507
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Capacity Fading Model of Vanadium Redox Flow Battery Considering Water Molecules Migration

, ORCID Icon, , ORCID Icon, ORCID Icon &
Pages 1613-1622 | Received 28 Sep 2021, Accepted 27 Nov 2021, Published online: 21 Jan 2022

References

  • Agar, E., A. Benjamin, C. R. Dennison, D. Chen, M. A. Hickner, and E. C. Kumbur. 2014. Reducing capacity fade in vanadium redox flow batteries by altering charging and discharging currents. Journal of Power Sources 246:767–74. doi:10.1016/j.jpowsour.2013.08.023.
  • Alotto, P., M. Guarnieri, and F. Moro. 2014. Redox flow batteries for the storage of renewable energy: A review. Renewable and Sustainable Energy Reviews 29:325–35. doi:10.1016/j.rser.2013.08.001.
  • Badrinarayanan, R., J. Zhao, K. J. Tseng, and M. Skyllas-Kazacos. 2014. Extended dynamic model for ion diffusion in all-vanadium redox flow battery including the effects of temperature and bulk electrolyte transfer. Journal of Power Sources 270:576–86. doi:10.1016/j.jpowsour.2014.07.128.
  • Chen, H., X. Li, H. Gao, J. Liu, C. Yan, and A. Tang. 2019. Numerical modelling and in-depth analysis of multi-stack vanadium flow battery module incorporating transport delay. Applied Energy 247:13–23. doi:10.1016/j.apenergy.2019.04.034.
  • Gan, W., X. Ai, J. Fang, M. Yan, W. Yao, W. Zuo, and J. Wen. 2019. Security constrained co-planning of transmission expansion and energy storage. Applied Energy 239:383–94. doi:10.1016/j.apenergy.2019.01.192.
  • Kyu Kim, D., E. Jung Choi, H. Ho Song, and M. Soo Kim. 2016. Experimental and numerical study on the water transport behavior through Nafion® 117 for polymer electrolyte membrane fuel cell. Journal of Membrane Science 497:194–208. doi:10.1016/j.memsci.2015.09.053.
  • Lai, X., C. Jin, W. Yi, X. H. An, and M. Ouyang. 2021. Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: Recent advances and perspectives. Energy Storage Materials 35:470–99. doi:10.1016/j.ensm.2020.11.026.
  • Li, M., and T. Hikihara. 2008. A Coupled Dynamical Model of Redox Flow Battery Based on Chemical Reaction, Fluid Flow, and Electrical Circuit. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E91-A (7):1741–47. doi:10.1093/ietfec/e91-a.7.1741.
  • Li, M., Y. Li, and S. S. Choi. 2021. Dispatch Planning of a Wide-Area Wind Power-Energy Storage Scheme Based on Ensemble Empirical Mode Decomposition Technique. IEEE Transactions on Sustainable Energy 12 (2):1275–88. doi:10.1109/TSTE.2020.3042385.
  • Li, X., C. Xie, S. Quan, L. Huang, and W. Fang. 2018. Energy management strategy of thermoelectric generation for localized air conditioners in commercial vehicles based on 48 V electrical system. Applied Energy 231:887–900. doi:10.1016/j.apenergy.2018.09.162.
  • Li, Y., D. Ralahamilage, M. Vilathgamuwa, Y. Mishra, T. Farrell, S. S. Choi, and C. Zou. 2021. Model Order Reduction Techniques for Physics-Based Lithium-Ion Battery Management: A Survey. IEEE Industrial Electronics Magazine 2–18 doi:10.1109/MIE.2021.3100318.
  • Li, Y., Z. Wei, B. Xiong, and D. M. Vilathgamuwa. 2021. Adaptive Ensemble-Based Electrochemical-Thermal-Degradation State Estimation of Lithium-Ion Batteries. IEEE Transactions on Industrial Electronics 1 doi:10.1109/TIE.2021.3095815.
  • Lourenssen, K., J. Williams, F. Ahmadpour, R. Clemmer, and S. Tasnim. 2019. Vanadium redox flow batteries: A comprehensive review. Journal of Energy Storage 25:100844. doi:10.1016/j.est.2019.100844.
  • Minke, C., and T. Turek. 2018. Materials, system designs and modelling approaches in techno-economic assessment of all-vanadium redox flow batteries – A review. Journal of Power Sources 376:66–81. doi:10.1016/j.jpowsour.2017.11.058.
  • Oh, K., M. Moazzam, G. Gwak, and H. Ju. 2019. Water crossover phenomena in all-vanadium redox flow batteries. Electrochimica Acta 297:101–11. doi:10.1016/j.electacta.2018.11.151.
  • Oh, K., S. Won, and H. Ju. 2015. A comparative study of species migration and diffusion mechanisms in all-vanadium redox flow batteries. Electrochimica Acta 181:238–47. doi:10.1016/j.electacta.2015.03.012.
  • Peng, X., W. Yao, C. Yan, J. Wen, and S. Cheng. 2019. Two-Stage Variable Proportion Coefficient Based Frequency Support of Grid-Connected DFIG-WTs IEEE Transactions on Power Systems 35 (2):962–974. doi:10.1109/TPWRS.2019.2943520.
  • Skyllas-Kazacos, M., and L. Goh. 2012. Modeling of vanadium ion diffusion across the ion exchange membrane in the vanadium redox battery. Journal of Membrane Science 399-400:43–48. doi:10.1016/j.memsci.2012.01.024.
  • Sukkar, T., and M. Skyllas-Kazacos. 2003. Water transfer behaviour across cation exchange membranes in the vanadium redox battery. Journal of Membrane Science 222 (1–2):235–47. doi:10.1016/S0376-7388(03)00309-0.
  • Sun, C., J. Chen, H. Zhang, X. Han, and Q. Luo. 2010. Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery. Journal of Power Sources 195 (3):890–97. doi:10.1016/j.jpowsour.2009.08.041.
  • Sun, J., X. Li, X. Xi, Q. Lai, T. Liu, and H. Zhang. 2014. The transfer behavior of different ions across anion and cation exchange membranes under vanadium flow battery medium. Journal of Power Sources 271:1–7. doi:10.1016/j.jpowsour.2014.07.111.
  • Tang, A., J. Bao, and M. Skyllas-Kazacos. 2012. Thermal modelling of battery configuration and self-discharge reactions in vanadium redox flow battery. Journal of Power Sources 216:489–501. doi:10.1016/j.jpowsour.2012.06.052.
  • Wei, Z., T. M. Lim, M. Skyllas-Kazacos, N. Wai, and K. J. Tseng. 2016. Online state of charge and model parameter co-estimation based on a novel multi-timescale estimator for vanadium redox flow battery. Applied Energy 172:169–79. doi:10.1016/j.apenergy.2016.03.103.
  • Xiong, B., J. Zhao, K. J. Tseng, M. Skyllas-Kazacos, T. M. Lim, and Y. Zhang. 2013. Thermal hydraulic behavior and efficiency analysis of an all-vanadium redox flow battery. Journal of Power Sources 242:314–24. doi:10.1016/j.jpowsour.2013.05.092.
  • Xiong, B., J. Zhao, Y. Su, Z. Wei, and M. Skyllas-Kazacos. 2017. State of Charge Estimation of Vanadium Redox Flow Battery Based on Sliding Mode Observer and Dynamic Model Including Capacity Fading Factor. IEEE Transactions on Sustainable Energy 8 (4):1658–67. doi:10.1109/TSTE.2017.2699288.
  • Xiong, B., J. Zhao, Z. Wei, and M. Skyllas-Kazacos. 2014. Extended Kalman filter method for state of charge estimation of vanadium redox flow battery using thermal-dependent electrical model. Journal of Power Sources 262:50–61. doi:10.1016/j.jpowsour.2014.03.110.
  • Xiong, B., Y. Yang, J. Tang, Y. Li, Z. Wei, Y. Su, and Q. Zhang. 2019. An Enhanced Equivalent Circuit Model of Vanadium Redox Flow Battery Energy Storage Systems Considering Thermal Effects. IEEE Access 7:162297–308. doi:10.1109/ACCESS.2019.2952212.
  • You, D., H. Zhang, C. Sun, and X. Ma. 2011. Simulation of the self-discharge process in vanadium redox flow battery. Journal of Power Sources 196 (3):1578–85. doi:10.1016/j.jpowsour.2010.08.036.
  • Zhou, B., J. Fang, X. Ai, C. Yang, and J. Wen. 2020. Dynamic Var Reserve-Constrained Coordinated Scheduling of LCC-HVDC Receiving-End System Considering Contingencies and Wind Uncertainties. IEEE Transactions on Sustainable Energy 12: 469–481. doi:10.1109/TSTE.2020.3006984.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.