185
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A framework for rapid diagnosis of natural ventilation effect during early design stage using Thermal Autonomy

, , &
Pages 752-766 | Received 19 Mar 2022, Accepted 02 Jul 2022, Published online: 18 Jul 2022

References

  • Ahmad, A., A. Kumar, O. Prakash, and A. Aman. 2020. Daylight availability assessment and the application of energy simulation software – a literature review. Materials Science for Energy Technologies 3:679–89. doi:10.1016/j.mset.2020.07.002.
  • Al-Waked, R., M. Nasif, N. Groenhout, and L. Partridge. 2021. Natural ventilation of residential building Atrium under fire scenario. Case Studies in Thermal Engineering 26:101041. doi:10.1016/j.csite.2021.101041.
  • Albuquerque, D., N. Mateus, and M. Avantaggiato. 2020. Full-Scale measurement and validated simulation of cooling load reduction due to nighttime natural ventilation of a large atrium. Energy and Buildings 224:110233. doi:10.1016/j.enbuild.2020.110233.
  • The American Institute of Architects. 2012. Architect’s guide to integrating energy modeling in the design process. Accessed Sepember 15, 2021. https://www.aia.org/resources/8056-architects-guide-to-integrating-energy-modeli.
  • Anwar, M. W., Z. Ali, A. Javed, E. Din, and M. Sajid. 2021. Analysis of the effect of passive measures on the energy consumption and zero-energy prospects of residential buildings in Pakistan. Building Simulation 14:1325–42. doi:10.1007/s12273-020-0729-8.
  • Belleri, A., R. Lollini, and S. M. Dutton. 2014. Natural ventilation design: An analysis of predicted and measured performance. Building and Environment 81:123–38. doi:10.1016/j.buildenv.2014.06.009.
  • Chen, X., H. Yang, and K. Sun. 2016. A holistic passive design approach to optimize indoor environmental quality of a typical residential building in Hong Kong. Energy 113:267–81. doi:10.1016/j.energy.2016.07.058.
  • Cheng, J., D. Qi, A. Katal, and L. Wang. 2018. Evaluating wind-driven natural ventilation potential for early building design. Journal of Wind Engineering and Industrial Aerodynamics 182:160–69. doi:10.1016/j.jweia.2018.09.017.
  • China Academy of Building Research. 2015. Design standard for energy efficiency of public buildings. Beijing: Ministry of Housing and Urban-Rural Development of the People’s Republic of China.
  • China Meteorological Bureau, Climate Information Center, Climate Data Office and Tsinghua University, Department of Building Science and Technology. 2005. China standard weather data for analyzing building thermal conditions. Beijing, China: China Building Industry Publishing House.
  • Costanzo, V., and M. Donn. 2017. Thermal and visual comfort assessment of natural ventilated office buildings in Europe and North America. Energy and Buildings 140:210–23. doi:10.1016/j.enbuild.2017.02.003.
  • Craig, S. 2019. The optimal tuning, within carbon limits, of thermal mass in naturally ventilated buildings. Building and Environment 165:106373. doi:10.1016/j.buildenv.2019.106373.
  • Crawley, D. B., L. Lawrie, F. Winkelmann, W. Buhl, Y. Huang, C. Pedersen, R. Strand, R. Liesen, D. Fishere, M. Wittef, et al. 2001. EnergyPlus: Creating a new-generation building energy simulation program. Energy and Buildings 33 (4):319–31. doi:10.1016/S0378-7788(00)00114-6.
  • Cui, S., P. Stabat, and D. Marchio. 2016. Numerical simulation of wind-driven natural ventilation: Effects of Loggia and Facade porosity on air change rate. Building and Environment 106:131–42. doi:10.1016/j.buildenv.2016.03.021.
  • Deru, M., K. Field, D. Studer, K. Benne, B. Griffith, P. Torcellini, B. Liu, M. Halverson, D. Winiarski, M. Yazdanian, et al. 2011. U.S. Department of Energy commercial reference building models of the national building stock. Technical Report of National Renewable Energy Laboratory, 1–118.
  • Emmerich, S., B. Polidoro, and J. W. Axley. 2011. Impact of adaptive thermal comfort on climatic suitability of natural ventilation in office buildings. Energy and Buildings 43 (9):2101–07. doi:10.1016/j.enbuild.2011.04.016.
  • Feng, W., K. Huang, M. Levine, N. Zhou, and S. Zhang. 2014. Evaluation of energy savings of the New Chinese commercial building energy standard. Proceedings of the 2014 Summer Study Energy Efficiency in Buildings, 121–32. Pacific Grove, CA.
  • Gan, V. J. L., B. Wang, C. Chan, A. Weerasuriya, and J. Cheng. 2022. Physics-Based, data-driven approach for predicting natural ventilation of residential high-rise buildings. Building Simulation 15 (1):129–48. doi:10.1007/s12273-021-0784-9.
  • Gang, T. 2012. Natural ventilation performance of single room building with fluctuating wind speed and thermal mass. Journal of Central South University of Technology 19 (3):733–39. doi:10.1007/s11771-012-1065-7.
  • Goia, F. 2016. Search for the optimal window-to-wall ratio in office buildings in different European climates and the implications on total energy saving potential. Solar Energy 132:467–92. doi:10.1016/j.solener.2016.03.031.
  • Heracleous, C., and A. Micheal. 2018. Assessment of overheating risk and the impact of natural ventilation in educational buildings of Southern Europe under current and future climatic conditions. Energy 165:1228–39. doi:10.1016/j.energy.2018.10.051.
  • Hiyama, K., and L. Glicksman. 2015. Preliminary design method for naturally ventilated buildings using target air change rate and natural ventilation potential maps in the United States. Energy 89:655–66. doi:10.1016/j.energy.2015.06.026.
  • Hiyama, K., Y. Omodaka, and Y. Yamamoto. 2020. Evaluation method of passive design on integrative design process evaluation of natural ventilation performance applying Thermal Autonomy. Journal of Environmental Engineering 85:655–63. (in Japanese).
  • Holford, J., and G. Hunt. 2003. Fundamental atrium design for natural ventilation. Building and Environment 38:409–26. doi:10.1016/S0360-1323(02)00019-7.
  • Hou, Y., C. Chen, Y. Zhou, Z. Yang, and S. Wei. 2021. Investigation of natural ventilation performance of large space circular coal storage dome. Building Simulation 14 (4):1077–93. doi:10.1007/s12273-020-0700-8.
  • Jakubiec, J. A., M. Doelling, O. Heckmann, R. Thambiraj, and V. Jathar. 2017. Dynamic building environment dashboard: Spatial simulation data visualization in sustainable design. Technology| Architecture + Design 1 (1):27–40. doi:10.1080/24751448.2017.1292791.
  • Ko, W., S. Schiavon, G. Brager, and B. Levitt. 2018. Ventilation, thermal and luminous autonomy metrics for an integrated design process. Building and Environment 145:153–65. doi:10.1016/j.buildenv.2018.08.038.
  • Kyritsi, E., and A. Michael. 2020. An assessment of the impact of natural ventilation strategies and window opening patterns in office buildings in the Mediterranean basin. Building and Environment 175:106384. doi:10.1016/j.buildenv.2019.106384.
  • Levitt, B., M. Ubbelohde, G. Loisos, and N. Brown. 2013. Thermal autonomy as metric and design process. Proceedings of CaGBAC National Conference and Expo 2013, (SB 2013), 58–69. Vancouver, Canada.
  • Li, W., and Q. Chen. 2021. Design-Based natural ventilation cooling potential evaluation for buildings in China. Journal of Building Engineering 41:102345. doi:10.1016/j.jobe.2021.102345.
  • Liu, X., L. Yang, and S. Niu. 2021. Research on the effect of different position on classroom ventilation in a “L” type teaching building. Journal of Building Engineering 33:101852. doi:10.1016/j.jobe.2020.101852.
  • Lo Verso, V., G. Mihaylov, A. Pellegrino, and F. Pellerey. 2017. Estimation of the daylight amount and the energy demand for lighting for the early design stages: Definition of a set of mathematical models. Energy and Buildings 155:151–65. doi:10.1016/j.enbuild.2017.09.014.
  • Lu, S., J. Li, and B. Lin. 2020. Reliability analysis of an energy-based form optimization of office buildings under uncertainties in envelope and occupant parameters. Energy and Buildings 209:109707. doi:10.1016/j.enbuild.2019.109707.
  • Ma, P., L. Wang, and N. Guo. 2015. Maximum window-to-wall ratio of a thermally autonomous building as a function of envelope U-value and ambient temperature amplitude. Applied Energy 146:84–91. doi:10.1016/j.apenergy.2015.01.103.
  • Malkawi, A., B. Yan, Y. Chen, and Z. Tong. 2016. Predicting thermal and energy performance of mixed-mode ventilation using an integrated simulation approach. Building Simulation 9 (3):335–46. doi:10.1007/s12273-016-0271-x.
  • Mirzazade Akbarpoor, A., Z. Moghtader Gilvaei, A. Haghighi Poshtiri, and L. Zhong. 2022. A hybrid domed roof and evaporative cooling system: Thermal comfort and building energy evaluation. Sustainable Cities and Society 80:103756. doi:10.1016/j.scs.2022.103756.
  • Nasrollahi, N., and P. Ghobadi. 2022. Field measurement and numerical investigation of natural cross-ventilation in high-rise buildings; Thermal comfort analysis. Applied Thermal Engineering 211:118500. doi:10.1016/j.applthermaleng.2022.118500.
  • Nejat, P., H. Hussen, F. Fadli, H. Chaudhry, J. Calautit, and F. Jomehzadeh. 2020. Indoor Environmental Quality (IEQ) analysis of a two-sided windcatcher integrated with anti-short-circuit device for low wind conditions. Processes 8 (7):840. doi:10.3390/pr8070840.
  • O’Brien, W., and I. Bennet. 2016. Simulation-Based evaluation of high-rise residential building thermal resilience. ASHRAE Transaction 122:455–68.
  • Oldham, D., M. De Salis, and S. Sharples. 2004. Reducing the ingress of urban noise through natural ventilation openings. Indoor Air 14 (s8):118–26. doi:10.1111/j.1600-0668.2004.00294.x.
  • Orme, M., M. Liddament, and A. Wilson. 1998. Numerical data for air infiltration and natural ventilation calculations. Technical Note 44, UK: Air Infiltration and Ventilation Centre.
  • Oropeza-Perez, I., and P. Østergaard. 2014. Potential of natural ventilation in temperate countries - a case study of Denmark. Applied Energy 114:520–30. doi:10.1016/j.apenergy.2013.10.008.
  • Pesic, N., J. Calzada, and A. Alcojor. 2018. Natural ventilation potential of the Mediterranean coastal region of Catalonia. Energy and Buildings 169:236–44. doi:10.1016/j.enbuild.2018.03.061.
  • Raji, B., M. Tenpierik, R. Bokel, and A. van den Dobbelsteen. 2020. Natural summer ventilation strategies for energy-saving in high-rise buildings: A case study in the Netherlands. International Journal of Ventilation 19 (1):25–48. doi:10.1080/14733315.2018.1524210.
  • Ran, J., and M. Tang. 2018. Passive cooling of the green roofs combined with night-time ventilation and walls insulation in hot and humid regions. Sustainable Cities and Society 38:466–75. doi:10.1016/j.scs.2018.01.027.
  • Reinhart, C., and O. Walkenhorst. 2001. Validation of dynamic RADIANCE-based daylight simulations for a test office with external blinds. Energy and Buildings 33 (7):683–97. doi:10.1016/S0378-7788(01)00058-5.
  • Sakiyama, N., L. Mazzaferro, J. Carlo, T. Bejat, and H. Garrecht. 2021. Natural ventilation potential from weather analyses and building simulation. Energy and Buildings 231:110596. doi:10.1016/j.enbuild.2020.110596.
  • Shafiei Fini, A., and A. Moosavi. 2016. Effects of “wall angularity of atrium” on “buildings natural ventilation and thermal performance” and CFD model. Energy and Buildings 121:265–83. doi:10.1016/j.enbuild.2015.12.054.
  • Si, B., Z. Tian, X. Jin, X. Zhou, P. Tang, and X. Shi. 2016. Performance indices and evaluation of algorithms in building energy efficient design optimization. Energy 114:100–12. doi:10.1016/j.energy.2016.07.114.
  • Sivakumar, P., H. Palanthandalam-Madapusi, and T. Dang. 2010. Control of natural ventilation for aerodynamic high-rise buildings. Building Simulation 3 (4):311–25. doi:10.1007/s12273-010-0014-3.
  • Spentzou, E., M. Cook, and S. Emmitt. 2018. Natural ventilation strategies for indoor thermal comfort in Mediterranean apartments. Building Simulation 11 (1):175–91. doi:10.1007/s12273-017-0380-1.
  • Tejero-González, A., M. Andrés-Chicote, P. García-Ibáñez, E. Velasco-Gómez, and F. Rey-Martínez. 2016. Assessing the applicability of passive cooling and heating techniques through climate factors: An overview. Renewable and Sustainable Energy Reviews 65:727–42. doi:10.1016/j.rser.2016.06.077.
  • Tong, Z., Y. Chen, A. Malkawi, Z. Liu, and R. Freeman. 2016. Energy saving potential of natural ventilation in China: The impact of ambient air pollution. Applied Energy 179:660–68. doi:10.1016/j.apenergy.2016.07.019.
  • Tong, Z., Y. Luo, and J. Zhou. 2021. Mapping the urban natural ventilation potential by hydrological simulation. Building Simulation 14 (2):351–64. doi:10.1007/s12273-020-0755-6.
  • Wang, L., P. Ma, E. Hu, D. Giza-Sisson, G. Mueller, and N. Guo. 2014. A study of building envelope and thermal mass requirements for achieving Thermal Autonomy in an office building. Energy and Buildings 78:79–88. doi:10.1016/j.enbuild.2014.04.015.
  • Wang, B., and A. Malkawi. 2019. Design-Based natural ventilation evaluation in early stage for high performance buildings. Sustainable Cities and Society 45:25–37. doi:10.1016/j.scs.2018.11.024.
  • Weerasuriya, A., X. Zhang, V. Gan, and Y. Tan. 2019. A holistic framework to utilize natural ventilation to optimize energy performance of residential high-rise buildings. Building and Environment 153:218–32. doi:10.1016/j.buildenv.2019.02.027.
  • Ye, X., Z. Zhou, Z. Lian, H. Liu, C. Li, and Y. Liu. 2006. Field study of a thermal environment and adoptive model in Shanghai. Indoor Air 16 (4):320–26. doi:10.1111/j.1600-0668.2006.00434.x.
  • Yoon, N., L. Norford, A. Malkawi, H. Samuelson, and M. Pietter. 2020. Dynamic metrics of natural ventilation cooling effectiveness for interactive modeling. Building and Environment 180:106994. doi:10.1016/j.buildenv.2020.106994.
  • Zhong, H., Y. Sun, J. Shang, F. Zhao, H. Kikumoto, C. Jimenez-Bescos, and X. Liu. 2022. Single-Sided natural ventilation in buildings: A critical literature review. Building and Environment 212:108797. doi:10.1016/j.buildenv.2022.108797.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.