420
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Electrochemical performance of binder-free Ni(OH)2/RGO battery type electrode materials for supercapacitor

, , , , , , & show all
Pages 725-733 | Received 27 Feb 2022, Accepted 29 May 2022, Published online: 18 Jun 2022

References

  • Aboutalebi, S. H., A. T. Chidembo, M. Salari, K. Konstantinov, D. Wexler, H. K. Liu, S. X. Dou. 2011. Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. Energy & Environmental Science 4 (5):1855–65. doi:10.1039/c1ee01039e.
  • Arico, A. S., Bruce P., Scrosati B., Tarascon JM., Van Schalkwijk W. 2011. Nanostructured materials for advanced energy conversion and storage devices. In Materials for sustainable energy: Acollection of peer-reviewed research and review articles from Nature Publishing Group, ed. Dusastre, Vincent , 148–159. United Kingdom: Nature Publishing Group.
  • Arshadi Rastabi, S., R. Sarraf Mamoory, N. Blomquist, M. Phadatare, H. Olin. 2020. Synthesis of a NiMoo4/3d-rGO nanocomposite via starch medium precipitation method for supercapacitor performance. Batteries 6 (1):5. doi:10.3390/batteries6010005.
  • Balducci, A., D. Belanger, T. Brousse, J. W. Long, W. Sugimoto. 2017. Perspective—A guideline for reporting performance metrics with electrochemical capacitors: From electrode materials to full devices. Journal of the Electrochemical Society 164 (7):A1487–A1488. doi:10.1149/2.0851707jes.
  • Bansal, P., Y. Khan, G. K. Nim, P. Kar. 2018. Surface modulation of solution processed organolead halide perovskite quantum dots to large nanocrystals integrated with silica gel G. Chemical Communication 54 (28):3508–11. doi:10.1039/C8CC00491A.
  • Barzegar, F., A. A. Khaleed, F. U. Ugbo, K. O. Oyeniran, D. Y. Momodu, A. Bello, J. K. Dangbegnon, N. Manyala. 2016. Cycling and floating performance of symmetric supercapacitor derived from coconut shell biomass. AIP Advances 6 (11):15306. doi:10.1063/1.4967348.
  • Brisse, A.-L., P. Stevens, G. Toussaint, O. Crosnier, T. Brousse. 2018. Ni (OH) 2 and NiO based composites: Battery type electrode materials for hybrid supercapacitor devices. Materials 11 (7):1178. doi:10.3390/ma11071178.
  • Brousse, T., D. Bélanger, and J. W. J. J. O. T. E. S. Long. 2015. To be or not to be pseudocapacitive?. Journal of the Electrochemical Society 162 (5):A5185–A5189. doi:10.1149/2.0201505jes.
  • Cho, E.-C., C.-W. Chang-Jian, K.-C. Lee, J.-H. Huang, B.-C. Ho, R.-Z. Liu, Y.-S. Hsiao. 2018. Ternary composite based on homogeneous Ni (OH) 2 on graphene with Ag nanoparticles as nanospacers for efficient supercapacitor. Chemical Engineering Journal 334:2058–67. doi:10.1016/j.cej.2017.11.175.
  • Conway, B. E. 2013. Electrochemical supercapacitors: Scientific fundamentals and technological applications. New York: Springer Science & Business Media.
  • Dubal, D., V. J. Fulari, C. D. Lokhande. 2012. Effect of morphology on supercapacitive properties of chemically grown β-Ni(OH)2 thin films. Microporous and Mesoporous Materials 151:511–16. doi:10.1016/j.micromeso.2011.08.034.
  • Feng, H., X. Wang, D. Wu. 2013. Fabrication of spirocyclic phosphazene epoxy-based nanocomposites with graphene via exfoliation of graphite platelets and thermal curing for enhancement of mechanical and conductive properties. Industrial & Engineering Chemistry Research 52 (30):10160–71. doi:10.1021/ie400483x.
  • Frackowiak, E., and F. J. C. Beguin. 2001. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39 (6):937–50. doi:10.1016/S0008-6223(00)00183-4.
  • Ghosh, D., S. Giri, M. Mandal, C. K. Das. 2014. Highperformance supercapacitor electrode material based on vertically aligned PANI grown on reduced graphene oxide/Ni(OH)2 hybrid composite. RSC Advances 4 (50):26094–101. doi:10.1039/C4RA02653E.
  • Gogotsi, Y., and R. M. Penner. 2018. Energy storage in nanomaterials–capacitive, pseudocapacitive, or battery-like?. ACS Nano 12 (3):2081–83, . doi:10.1021/acsnano.8b01914.
  • Guo, Y. G., J. S. Hu, and L. J. J. A. M. Wan. 2008. Nanostructured materials for electrochemical energy conversion and storage devices. Advance Materials 20 (15):2878–87. doi:10.1002/adma.200800627.
  • Halper, M. S. and J. C. J. T. M. C. Ellenbogen. 2006. Supercapacitors: A brief overview. McLean, VA, 1–34.
  • Hedlund, M. 2016. Electrochemical capacity of Ni mass when subjected to various conditions, and the relation to changes in the nickel hydroxide phase and crystallite size.
  • Huang, J., P. Xu, D. Cao, X. Zhou, S. Yang, Y. Li, G. Wang. 2014. Asymmetric supercapacitors based on β-Ni(OH)2 nanosheets and activated carbon with high energy density. Journal of Power Sources 246:371–76. doi:10.1016/j.jpowsour.2013.07.105.
  • Jiang, C., B. Zhao, J. Cheng, J. Li, H. Zhang, Z. Tang, J. Yang. 2015. Hydrothermal synthesis of Ni (OH)2 nanoflakes on 3D graphene foam for high-performance supercapacitors. Electrochimica Acta 173:399–407. doi:10.1016/j.electacta.2015.05.081.
  • Jiang, W., F. Hu, Q. Yan, X. Wu. 2017. Investigation on electrochemical behaviors of NiCo 2 O 4 battery-type supercapacitor electrodes: The role of an aqueous electrolyte. Inorganic Chemistry Frontiers 4 (10):1642–48. doi:10.1039/C7QI00391A.
  • Jiao, W., and L. J. C. A. P. Zhang. 2016. Preparation and electrochemical performance of cellular structure Ni (OH)2 thin film. Current Applied Physics 16 (2):115–19. doi:10.1016/j.cap.2015.11.003.
  • Jurkiewicz, K., M. Pawlyta, and A. J. C. J. O. C. R. Burian, A. C. Mody, R. N. Zare. 2018. Structure of carbon materials explored by local transmission electron microscopy and global powder diffraction probes. C 4 (2):68. doi:10.3390/c4020029.
  • Khaleed, A. A., A. Bello, J. K. Dangbegnon, F. U. Ugbo, F. Barzegar, D. Y. Momodu, M. J. Madito, T. M. Masikhwa, O. Olaniyan, N. Manyala. 2016. A facile hydrothermal reflux synthesis of Ni (OH) 2/GF electrode for supercapacitor application. Journal of Material Science 51 (12):6041–50. doi:10.1007/s10853-016-9910-y.
  • Khaleed, A. A., A. Bello, J. K. Dangbegnon, M. J. Madito, O. Olaniyan, F. Barzegar, K. Makgopa, K. O. Oyedotun, B. W. Mwakikunga, S. C. Ray. 2017. Solvothermal synthesis of surfactant free spherical nickel hydroxide/graphene oxide composite for supercapacitor application. Journal of Alloys and Compounds 721:80–91. doi:10.1016/j.jallcom.2017.05.310.
  • Khan, Y., S. Bashir, M. Hina, S. Ramesh, K. Ramesh, M. A. Mujtaba, I. Lahiri, S. Ramesh. 2020a. Effect of charge density on the mechanical and electrochemical properties of poly (acrylic acid) hydrogel electrolytes based flexible supercapacitors. Materials Today Communications 25:101558. doi:10.1016/j.mtcomm.2020.101558.
  • Khan, Y., S. Bashir, M. Hina, S. Ramesh, K. Ramesh, I. Lahiri. 2020b. Effect of salt concentration on poly (acrylic acid) hydrogel electrolytes and their applications in supercapacitor. Journal of the Electrochemical Society 167 (10):100524. doi:10.1149/1945-7111/ab992a.
  • Krause, A., P. Kossyrev, M. Oljaca, S. Passerini, M. Winter, A. Balducci. 2011. Electrochemical double layer capacitor and lithium-ion capacitor based on carbon black. Journal of Power Sources 196 (20):8836–42. doi:10.1016/j.jpowsour.2011.06.019.
  • Li, Q.-Z., H.-Y. Zhuo, H.-B. Li, Z.-B. Liu, W.-Z. Li, J.-B. Cheng. 2014. Tetrel–hydride interaction between XH 3 F (X = C, Si, Ge, Sn) and HM (M = Li, Na, BeH, MgH). The Journal of Physical Chemistry A 119 (11):2217–24. doi:10.1021/jp503735u.
  • Li, L., J. Xu, J. Lei, J. Zhang, F. McLarnon, Z. Wei, N. Li, F. Pan. 2015. A one-step, cost-effective green method to in situ fabricate Ni(OH) 2 hexagonal platelets on Ni foam as binder-free supercapacitor electrode materials. Journal of Materials Chemistry A 3 (5):1953–60. doi:10.1039/C4TA05156D.
  • Li, H., S. Wang, J. Ye, W. Liang, Y. Zhang, J. Gu. 2019. One-Pot synthesize Al-doped α-Ni(OH)2/reduced graphene oxide composite for high-performance asymmetric supercapacitors. Journal of Alloys and Compounds 799:529–37. doi:10.1016/j.jallcom.2019.05.308.
  • Liu, Y., R. Wang, and X. J. S. R. Yan. 2015. Synergistic effect between ultra-small nickel hydroxide nanoparticles and reduced graphene oxide sheets for the application in high-performance asymmetric supercapacitor. Scientific Reports 5:11095. doi:10.1038/srep11095.
  • Liu, J., R. Hu, H. Liu, J. Ma. 2017. Chips assembled cuboid-like nickel hydroxide/rgo composite material for high performance supercapacitors. Journal of Alloys and Compounds 718:349–55. doi:10.1016/j.jallcom.2017.05.198.
  • Meng, T., Q.-Q. Xu, Y.-T. Li, X.-Y. Xing, C.-S. Li, T.-Z. Ren. 2015. Graphene supported Ni-based nanocomposites as electrode materials with high capacitance. Electrochimica Acta 155:69–77. doi:10.1016/j.electacta.2014.12.113.
  • Min, S., C. Zhao, Z. Zhang, G. Chen, X. Qian, Z. Guo. 2015. Synthesis of Ni(OH) 2 /RGO pseudocomposite on nickel foam for supercapacitors with superior performance. Journal of Materials Chemistry A 3 (7):3641–50. doi:10.1039/C4TA06233G.
  • Namisnyk, A. and J. Zhu. 2003. A survey of electrochemical super-capacitor technology. Australian Universities Power Engineering Conference. New Zealand: University of Canterbury.
  • Neiva, E. G., M. M. Oliveira, M. F. Bergamini, L. H. Marcolino, A. J. G. Zarbin. 2016. One material, multiple functions: Graphene/Ni (OH) 2 thin films applied in batteries, electrochromism and sensors. Scientific Reports 6 (1):1–14. doi:10.1038/srep33806.
  • Purkait, T., G. Singh, D. Kumar, M. Singh, R. S. Dey. 2018. High-Performance flexible supercapacitors based on electrochemically tailored three-dimensional reduced graphene oxide networks. Scientific Reports 8 (1):1–13. doi:10.1038/s41598-017-18593-3.
  • Rajkumar, M., Hsu C. T., Wu, T. H., Chen, M. G., Hu C. C. 2015. Advanced materials for aqueous supercapacitors in the asymmetric design. Progress in natural science. Materials International 25 (6):527–44.
  • Volfkovich, Y. M., Mikhailin A. A., Bograchev D. A., Sosenkin V. E., Bagotsky V. S. 2012. Studies of supercapacitor carbon electrodes with high pseudocapacitance. Recent Trend in Electrochemical Science and Technology 159–182.
  • Wang, D., R. Xu, X. Wang, Y. Li. 2006. NiO nanorings and their unexpected catalytic property for CO oxidation. Nanotechnology 17 (4):979. doi:10.1088/0957-4484/17/4/023.
  • Wang, K., X. Zhang, X. Zhang, D. Chen, Q. Lin. 2016. A novel Ni (OH) 2/graphene nanosheets electrode with high capacitance and excellent cycling stability for pseudocapacitors. Journal of Power Sources 333:156–63. doi:10.1016/j.jpowsour.2016.09.153.
  • Yan, J., W. Sun, T. Wei, Q. Zhang, Z. Fan, F. Wei. 2012. Fabrication and electrochemical performances of hierarchical porous Ni (OH) 2 nanoflakes anchored on graphene sheets. Journal of Materials Chemistry 22 (23):11494–502. doi:10.1039/c2jm30221g.
  • Yang, G.-W., C.-L. Xu, and H.-L.-J.-C.-C. Li. 2008. Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chemical Communications 48:6537–39.
  • Yu, F., Z. Chang, X. Yuan, F. Wang, Y. Zhu, L. Fu, Y. Chen, H. Wang, Y. Wu, W. Li. 2018. Ultrathin NiCo 2 S 4 @graphene with a core–shell structure as a high performance positive electrode for hybrid supercapacitors. Journal of Materials Chemistry A 6 (14):5856–61. doi:10.1039/C8TA00835C.
  • Zhang, Y., F. Xu, Y. Sun, Y. Shi, Z. Wen, Z. Li. 2011. Assembly of Ni (OH) 2 nanoplates on reduced graphene oxide: A two dimensional nanocomposite for enzyme-free glucose sensing. Journal of Materials Chemistry 21 (42):16949–54. doi:10.1039/c1jm11641j.
  • Zhang, L., J. Wang, J. Zhu, X. Zhang, K. San Hui, K. N. Hui. 2013. 3D porous layered double hydroxides grown on graphene as advanced electrochemical pseudocapacitor materials. Journal of Materials Chemistry A 1 (32):9046–53. doi:10.1039/c3ta11755c.
  • Zhao, B., D. Chen, X. Xiong, B. Song, R. Hu, Q. Zhang, B. H. Rainwater, G. H. Waller, D. Zhen, Y. Ding. 2017. A high-energy, long cycle-life hybrid supercapacitor based on graphene composite electrodes. Energy Storage Materials 7:32–39. doi:10.1016/j.ensm.2016.11.010.
  • Zhong, J.-H., A.-L. Wang, G.-R. Li, J.-W. Wang, Y.-N. Ou, Y.-X. Tong. 2012. Co3o4/Ni (OH) 2 composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications. Journal of Materials Chemistry 22 (12):5656–65. doi:10.1039/c2jm15863a.
  • Zhou, J., J. Lian, L. Hou, J. Zhang, H. Gou, M. Xia, Y. Zhao, T. A. Strobel, L. Tao, F. Gao. 2015. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres. Nature Communications 6 (1):1–8. doi:10.1038/ncomms9503.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.