301
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Design of a highly efficient FeS2-based dual-heterojunction thin film solar cell

, &
Pages 1531-1542 | Received 02 Jul 2021, Accepted 16 Nov 2021, Published online: 08 Dec 2021

References

  • Adachi, S., and T. Taguchi. 1991. Optical properties of ZnSe. Physical Review B 43 (12):9569. doi:10.1103/PhysRevB.43.9569.
  • Ahmad, M. W., U. Farva, and M. A. Khan. 2018. Low temperature synthesis of iron pyrite (FeS2) nanospheres as a strong solar absorber material. Materials Letters 228:129–32. doi:10.1016/J.MATLET.2018.06.001.
  • Ahmmed, S., A. Aktar, J. Hossain, and A. B. M. Ismail. 2020a. Enhancing the open circuit voltage of the SnS based heterojunction solar cell using NiO HTL. Solar Energy 207:693–702. doi:10.1016/J.SOLENER.2020.07.003.
  • Ahmmed, S., A. Aktar, M. F. Rahman, J. Hossain, and A. B. M. Ismail. 2020b. A numerical simulation of high efficiency CdS/CdTe based solar cell using NiO HTL and ZnO TCO. Optik 223:165625. doi:10.1016/J.IJLEO.2020.165625.
  • Ahmmed, S., A. Aktar, M. H. Rahman, J. Hossain, and A. B. M. Ismail. 2021. Design and simulation of a high-performance CH3NH3Pb(I1–xClx)3-based perovskite solar cell using a CeOx electron transport layer and NiO hole transport layer. Semiconductor Science and Technology 36 (3):035002. doi:10.1088/1361-6641/ABD266.
  • Alam Khan, M., J. C. Sarker, S. Lee, S. C. Mangham, and M. O. Manasreh. 2014. Synthesis, characterization and processing of cubic iron pyrite nanocrystals in a photovoltaic cell. Materials Chemistry and Physics 148 (3):1022–28. doi:10.1016/J.MATCHEMPHYS.2014.09.013.
  • Altermatt, P. P., T. Kiesewetter, K. Ellmer, and H. Tributsch. 2002. Specifying targets of future research in photovoltaic devices containing pyrite (FeS2) by numerical modelling. Solar Energy Materials and Solar Cells 71 (2):181–95. doi:10.1016/S0927-0248(01)00053-8.
  • Berry, N., M. Cheng, C. L. Perkins, M. Limpinsel, J. C. Hemminger, and M. Law. 2012. Atmospheric-pressure chemical vapor deposition of iron pyrite thin films. Advanced Energy Materials 2 (9):1124–35. doi:10.1002/AENM.201200043.
  • Biplab, S. R. I., M. H. Ali, M. M. A. Moon, M. F. Pervez, M. F. Rahman, and J. Hossain. 2019. Performance enhancement of CIGS-based solar cells by incorporating an ultrathin BaSi2 BSF layer. Journal of Computational Electronics 19:342–52. doi:10.1007/S10825-019-01433-0.
  • Birkholz, M., D. Lichtenberger, C. Höpfner, and S. Fiechter. 1992. Sputtering of thin pyrite films. Solar Energy Materials and Solar Cells 27 (3):243–51. doi:10.1016/0927-0248(92)90086-5.
  • Boumaour, M., S. Sali, S. Kermadi, L. Zougar, A. Bahfir, and Z. Chaieb. 2019. High efficiency silicon solar cells with back ZnTe layer hosting IPV effect: A numerical case study. Journal of Taibah University for Science 13 (1):696–703. doi:10.1080/16583655.2019.1623476.
  • Bronold, M., S. Kubala, C. Pettenkofer, and W. Jaegermann. 1997. Thin pyrite (FeS2) films by molecular beam deposition. Thin Solid Films 304 (1–2):178–82. doi:10.1016/S0040-6090(97)00121-1.
  • Burgelman, M., J. Verschraegen, S. Degrave, and P. Nollet. 2004. Modeling thin-film PV devices. Progress in Photovoltaics: Research and Applications 12 (23):143–53. doi:10.1002/PIP.524.
  • Chatzitheodorou, G., S. Fiechter, M. Kunst, J. Luck, and H. Tributsch. 1988. Low temperature chemical preparation of semiconducting transition metal chalcogenide films for energy conversion and storage, lubrication and surface protection. Materials Research Bulletin 23 (9):1261–71. doi:10.1016/0025-5408(88)90114-6.
  • Chatzitheodorou, G., S. Fiechter, R. Könenkamp, M. Kunst, W. Jaegermann, and H. Tributsch. 1986. Thin photoactive FeS2 (pyrite) films. Materials Research Bulletin 21 (12):1481–87. doi:10.1016/0025-5408(86)90088-7.
  • Clugston, D. A., and P. A. Basore. 1997. Modelling free-carrier absorption in solar cells. Progress in Photovoltaics: Research and Applications 5 (4):229–36. doi:10.1002/(SICI)1099-159X(199707/08)5:4<229::AID-PIP164>3.0.CO;2-6.
  • De Las Heras, C., I. J. Ferrer, and C. Sánchez. 1991. Comparison of pyrite thin films obtained from Fe and natural pyrite powder. Applied Surface Science 50 (1–4):505–09. doi:10.1016/0169-4332(91)90227-B.
  • Dharmadasa, I. M., A. P. Samantilleke, J. Young, M. H. Boyle, R. Bacewicz, and A. Wolska. 1999. Electrodeposited p-type and n-type ZnSe layers for light emitting devices and multi-layer tandem solar cells. Journal of Materials Science: Materials in Electronics 10 (5):441–45. doi:10.1023/A:1008922229057.
  • Dong, Y. Z., Y. F. Zheng, H. Duan, Y. F. Sun, and Y. H. Chen. 2005. Formation of pyrite (FeS2) thin nano-films by thermal-sulfurating electrodeposition films at different temperature. Materials Letters 59 (19–20):2398–402. doi:10.1016/J.MATLET.2005.03.025.
  • Ennaoui, A., and H. Tributsch. 1986. Energetic characterization of the photoactive FeS2 (pyrite) interface. Solar Energy Materials 14 (6):461–74. doi:10.1016/0165-1633(86)90030-4.
  • Ennaoui, A., S. Fiechter, C. Pettenkofer, N. Alonso-Vante, K. Büker, M. Bronold, C. Höpfner, and H. Tributsch. 1993. Iron disulfide for solar energy conversion. Solar Energy Materials and Solar Cells 29 (4):289–370. doi:10.1016/0927-0248(93)90095-K.
  • Ferrini, R., M. Patrini, and S. Franchi. 1998. Optical functions from 0.02 to 6 eV of AlxGa1−xSb/GaSb epitaxial layers. Journal of Applied Physics 84 (8):4517. doi:10.1063/1.368677.
  • First Solar, Inc. - First Solar Achieves Yet Another Cell Conversion Efficiency World Record. (n.d.). 24 February 2016
  • Fischer, T. E. 1965. Reflectivity, photoelectric emission, and work function of AlSb. Physical Review 139 (4A):A1228. doi:10.1103/PhysRev.139.A1228.
  • Gomes, A., J. R. Ares, I. J. Ferrer, M. I. Da Silva Pereira, and C. Sánchez. 2003. Formation of n-type pyrite films from electrodeposited iron sulphides: Effect of annealing temperature. Materials Research Bulletin 38 (7):1123–33. doi:10.1016/S0025-5408(03)00116-8.
  • Green, M. A., E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, M. Yoshita, and A. W. Y. Ho-Baillie. 2019. Solar cell efficiency tables (version 54). Progress in Photovoltaics: Research and Applications 27 (7):565–75. doi:10.1002/PIP.3171.
  • Guziewicz, E., M. Godlewski, K. Kopalko, E. Łusakowska, E. Dynowska, M. Guziewicz, M. M. Godlewski, and M. Phillips. 2004. Atomic layer deposition of thin films of ZnSe structural and optical characterization. Thin Solid Films 446 (2):172–77. doi:10.1016/J.TSF.2003.09.041.
  • Heras, C. D. L., I. J. Ferrer, and C. Sanchez. 1994. Temperature dependence of the optical absorption edge of pyrite FeS2 thin films. Journal of Physics: Condensed Matter 6 (46):10177. doi:10.1088/0953-8984/6/46/033.
  • Hossain, J., K. Kasahara, D. Harada, A. T. M. S. Islam, R. Ishikawa, K. Ueno, T. Hanajiri, Y. Nakajima, Y. Fujii, M. Tokuda, et al. 2017. Barium hydroxide hole blocking layer for front- and back-organic/crystalline Si heterojunction solar cells. Journal of Applied Physics 122 (5):055101. doi:10.1063/1.4985812.
  • Hossain, J., M. M. A. Moon, B. K. Mondal, and M. A. Halim. 2021. Design guidelines for a highly efficient high-purity germanium (HPGe)-based double-heterojunction solar cell. Optics & Laser Technology 143:107306. doi:10.1016/J.OPTLASTEC.2021.107306.
  • Hossain, J., M. Rahman, M. M. A. Moon, B. K. Mondal, M. F. Rahman, and M. Rubel. 2020. Guidelines for a highly efficient CuI/n-Si heterojunction solar cell. Engineering Research Express 2 (4):045019. doi:10.1088/2631-8695/abc56c.
  • Hossain, J. 2021. Design and simulation of double-heterojunction solar cells based on Si and GaAs wafers. Journal of Physics Communications 5 (8):085008. doi:10.1088/2399-6528/AC1BC0.
  • Huang, C. W., H. M. Weng, Y. L. Jiang, and H. Y. Ueng. 2008. Optimum growth of ZnSe film by molecular beam deposition. Vacuum 83 (2):313–18. doi:10.1016/J.VACUUM.2008.06.004.
  • Huang, L., F. Wang, Z. Luan, and L. Meng. 2010. Pyrite (FeS2) thin films deposited by sol–gel method. Materials Letters 64 (23):2612–15. doi:10.1016/J.MATLET.2010.08.070.
  • Juárez Díaz, G., J. Díaz-Reyes, J. Martínez-Juárez, M. Galván-Arellano, and J. A. Balderas-López. 2012. Structural characterization of AlxGa1−xSb grown by LPE. Materials Science in Semiconductor Processing 15 (5):472–79. doi:10.1016/J.MSSP.2012.03.003.
  • Jung, E. H., N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T.-Y. Yang, J. H. Noh, and J. Seo. 2019. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567 (7749):511–15. doi:10.1038/s41586-019-1036-3.
  • Kamdem, C. F., A. T. Ngoupo, F. K. Konan, H. J. T. Nkuissi, B. H. Ndjaka, and J. M. 2019. Study of the role of window layer Al0.8Ga0.2As on GaAs-based solar cells performance. Indian Journal of Science and Technology 12 (37):1–9. doi:10.17485/IJST/2019/V12I37/147207.
  • Kayes, B. M., H. Nie, R. Twist, S. G. Spruytte, F. Reinhardt, I. C. Kizilyalli, and G. S. Higashi (2011). 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. Conference Record of the IEEE Photovoltaic Specialists Conference, 000004–000008. doi:10.1109/PVSC.2011.6185831
  • Krause, E., H. Hartmann, J. Menninger, A. Hoffmann, C. Fricke, R. Heitz, B. Lummer, V. Kutzer, and I. Broser. 1994. Influence of growth non-stoichiometry on optical properties of doped and non-doped ZnSe grown by chemical vapour deposition. Journal of Crystal Growth 138 (1–4):75–80. doi:10.1016/0022-0248(94)90783-8.
  • Kuddus, A., A. B. M. Ismail, and J. Hossain. 2021. Design of a highly efficient CdTe-based dual-heterojunction solar cell with 44% predicted efficiency. Solar Energy 221:488–501. doi:10.1016/J.SOLENER.2021.04.062.
  • Kuddus, A., M. F. Rahman, J. Hossain, and A. B. M. Ismail. 2020. Enhancement of the performance of CdS/CdTe heterojunction solar cell using TiO2/ZnO bi-layer ARC and V2O5 BSF layers: A simulation approach. The European Physical Journal Applied Physics 92 (2):20901. doi:10.1051/EPJAP/2020200213.
  • Li, Q., J. Bian, J. Sun, J. Wang, Y. Luo, K. Sun, and D. Yu. 2010. Controllable growth of well-aligned ZnO nanorod arrays by low-temperature wet chemical bath deposition method. Applied Surface Science 256 (6):1698–702. doi:10.1016/J.APSUSC.2009.09.097.
  • Mondal, B. K., S. K. Mostaque, M. A. Rashid, A. Kuddus, H. Shirai, and J. Hossain. 2021. Effect of CdS and In3Se4 BSF layers on the photovoltaic performance of PEDOT:PSS/n-Si solar cells: Simulation based on experimental data. Superlattices and Microstructures 152:106853. doi:10.1016/j.spmi.2021.106853.
  • Moon, M. M. A., M. F. Rahman, M. Kamruzzaman, J. Hossain, and A. B. M. Ismail. 2021. Unveiling the prospect of a novel chemical route for synthesizing solution-processed CdS/CdTe thin-film solar cells. Energy Reports 7:1742–56. doi:10.1016/J.EGYR.2021.03.031.
  • Moon, M. M. A., M. H. Ali, M. F. Rahman, A. Kuddus, J. Hossain, and A. B. M. Ismail. 2020b. Investigation of thin-film p-BaSi2/n-CdS heterostructure towards semiconducting silicide based high efficiency solar cell. Physica Scripta 95 (3):035506. doi:10.1088/1402-4896/AB49E8.
  • Moon, M. M. A., M. H. Ali, M. F. Rahman, J. Hossain, and A. B. M. Ismail. 2020a. Design and simulation of FeSi2-based novel heterojunction solar cells for harnessing visible and near-infrared light. Physica Status Solidi (A) 217 (6):1900921. doi:10.1002/PSSA.201900921.
  • Mostaque, S. K., B. K. Mondal, and J. Hossain (2022). Simulation approach to reach the SQ limit in CIGS-based dual-heterojunction solar cell. Optik 249:168278. doi:10.1016/j.ijleo.2021.168278 (Elsevier)
  • Mostefaoui, M., H. Mazari, S. Khelifi, A. Bouraiou, and R. Dabou. 2015. Simulation of high efficiency CIGS solar cells with SCAPS-1D software. Energy Procedia 74:736–44. doi:10.1016/J.EGYPRO.2015.07.809.
  • Nakamura, S., and A. Yamamoto. 2001. Electrodeposition of pyrite(FeS2) thin films for photovoltaic cells. Solar Energy Materials and Solar Cells 65 (1–4):79–85. doi:10.1016/S0927-0248(00)00080-5.
  • Ouertani, B., J. Ouerfelli, M. Saadoun, B. Bessaïs, H. Ezzaouia, and J. C. Bernède. 2005. Characterization of FeS2-pyrite thin films synthesized by sulphuration of amorphous iron oxide films pre-deposited by spray pyrolysis. Materials Characterization 54 (4–5):431–37. doi:10.1016/J.MATCHAR.2005.01.009.
  • Patidar, D., K. S. Rathore, N. S. Saxena, K. Sharma, and T. P. Sharma. 2008. Determination of optical and electrical properties of ZnSe thin films. Journal of Modern Optics 55 (18):3041–47. doi:10.1080/09500340802315347.
  • Perna, G., V. Capozzi, M. C. Plantamura, A. Minafra, P. F. Biagi, S. Orlando, V. Marotta, and A. Giardini. 2002. Structural and optical properties of pulsed laser-deposited ZnSe films. Applied Surface Science 186:521–26. doi:10.1016/S0169-4332(01)00760-7.
  • Poulopoulos, P., S. Baskoutas, V. Karoutsos, M. Angelakeris, and N. K. Flevaris. 2005. Growth and optical absorption of thin ZnSe films. Journal of Physics. Conference Series 10 (1):064. doi:10.1088/1742-6596/10/1/064.
  • Prabukanthan, P., R. J. Soukup, N. J. Lanno, A. Sarkar, Š. Kment, H. Kmentova, C. A. Kamler, C. L. Exstrom, J. Olejniček, and S. A. Darveau (2010). Chemical bath deposition (CBD) of iron sulfide thin films for photovoltaic applications, crystallographic and optical properties. Conference Record of the IEEE Photovoltaic Specialists Conference, 2965–69. doi:10.1109/PVSC.2010.5614465
  • Rosendo, E., T. Díaz, J. Martínez, H. Juárez, and G. Juárez. 2005. Structural characterization of AlxGa1−xSb films grown at low temperatures by liquid phase epitaxy. Thin Solid Films 479 (1–2):103–06. doi:10.1016/J.TSF.2004.11.208.
  • Ruiz, C. M., N. P. Barradas, E. Alves, J. L. Plaza, V. Bermúdez, and E. Diéguez. 2004. Formation of AlxGa1−xSb films over GaSb substrates by Al diffusion. The European Physical Journal Applied Physics 27 (1–3):423–26. doi:10.1051/EPJAP:2004130.
  • Schlegel, A., and P. Wachter. 1976. Optical properties, phonons and electronic structure of iron pyrite (FeS2). Journal of Physics C: Solid State Physics 9 (17):3363. doi:10.1088/0022-3719/9/17/027.
  • Seefeld, S., M. Limpinsel, Y. Liu, N. Farhi, A. Weber, Y. Zhang, N. Berry, Y. J. Kwon, C. L. Perkins, J. C. Hemminger, et al. 2013. Iron pyrite thin films synthesized from an Fe(acac)3 Ink. Journal of the American Chemical Society 135 (11):4412–24. doi:10.1021/JA311974N.
  • Smestad, G., A. Ennaoui, S. Fiechter, H. Tributsch, W. K. Hofmann, M. Birkholz, and W. Kautek. 1990. Photoactive thin film semiconducting iron pyrite prepared by sulfurization of iron oxides. Solar Energy Materials 20 (3):149–65. doi:10.1016/0165-1633(90)90001-H.
  • Susac, D., L. Zhu, M. Teo, A. Sode, K. C. Wong, P. C. Wong, R. R. Parsons, D. Bizzotto, K. A. R. Mitchell, and S. A. Campbell. 2007. Characterization of FeS2-based thin films as model catalysts for the oxygen reduction reaction. Journal of Physical Chemistry C 111 (50):18715–23. doi:10.1021/JP073395I.
  • Tang, P., W. Wang, B. Li, L. Feng, and G. Zeng. 2019. The properties of Zn-doped AlSb thin films prepared by pulsed laser deposition. Coatings 9 (2):136. doi:10.3390/COATINGS9020136.
  • Wadia, C., A. P. Alivisatos, and D. M. Kammen. 2009. Materials availability expands the opportunity for large-scale photovoltaics deployment. Environmental Science & Technology 43 (6):2072–77. doi:10.1021/ES8019534.
  • Wang, F., L. Huang, Z. Luan, J. Huang, and L. Meng. 2012. Effect of sulfurization temperature on the surface roughening, electrical and optical properties of FeS2 films deposited by sol–gel method. Materials Chemistry and Physics 132 (2–3):505–08. doi:10.1016/J.MATCHEMPHYS.2011.11.061.
  • Yamamoto, A., M. Nakamura, A. Seki, E. L. Li, A. Hashimoto, and S. Nakamura. 2003. Pyrite (FeS2) thin films prepared by spray method using FeSO4 and (NH4)2Sx. Solar Energy Materials and Solar Cells 75 (3–4):451–56. doi:10.1016/S0927-0248(02)00205-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.