEMFC. International Journal of Hydrogen Energy 43 (4):2369–80. doi:10.1016/j.ijhydene.2017.12.007.
  • Kong, C. S., D. Y. Kim, H. K. Lee, Y. G. Shul, and T. H. Lee. 2002. Influence of pore-size distribution of diffusion layer on mass-transport problems of proton exchange membrane fuel cells. Journal of Power Sources 108:185–91. doi:10.1016/S0378-7753(02)00028-9.
  • Lee, J., H. Liu, M. G. George, R. Banergee, N. Ge, S. Chevalier, T. Kotaka, Y. Tabuchi, and A. Bazylak. 2019. Microporous layer to carbon fibre substrate interface impact on polymer electrolyte membrane fuel cell performance. Journal of Power Sources 422:113–21. doi:10.1016/j.jpowsour.2019.02.099.
  • Moosavi, S. M., M. Niffeler, J. Gostick, and S. Haussener. 2018. Transport characteristics of saturated gas diffusion layers treated with hydrophobic coatings. Chemical Engineering Science 176:503–14. doi:10.1016/j.ces.2017.10.035.
  • Nabovati, A., E. W. Llewellin, and A. C. M. Sousa. 2009. Sousa A C M. A general model for the permeability of fibrous porous media based on fluid flow simulations using the lattice Boltzmann method. Composites. Part A, Applied Science and Manufacturing 40 (6–7):860–69. doi:10.1016/j.compositesa.2009.04.009.
  • Niu, Z., J. Wu, Y. Wang, and K. Jiao. 2018b. Investigating the in-/through-plane effective diffusivities of dry and partially-saturated gas diffusion layers. Journal of the Electrochemical Society 165 (11):F986–F993. doi:10.1149/2.1191811jes.
  • Niu, Z., Y. Wang, K. Jiao, and J. Wu. 2018a. Two-phase flow dynamics in the gas diffusion layer of proton exchange membrane fuel cells: Volume of fluid modeling and comparison with experiment. Journal of the Electrochemical Society 165 (9):F613–F620. doi:10.1149/2.0261809jes.
  • Oh, H., J. Park, K. Min, E. Lee, and J. Y. Jyoung. 2015. Effects of pore size gradient in the substrate of a gas diffusion layer on the performance of a proton exchange membrane fuel cell. Applied Energy 149:186–93. doi:10.1016/j.apenergy.2015.03.072.
  • Okonkwo, P. C., and C. Otor. 2021. A review of gas diffusion layer properties and water management in proton exchange membrane fuel cell system. International Journal of Energy Research 45 (3):3780–800. doi:10.1002/er.6227.
  • Pournemat, A., H. Markotter, F. Wilhelm, S. Enz, H. Kropf, I. Manke, and J. Scholta. 2018. Nano-scale Monte Carlo study on liquid water distribution within the polymer electrolyte membrane fuel cell microporous layer, catalyst layer and their interfacial region. Journal of Power Sources 397:271–79. doi:10.1016/j.jpowsour.2018.07.027.
  • Shakerinejad, E., M. H. Kayhani, M. Nazari, and A. Tamayol. 2018. Increasing the performance of gas diffusion layer by insertion of small hydrophilic layer in proton-exchange membrane fuel cells. International Journal of Energy Research 43:2410–28.
  • Shangguan, X., Y. Li, Y. Qin, S. Cao, J. Zhang, and Y. Yin. 2021. Effect of the porosity distribution on the liquid water transport in the gas diffusion layer of PEMFC. Electrochimica Acta 371:137814. doi:10.1016/j.electacta.2021.137814.
  • Tang, H., S. Wang, M. Pan, and R. Yuan. 2007. Porosity-graded micro-porous layers for polymer electrolyte membrane fuel cells. Journal of Power Sources 166 (1):41–46. doi:10.1016/j.jpowsour.2007.01.021.
  • Wang, X. L., H. M. Zhang, J. L. Zhang, H. F. Xu, Z. Q. Tian, J. Chen, H. X. Zhong, Y. M. Liang, and B. L. Yi. 2006. Micro-porous layer with composite carbon black for PEM fuel cells. Electrochimica Acta. 51(23):4909–15. doi:10.1016/j.electacta.2006.01.048.
  • Wang, Y., K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher. 2011. A review of polymer electrolyte membrane fuel cells: Technology,s applications, and needs on fundamental research. Applied Energy 88 (4):981–1007.
  • Yin, Y., J. Wang, X. Yang, Q. Du, J. Fang, and K. Jiao. 2014a. Modeling of high temperature proton exchange membrane fuel cells with novel sulfonated polybenzimidazole membranes. International Journal of Hydrogen Energy 39 (25):13671–80. doi:10.1016/j.ijhydene.2014.04.019.
  • Yin, Y., T. Wu, P. He, Q. Du, and K. Jiao. 2014b. Numerical simulation of two-phase cross flow in microstructure of gas diffusion layer with variable contact angle. International Journal of Energy Research 39:15772–85.
  • Yin, Y., X. Wang, X. Shangguan, J. Zhang, and Y. Qin. 2018. Numerical investigation on the characteristics of mass transport and performance of PEMFC with baffle blocks installed in the flow channel. International Journal of Hydrogen Energy 43:8048–62. doi:10.1016/j.ijhydene.2018.03.037.
  • Yu, J., G. Chen, J. Sunarso, Y. Zhu, R. Ran, Z. Zhu, W. Zhou, and Z. Shao. 2016. Cobalt oxide and cobalt‐graphitic carbon core–shell based catalysts with remarkably high oxygen reduction reaction activity. Advanced Science. 3(9):1600060. doi:10.1002/advs.201600060.
  • Yu, J., R. Ran, Y. Zhong, W. Zhou, M. Ni, and Z. Shao. 2020. Advances in Porous Perovskites: Synthesis and Electrocatalytic Performance in Fuel Cells and Metal–Air Batteries. Energy & Environmental Materials 3 (2):121–45. doi:10.1002/eem2.12064.
  • Zahiri, B., R. M. Felix, A. Hill, C. H. Kung, T. Sharma, J. D. Real, and W. Mérida. 2018. Through-plane wettability tuning of fibrous carbon layers via O-2 plasma treatment for enhanced water management. Applied Surface Science 458:32–42. doi:10.1016/j.apsusc.2018.07.005.
  • Zhan, Z., J. Xiao, D. Li, P. Mu, and R. Yuan. 2006. Effects of porosity distribution variation on the liquid water flux through gas diffusion layers of PEM fuel cells. Journal of Power Sources 160 (2):1041–48. doi:10.1016/j.jpowsour.2006.02.060.
  • Zhang, G., L. Fan, J. Sun, and K. Jiao. 2017. A 3D model of PEMFC considering detailed multiphase flow and anisotropic transport properties. International Journal of Heat and Mass Transfer 115:714–24. doi:10.1016/j.ijheatmasstransfer.2017.07.102.
  • Zhang, Y., A. Verma, and R. Pitchumani. 2016. Optimum design of polymer electrolyte membrane fuel cell with graded porosity gas diffusion layer. International Journal of Hydrogen Energy 41 (20):8412–26. doi:10.1016/j.ijhydene.2016.02.077.
  • Zhao, D., Q. He, J. Yu, J. Jiang, X. Li, and M. Ni. 2020. Dynamic behaviour and control strategy of high temperature proton exchange membrane electrolyzer cells (HT-PEMECs) for hydrogen production. International Journal of Hydrogen Energy 45 (51):26613–22. doi:10.1016/j.ijhydene.2020.07.155.
  • Zhou, W., Y. Tang, R. Song, L. Jiang, K. S. Hui, and K. N. Hui. 2012. Characterization of electrical conductivity of porous metal fiber sintered sheet using four-point probe method. Materials & Design 37:161–65. doi:10.1016/j.matdes.2011.12.046.
  • Zhou, Y., K. Jiao, Q. Du, Y. Yin, and X. Li. 2013. Gas diffusion layer deformation and its effect on the transport characteristics and performance of proton exchange membrane fuel cell. International Journal of Hydrogen Energy 38:12891–903. doi:10.1016/j.ijhydene.2013.05.150.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.