555
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modeling ammonia-fueled co-flow dual-channel protonic-ceramic fuel cells

, &
Pages 1568-1582 | Received 08 Aug 2021, Accepted 02 Dec 2021, Published online: 13 Jan 2022

References

  • Afif, A., N. Radenahmad, Q. Cheok, S. Shams, J. H. Kim, and A. K. Azad. 2016. Ammonia-fed fuel cells: A comprehensive review. Renewable and Sustainable Energy Reviews 60:822–35. doi:10.1016/j.rser.2016.01.120.
  • Coffey, G. W., L. R. Pederson, and P. C. Rieke. 2003. Competition between bulk and surface pathways in mixed ionic electronic conducting oxygen electrodes. J. Electrochem. Soc 150:A1139–A1151.
  • Duan, C., D. Hook, Y. Chen, J. Tong, and R. O’Hayre. 2017. Zr and Y co-doped perovskite as a stable, high performance cathode for solid oxide fuel cells operating below 500 °C. Energy Environ. Sci 10:176–82.
  • Duan, C., J. Huang, N. Sullivan, and R. O’Hayre. 2020. Proton-conducting oxides for energy conversion and storage. Appl. Phys. Rev 7:011406.
  • Duan, C., J. Tong, M. Shang, S. Nikodemski, M. Sanders, S. Ricote, A. Almansoori, and R. O’Hayre. 2015. Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 349 (6254):1321–26. doi:10.1126/science.aab3987.
  • Farhad, S., and F. Hamdullahpur. 2010. Conceptual design of a novel ammonia-fuelled portable solid oxide fuel cell system. J. Power Souces 195:3084–90.
  • Fournier, G. G. M., I. W. Cumming, and K. Hellgardt. 2006. High performance direct ammonia solid oxide fuel cell. J. Power Sources 162:198–206.
  • Giddey, S., S. P. S. Badwal, C. Munnings, and M. Dolan. 2017. Ammonia as a renewable energy transportation media. ACS Sustainable Chemistry & Engineering 5 (11):10231–39. doi:10.1021/acssuschemeng.7b02219.
  • He, F., Q. Gao, Z. Liu, M. Yang, R. Ran, G. Yang, W. Wang, W. Zhou, and Z. Shao. 2021. A new Pd doped proton conducting perovskite oxide with multiple functionalities for efficient and stable power generation from ammonia at reduced temperatures. Adv. Energy Mater 11:2003916.
  • Hinrichsen, O., F. Rosowski, M. Muhler, and G. Ertl. 1996. The microkinetics of ammonia synthesis catalyzed by cesium-promoted supported ruthenium. Chem. Eng. Sci 51:1683–90.
  • Karakaya, C., J. Huang, C. Cadigan, A. Welch, J. Kintner, J. Beach, H. Zhu, R. O’Hayre, and R. J. Kee. 2022. Development, characterization, and modeling of a high-performance Ru/B2CA catalyst for ammonia synthesis. Chem. Engr. Sci 247:116902.
  • Kee, R. J., M. E. Coltrin, P. Glarborg, and H. Zhu. 2018. Chemically reacting flow: Theory, modeling, and simulation. 2nd ed. Hoboken, NJ: Wiley.
  • Liang, M., F. He, C. Zhou, Y. Chen, R. Ran, G. Yang, W. Zhou, and Z. Shao. 2021. Nickel-doped BaCo0.4Fe0.4Zr0.1Y0.1O3-δ as a new high-performance cathode for both oxygen-ion and proton conducting fuel cells. Chem. Eng. J 420:127717.
  • Lin, Y., R. Ran, Y. Guo, W. Zhou, R. Cai, J. Wang, and Z. Shao. 2010. Proton-conducting fuel cells operating on hydrogen, ammonia and hydrazine at intermediate temperatures. International Journal of Hydrogen Energy 35:2637–42.
  • Liu, M. 1998. Equivalent circuit approximation to porous mixed-conducting oxygen electrodes in solid-state cells. J. Electrochem. Soc 145:142–54.
  • Luo, Y., Y. Shi, S. Liao, C. Chen, Y. Zhan, C. Au, and L. Jiang. 2019. Coupling ammonia catalytic decomposition and electrochemical oxidation for solid oxide fuel cells: A model based on elementary reaction kinetics. J. Power Sources 423:125–36.
  • Ma, Q., J. Ma, S. Zhou, R. Yan, J. Gao, and G. Meng. 2007. A high-performance ammonia-fueled sofc based on a YSZ thin-film electrolyte. J. Power Souces 164:86–89.
  • Ma, Q., R. Peng, Y. Lin, J. Gao, and G. Meng. 2006. A high-performance ammonia-fueled solid oxide fuel cell. J. Power Souces 161:95–98.
  • Maffei, N., L. Pelletier, J. P. Charland, and A. McFarlan. 2005. An intermediate temperature direct ammonia fuel cell using a proton conducting electrolyte. J. Power Souces 140:264–67.
  • Maffei, N., L. Pelletier, and A. McFarlan. 2008. A high performance direct ammonia fuel cell using a mixed ionic and electronic conducting anode. J. Power Sources 175:221–25.
  • Mason, E. A., and A. P. Malinauskas. 1983. Gas transport in porous media: The dusty-gas model. New York: American Elsevier.
  • Miyazaki, K., T. Okanishi, H. Muroyama, T. Matsui, and K. Eguchi. 2017. Development of Ni-Ba(Zr,Y)O3 cermet anodes for direct ammonia-fueled solid oxide fuel cells. J. Power Sources 365:148–54.
  • Okura, K., K. Miyazaki, H. Muroyama, T. Matsui, and K. Eguchi. 2018. Ammonia decomposition over Ni catalysts supported on perovskite-type oxides for the on-site generation of hydrogen. RSC Advances 8:32102–10.
  • Pelletier, L., A. McFarlan, and N. Maffei. 2005. Ammonia fuel cell using doped barium cerate proton conducting solid electrolytes. J. Power Sources 145:262–65.
  • Shabani, B., M. Hafttananian, S. Khamani, A. Ramiar, and A. A. Ranjbar. 2019. Poisoning of proton exchange membrane fuel cells by contaminants and impurities: Review of mechanisms, effects, and mitigation strategies. J. Power Sources 427:21–48.
  • Siddiqui, O., and I. Dincer. 2018. A review and comparative assessment of direct ammonia fuel cells. Thermal Science and Engineering Progress 5:568–78. doi:10.1016/j.tsep.2018.02.011.
  • Siddiqui, O., and I. Dincer. 2019. Development and performance evaluation of a direct ammonia fuel cell stack. Chem. Eng. Sci 200:285–93.
  • Stoeckl, B., V. Suboti, M. Preininger, M. Schwaiger, N. Evic, H. Schroettner, and C. Hochenauer. 2019. Characterization and performance evaluation of ammonia as fuel for solid oxide fuel cells with Ni/YSZ anodes. Electrochem. Acta 298:874–83.
  • Vøllestad, E., H. Zhu, and R. J. Kee. 2014. Interpretation of defect and gas-phase fluxes through mixed-conducting ceramics using Nernst–Planck–Poisson and integral formulations. J. Electrochem. Soc 161:F114–F124.
  • Wojcik, A., H. Middleton, I. Damopoulos, and J. Van Herle. 2003. Ammonia as a fuel in solid oxide fuel cells. J. Power Sources 118:342–48.
  • Yang, J., T. Akagi, T. Okanishi, H. Muroyama, T. Matsui, and K. Eguch. 2015. Catalytic influence of oxide component in ni-based cermet anodes for ammonia-fueled solid oxide fuel cells. Fuel Cells 15:390–97.
  • Zhang, L., and W. Yang. 2008. Direct ammonia solid oxide fuel cell based on thin proton-conducting electrolyte. J. Power Sources 179:92–95.
  • Zhang, Z., C. Karakaya, R. J. Kee, J. D. Way, and C. A. Wolden. 2019. Barium-promoted ruthenium catalysts on yittria-stabilized zirconia supports for ammonia synthesis. ACS Sustainable Chem. Eng 7:18038–47.
  • Zhu, H., and R. J. Kee. 2008. Modeling distributed charge-transfer processes in SOFC membrane electrode assemblies. J. Electrochem. Soc 155:B175–B729.
  • Zhu, H., and R. J. Kee. 2016. Membrane polarization in mixed-conducting ceramic fuel cells and electrolyzers. International Journal of Hydrogen Energy 41:2931–43.
  • Zhu, H., and R. J. Kee. 2017. Modeling protonic-ceramic fuel cells with porous composite electrodes in a button-cell configuration. J. Electrochem. Soc 164:F1400–F1411.
  • Zhu, H., R. J. Kee, V. M. Janardhanan, O. Deutschmann, and D. G. Goodwin. 2005. Modeling elementary heterogeneous chemistry and electrochemistry in solid-oxide fuel cells. J. Electrochem. Soc 152:A2427–A2440.
  • Zhu, H., S. Ricote, W. G. Coors, and R. J. Kee. 2015. Interpreting equilibrium-conductivity and conductivity-relaxation measurements to establish thermodynamic and transport properties for multiple charged defect conducting ceramics. Faraday Discussions 182:49–74.
  • Zhu, H., S. Ricote, C. Duan, R. P. O’Hayre, and R. J. Kee. 2016. Defect chemistry and transport within dense BaCe0.7Zr0.1Y0.1Yb0.1O3-δ (BCZYYb) proton-conducting membranes. J. Electrochem. Soc 165:F845–F853.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.