110
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of the different plant design parameters on the performance improvement of the concentrated solar plant in low direct normal irradiance region

ORCID Icon & ORCID Icon
Pages 582-601 | Received 27 Jun 2021, Accepted 03 May 2022, Published online: 06 Jun 2022

References

  • Abbas, R., M. J. Montes, M. Piera, and J. M. Martínez-Val. 2012. Solar radiation concentration features in linear fresnel reflector arrays. Energy Converstion and Management 54 (1):133–44. doi:10.1016/j.enconman.2011.10.010.
  • Alonso-Montesinos, J., J. Polo, J. Ballestrín, F. J. Batlles, and C. Portillo. 2019. Impact of DNI forecasting on CSP tower plant power production. Renewable Energy 138:368–77. doi:10.1016/j.renene.2019.01.095.
  • Arora, P. R. 2013. A vital role of concentrating solar power plants of Rajasthan in future electricity demand of India. International Journal of Scientific and Research Publications 3 (6):1–7.
  • Avila-Marin, A.L., J. Fernandez-Reche, and F. M. Tellez. 2013. Evaluation of the potential of central receiver solar power plants: Configuration, optimization, and trends. Applied Energy 112:274–88. doi:10.1016/j.apenergy.2013.05.049.
  • Benammar, S., A. Khellaf, and K. Mohammedi. 2014. Contribution to the modeling and simulation of solar power tower plants using energy analysis. Energy Conversion and Management 78:923–30. doi:10.1016/j.enconman.2013.08.066.
  • Bhattacharjee, S., and S. Bhakta. 2013. Analysis of system performance indices of PV generator in a cloudburst precinct. Sustainable Energy Technologies and Assessments 4:62–71. doi:10.1016/j.seta.2013.10.003.
  • Bhattacharjee, S., and R. Bhattacharjee. 2018. Comprehensive solar energy resource characterization for an intricate Indian province. International Journal of Ambient Energy, Online. doi:10.1080/01430750.2018.1531257.
  • Bhattacharjee, R., and S. Bhattacharjee. 2020. Viability of a concentrated solar power system in a low sun belt prefecture. Frontiers in Energy 14 (4):850–66. doi:10.1007/s11708-020-0664-5.
  • Bishoyi, D., and K. Sudhakar. 2017. Modeling and performance simulation of 100 MW PTC based solar thermal power plant in Udaipur India. Case Studies in Thermal Engineering 10:216–26. doi:10.1016/j.csite.2017.05.005.
  • Boudaoud, S., A. Khellaf, K. Mohammedi, and O. Behar. 2015. Thermal performance prediction and sensitivity analysis for future deployment of molten salt cavity receiver solar power plants in Algeria. Energy Conversion and Management 89:655–64. doi:10.1016/j.enconman.2014.10.033.
  • Breyer, C., and G. Knies. 2009. Global energy supply potential of concentrating solar power. In: Proceedings of the solar power and chemical energy systems. Berlin, Germany
  • Cabello, J. M., J. M. Cejudo, M. Luque, F. Ruiz, K. Deb, and R. Tewari. 2011. Optimization of the size of a solar thermal electricity plant by means of genetic algorithms. Renew Energy 36 (11):3146–53. doi:10.1016/j.renene.2011.03.018.
  • Collado, F. J., and J. Guallar. 2016. Two-Stages optimised design of the collector field of solar power tower plants. Solar Energy 135:884–96. doi:10.1016/j.solener.2016.06.065.
  • Desai, N. B., S. B. Kedare, and S. Bandyopadhyay. 2014. Optimization of design radiation for concentrating solar thermal power plants without storage. Solar Energy 107:98–112. doi:10.1016/j.solener.2014.05.046.
  • Fares, M. S. B., and S. Abderafi. 2018. Water consumption analysis of Moroccan concentrating solar power station. Solar Energy 172:146–51.
  • Guédez, R., J. Spelling, B. Laumert, and T. Fransson. 2014. Optimization of thermal energy storage integration strategies for peak power production by concentrating solar power plants. Energy Procedia 49:1642–51. doi:10.1016/j.egypro.2014.03.173.
  • Guédez, R., and D. Ferruzza. 2015. Thermocline storage for concentrated solar power techno-economic performance evaluation of a multi-layered single tank storage for solar tower power plant. KTH School of Industrial Engineering and Management.
  • Hafez, A. A., Y. F. Nassar, M. I. Hammdan, and S. Y. Alsadi. 2020. Technical and economic feasibility of utility-scale solar energy conversion systems in Saudi Arabia. Iranian Journal of Science and Technology, Transactions of Electrical Engineering 44 (1):213–65. doi:10.1007/s40998-019-00233-3.
  • International Energy Agency (IEA). 2014. Technology roadmap solar thermal electricity-2014 edition. France, Paris: IEA Publications.
  • IRENA website. 2017. Renewable capacity statistics 2017. November, 15. irena.org.
  • Izquierdo, S., C. Montañés, C. Dopazo, and N. Fueyo. 2010. Analysis of CSP plants for the definition of energy policies: The influence on electricity cost of solar multiples, capacity factors and energy storage. Energy Policy 38 (10):6215–21. doi:10.1016/j.enpol.2010.06.009.
  • Kamath, H. G., R. Majumdar, A. V. Krishnan, and R. Srikanth. 2022. Cost and environmental benefits of coal-concentrated solar power (CSP) hybridization in India. Energy 240:122805. doi:10.1016/j.energy.2021.122805.
  • Kaygusuz, K. 2011. Prospect of concentrating solar power in Turkey: The sustainable future. Renewable & Sustainable Energy Reviews 15 (1):808–14. doi:10.1016/j.rser.2010.09.042.
  • Li, Y. Q., S. M. Liao, Z. H. Rao, and G. Liu. 2014. A dynamic assessment based feasibility study of concentrating solar power in China. Renewable Energy 69:34–42. doi:10.1016/j.renene.2014.03.024.
  • Li, Y. Q., S. M. Liao, and G. Liu. 2015. Thermo-Economic multi-objective optimization for a solar dish Brayton system using NSGA-II and decision making. International Journal ofElectrical Power & Energy Systems 64:167–75. doi:10.1016/j.ijepes.2014.07.027.
  • Liu, G., M. Li, B. Zhou, Y. Chen, and S. M. Liao. 2018. General indicator for techno-economic assessment of renewable energy resources. Energy Conversion and Management 156:416–26. doi:10.1016/j.enconman.2017.11.054.
  • Liu, G., B. J. Zhou, and S. M. Liao. 2018. Inverting methods for thermal reservoir evaluation of the enhanced geothermal system. Renewable and Sustainable Energy Reviews 82:471–76. doi:10.1016/j.rser.2017.09.065.
  • Liu, J. W., Z. Y. Zeng, G. Liu, and Y. Q. Li. 2018. Proposition of a critical design direct normal irradiance for solar thermal power plant. International Journal of Energy Research 42 (13): 1–12.
  • Luo, Y., X. Du, L. Yang, C. Xu, and M. Amjad. 2017. Impacts of solar multiple on the performance of direct steam generation solar power tower plant with integrated thermal storage. Frontiers in Energy 11 (4):461–71. doi:10.1007/s11708-017-0503-5.
  • Marazgioui, S., and A. E. F. El. 2022. Impact of cooling tower technology on performance and cost-effectiveness of CSP plants. Energy Conversion and Management 258:115448. doi:10.1016/j.enconman.2022.115448.
  • Mehmet, B. 2021. Integrated solar power project based on CSP and PV technologies for Southeast of Turkey. International Journal of Green Energy. doi:10.1080/15435075.2021.1954006.
  • Mihoub, S., A. Chermiti, and H. Beltagy. 2017. Methodology of determining the optimum performances of future concentrating solar thermal power plants in Algeria. Energy 122:801–10. doi:10.1016/j.energy.2016.12.056.
  • Montes, M. J., A. Abánades, and J. M. Martínez-Val. 2009. Performance of a direct steam generation solar thermal power plant for electricity production as a function of the solar multiple. Solar Energy 83 (5):679–89. doi:10.1016/j.solener.2008.10.015.
  • Montes, M. J., A. Abánades, J. M. Martínez-Val, and M. Valdés. 2009. Solar multiple optimization for a solar-only thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors. Solar Energy 83 (12):2165–76. doi:10.1016/j.solener.2009.08.010.
  • Palenzuela, P., G. Zaragoza, D. C. Alarcón-Padilla, E. Guillén, M. Ibarra, and J. Blanco. 2011. Assessment of different configurations for combined parabolic-trough (PT) solar power and desalination plants in arid regions. Energy 36 (8):4950–58. doi:10.1016/j.energy.2011.05.039.
  • Petrollese, M., M. Cascetta, V. Tola, D. Cocco, and G. Cau. 2022. Pumped thermal energy storage systems integrated with a concentrating solar power section: conceptual design and performance evaluation. Energy 247:123516. doi:10.1016/j.energy.2022.123516.
  • Purohit, I., and P. Purohit. 2010. Techno-Economic evaluation of concentrating solar power generation in India. Energy Policy 38 (6):3015–29. doi:10.1016/j.enpol.2010.01.041.
  • Quaschning, V., R. Kistner, and W. Ortmanns. 2002. Influence of direct normal irradiance variation on the optimal parabolic trough field size: A problem solved with technical and economical simulations. Journal of Solar Energy Engineering 124 (2):160–64. doi:10.1115/1.1465432.
  • Raillani, B., H. A. L. Ouali, S. Amraqui, M. A. Moussaoui, and A. Mezrhab. 2022. Techno-Economic impact of optical soiling losses on solar tower and linear fresnel reflector power plants: Experimental and numerical investigation. International Journal of Green Energy 1–10. doi:10.1080/15435075.2021.2023877.
  • Romero, M., R. Buck, and J. E. Pacheco. 2002. An update on solar central receiver systems, projects, and technologies. Journal of Solar Energy Engineering 124 (2):98–108. doi:10.1115/1.1467921.
  • Saffar, M., M. Gouttebroze, and Z. L. Zhang. 2013. The effect of microstructure, thickness variation, and crack on the natural frequency of solar silicon wafers. Journal of Solar Energy Engineering 136 (1):021019https://doi.org/10.1115/1.4025709. doi:10.1115/1.4024248.
  • Sahoo, U., R. Kumar, P. C. Pant, and R. Chaudhary. 2016. Resource assessment for hybrid solar-biomass power plant and its thermodynamic evaluation in India. Solar Energy 139:47–57. doi:10.1016/j.solener.2016.09.025.
  • Sharma, N. K., P. K. Tiwari, and Y. R. Sood. 2012. Solar energy in India: Strategies, policies, perspectives and future potential. Renewable and Sustainable Energy Reviews 16 (1):933–41. doi:10.1016/j.rser.2011.09.014.
  • Sharma, C., A. K. Sharma, S. C. Mullick, and T. C. Kandpal. 2015. Assessment of solar thermal power generation potential in India. Renewable & Sustainable Energy Reviews 42:902–12. doi:10.1016/j.rser.2014.10.059.
  • Sharma, C., A. K. Sharma, S. C. Mullick, and T. C. Kandpal. 2016. A study of the effect of design parameters on the performance of linear solar concentrator based thermal power plants in India. Renewable Energy 87:666–75. doi:10.1016/j.renene.2015.11.007.
  • SolarPACES. 2017. CSP project around the world. http://www.solarpaces.org/csptechnologies/csp-projects-around-the-world/.
  • Srilakshmi, G., N. S. Suresh, N. C. Thirumalai, and M. A. Ramaswamy. 2017. Preliminary design of heliostat field and performance analysis of solar tower plants with thermal storage and hybridization. Sustain Energy Technol Assess 19:102–13. doi:10.1016/j.seta.2016.12.005.
  • Suresh, N. S., N. C. Thirumalai, B. S. Rao, and M. A. Ramaswamy. 2014. Methodology for sizing the solar field for parabolic trough technology with thermal storage and hybridization. Solar Energy 110:247–59. doi:10.1016/j.solener.2014.09.020.
  • Trabelsi, S. E., R. Chargui, L. Qoaider, A. Liqreina, and A. A. Guizani. 2016. Techno-Economic performance of concentrating solar power plants under the climatic conditions of the southern region of Tunisia. Energy Conversion and Management 119:203–14. doi:10.1016/j.enconman.2016.04.033.
  • Trabelsi, S. E., L. Qoaider, and A. Guizani. 2018. Investigation of using molten salt as heat transfer fluid for dry cooled solar parabolic trough power plants under desert conditions. Energy Converstion and Management 156:253–63. doi:10.1016/j.enconman.
  • Ummadisingu, A., and M. S. Soni. 2011. Concentrating solar power technology, potential and policy in India. Renewable and Sustainable Energy Reviews 15 (9):5169–75.
  • Wagner, M. J., and P. Gilman. 2008. Technical manual for the SAM physical trough model 2011. Technical Report. Golden, CO: National Renewable Energy Lab (NREL). NREL/TP-550–51825.
  • Wagner, M. J. 2011. Simulation and predictive performance modeling of utility-scale central receiver system power plants. Dissertation for the Doctoral Degree. Madison: University of Wisconsin–Madison.
  • Walter, S., D. J. Packey, and H. Thomas. 1995. A manual for the economic evaluation of energy efficiency and renewable energy technologies. Technical Report. Golden, CO: National Renewable Energy Lab (NREL). NREL/TP-462-5173.
  • Wang, T. 2011. High thermal energy storage density molten salts for parabolic trough solar power generation. Tuscaloosa, Alabama: The University of Alabama.
  • Wirz, M., M. Roesle, and A. Steinfeld. 2013. Design point for predicting year-round performance of solar parabolic trough concentrator systems. Journal of Solar Energy Engineering 136:021019. doi:10.1115/1.4025709.
  • Zhu, Y., R. R. Zhai, J. Qi, Y. Yang, M. A. Reyes-Belmonte, M. Romero, Q. Yan, et al. 2017. Annual performance of solar tower aided coal-fired power generation system. Energy 119:662–74. doi:10.1016/j.energy.2016.11.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.