359
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Transient model of dynamic power output under PEMFC load current variations

, , , &
Pages 1543-1553 | Received 10 Aug 2021, Accepted 24 Nov 2021, Published online: 18 Jan 2022

References

  • Ahmadi, N., and S. Rostami. 2019. Enhancing the performance of polymer electrolyte membrane fuel cell by optimizing the operating parameter. Journal of the Brazilian Society of Mechanical Sciences and Engineering 41 (5):1–19. doi:10.1007/s40430-019-1720-0.
  • Banerjee, R., and S. G. Kandlikar. 2014. Two-phase pressure drop response during load transients in a PEMFC. International Journal of Hydrogen Energy 39 (33):19079–86. doi:10.1016/j.ijhydene.2014.09.102.
  • Barbir, F. 2016. PEM fuel cells: Theory and practice. Beijing: China machine press.
  • Baroutaji, A., A. Arjunan, M. Ramadan, J. Robinson, A. Alaswad, M. A. Abdelkareem, and A. G. Olabi. 2021. Advancements and prospects of thermal management and waste heat recovery of PEMFC. International Journal of Thermofluids 9:100064. doi:10.1016/j.ijft.2021.100064.
  • Bernardi, D. M., and M. W. Verbrugge. 1992. A mathematical model of the solid‐polymer‐electrolyte fuel cell. Journal of the Electrochemical Society 139 (9):2477. doi:10.1149/1.2221251.
  • Cai, Y., D. Wu, J. Sun, and B. Chen. 2021. The effect of cathode channel blockages on the enhanced mass transfer and performance of PEMFC. Energy 222:119951. doi:10.1016/j.energy.2021.119951.
  • Chen, X., Y. Chen, Q. Liu, J. Xu, Q. Liu, W. Li, X. Wang, Z. Wan, and X. Wang. 2021. Performance study on a stepped flow field design for bipolar plate in PEMFC. Energy Reports 7:336–47. doi:10.1016/j.egyr.2021.01.003.
  • Chugh, S., C. Chaudhari, K. Sonkar, A. Sharma, G. S. Kapur, and S. S. V. Ramakumar. 2020. Experimental and modelling studies of low temperature PEMFC performance. International Journal of Hydrogen Energy 45 (15):8866–74. doi:10.1016/j.ijhydene.2020.01.019.
  • Dai, C., W. Chen, Z. Cheng, Q. Li, Z. Jiang, and J. Jia. 2011. Seeker optimization algorithm for global optimization: A case study on optimal modelling of proton exchange membrane fuel cell (PEMFC). International Journal of Electrical Power & Energy Systems 33 (3):369–76. doi:10.1016/j.ijepes.2010.08.032.
  • Dang, D. K., and B. Zhou. 2021. Investigation of liquid water behaviors inside a PEMFC cathode with a leaf-like biomimetic flow field design based on Murray’s Law. International Journal of Green Energy 1–15. doi:10.1080/15435075.2021.1951739.
  • Deng, H., D. Wang, X. Xie, Y. Zhou, Y. Yin, Q. Du, and K. Jiao. 2016. Modeling of hydrogen alkaline membrane fuel cell with interfacial effect and water management optimization. Renewable Energy 91:166–77. doi:10.1016/j.renene.2016.01.054.
  • Fan, L., G. Zhang, and K. Jiao. 2017. Characteristics of PEMFC operating at high current density with low external humidification. Energy Conversion and Management 150:763–74. doi:10.1016/j.enconman.2017.08.034.
  • Gouda, E. A., M. F. Kotb, and A. A. El-Fergany. 2021. Jellyfish search algorithm for extracting unknown parameters of PEM fuel cell models: Steady-state performance and analysis. Energy 221:119836. doi:10.1016/j.energy.2021.119836.
  • Huang, L., J. Chen, Z. Liu, and M. Becherif. 2018. Adaptive thermal control for PEMFC systems with guaranteed performance. International Journal of Hydrogen Energy 43 (25):11550–58. doi:10.1016/j.ijhydene.2017.12.121.
  • Liao, Z., L. Wei, A. M. Dafalla, Z. Suo, and F. Jiang. 2021. Numerical study of subfreezing temperature cold start of proton exchange membrane fuel cells with zigzag-channeled flow field. International Journal of Heat and Mass Transfer 165:120733. doi:10.1016/j.ijheatmasstransfer.2020.120733.
  • Lim, I. S., J. Y. Park, D. G. Kang, S. H. Choi, B. Kang, and M. S. Kim. 2020. Numerical study for in-plane gradient effects of cathode gas diffusion layer on PEMFC under low humidity condition. International Journal of Hydrogen Energy 45 (38):19745–60. doi:10.1016/j.ijhydene.2020.05.048.
  • Luo, Y., and K. Jiao. 2018. Cold start of proton exchange membrane fuel cell. Progress in Energy and Combustion Science 64:29–61. doi:10.1016/j.pecs.2017.10.003.
  • Mo, Z. J., X. J. Zhu, L. Y. Wei, and G. Y. Cao. 2006. Parameter optimization for a PEMFC model with a hybrid genetic algorithm. International Journal of Energy Research 30 (8):585–97. doi:10.1002/er.1170.
  • Nanadegani, F. S., E. N. Lay, A. Iranzo, J. A. Salva, and B. Sunden. 2020. On neural network modeling to maximize the power output of PEMFCs. Electrochimica Acta 348:136345. doi:10.1016/j.electacta.2020.136345.
  • Nanadegani, F. S., E. N. Lay, and B. Sunden. 2020. Computational analysis of the impact of a micro porous layer (MPL) on the characteristics of a high temperature PEMFC. Electrochimica Acta 333:135552. doi:10.1016/j.electacta.2019.135552.
  • Wang, B., G. Zhang, H. Wang, J. Xuan, and K. Jiao. 2020. Multi-physics-resolved digital twin of proton exchange membrane fuel cells with a data-driven surrogate model. Energy and AI 1:100004. doi:10.1016/j.egyai.2020.100004.
  • Wang, B., K. Wu, Z. Yang, and K. Jiao. 2018. A quasi-2D transient model of proton exchange membrane fuel cell with anode recirculation. Energy Conversion and Management 171:1463–75. doi:10.1016/j.enconman.2018.06.091.
  • Wang, B., R. Lin, D. Liu, J. Xu, and B. Feng. 2019. Investigation of the effect of humidity at both electrode on the performance of PEMFC using orthogonal test method. International Journal of Hydrogen Energy 44 (26):13737–43. doi:10.1016/j.ijhydene.2019.03.139.
  • Wang, Y., X. Wang, X. Wang, T. Liu, T. Zhu, S. Liu, and Y. Qin. 2021. Droplet dynamic characteristics on PEM fuel cell cathode gas diffusion layer with gradient pore size distribution. Renewable Energy 178:864–74. doi:10.1016/j.renene.2021.06.135.
  • Wei, L., A. M. Dafalla, and F. Jiang. 2020. Effects of reactants/coolant non-uniform inflow on the cold start performance of PEMFC stack. International Journal of Hydrogen Energy 45 (24):13469–82. doi:10.1016/j.ijhydene.2020.03.031.
  • Wu, H., X. Li, and P. Berg. 2009. On the modeling of water transport in polymer electrolyte membrane fuel cells. Electrochimica Acta 54 (27):6913–27. doi:10.1016/j.electacta.2009.06.070.
  • Wu, K., X. Xie, B. Wang, Z. Yang, Q. Du, J. Xuan, K. Jiao, Z. Liu, and K. Jiao. 2020. Two-dimensional simulation of cold start processes for proton exchange membrane fuel cell with different hydrogen flow arrangements. International Journal of Hydrogen Energy 45 (35):17795–812. doi:10.1016/j.ijhydene.2020.04.187.
  • Xie, B., G. Zhang, Y. Jiang, R. Wang, X. Sheng, F. Xi, K. Jiao, W. Chen, Y. Zhu, and Y. Wang. 2020. “3D+ 1D” modeling approach toward large-scale PEM fuel cell simulation and partitioned optimization study on flow field. eTransportation 6:100090. doi:10.1016/j.etran.2020.100090.
  • Xu, C., and A. Faghri. 2010. Water transport characteristics in a passive liquid-feed DMFC. International Journal of Heat and Mass Transfer 53 (9–10):1951–66. doi:10.1016/j.ijheatmasstransfer.2009.12.060.
  • Yang, Z., Q. Du, Z. Jia, C. Yang, J. Xuan, and K. Jiao. 2019b. A comprehensive proton exchange membrane fuel cell system model integrating various auxiliary subsystems. Applied Energy 256:113959. doi:10.1016/j.apenergy.2019.113959.
  • Yang, Z., Q. Du, Z. Jia, C. Yang, and K. Jiao. 2019a. Effects of operating conditions on water and heat management by a transient multi-dimensional PEMFC system model. Energy 183:462–76. doi:10.1016/j.energy.2019.06.148.
  • Ye, Q., and T. Van Nguyen. 2007. Three-dimensional simulation of liquid water distribution in a PEMFC with experimentally measured capillary functions. Journal of the Electrochemical Society 154 (12):B1242. doi:10.1149/1.2783775.
  • Zhao, D., Q. He, X. Wu, Y. Xu, J. Jiang, X. Li, and M. Ni. 2021. Modeling and optimization of high temperature proton exchange membrane electrolyzer cells. International Journal of Green Energy 18 1–12. doi:10.1080/15435075.2021.1974450.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.