533
Views
1
CrossRef citations to date
0
Altmetric
Review Article

A comprehensive state-of-the-art review of sustainable thermal insulation system used in external walls for reduction in energy consumption in buildings

ORCID Icon & ORCID Icon
Pages 895-913 | Received 24 May 2022, Accepted 28 Aug 2022, Published online: 11 Sep 2022

References

  • Abubakar, M., A. Raji, and M. Abdulsalam Hassan. 2018. Comparative study of thermal insulation boards from leaf and bark fibres of camel’s foot (Piliostigma thonningii L. Nigerian Journal of Technology 37 (1):108. doi:10.4314/njt.v37i1.14.
  • Adela S, A. R., M. Del Mar Barbero-Barrera, and T. Ruiz-Téllez. 2019. Microstructural and thermo-physical characterization of a water Hyacinth Petiole for thermal insulation particle board manufacture. Materials 12 (4):560. doi:10.3390/ma12040560.
  • Aditya, L., T. Mahlia, B. Rismanchi, H. Ng, M. Hasan, and H. Metselaar. 2017. A review on insulation materials for energy conservation in buildings, renew.Sustain. Energy Review 73:1352–65.
  • Aftab, A., M. Maslehuddin, and L. M. Al-Hadhrami. 2014. In situ measurement of thermal transmittance and thermal resistance of hollow reinforced precast concrete walls. Energy and Buildings 84:132–41. doi:10.1016/j.enbuild.2014.07.048.
  • Ahmad, M., A. Bontemps, H. Sallée, and D. Quenard. 2006. Thermal testing and numerical simulation of a prototype cell using light wallboards coupling vacuum isolation panels and phase change material. Energy and Buildings 38 (6):673–81. doi:10.1016/j.enbuild.2005.11.002.
  • Alam, M., P. Rajeev, J. Sanjayan, P.X.W. Zou, and J. Wilson. 2018. Mitigation of heat stress risks through building energy efficiency upgrade: A case study of Melbourne, Australia. Australian Journal of Civil Engineering 16 (1):64–78. doi:10.1080/14488353.2018.1453331.2018/01/02.
  • Alam, H. S. M., S. Suresh, D. A. G. Redpath, and D. A. G. Redpath. 2017. Energy and economic analysis of vacuum insulation panels (VIPs) used in non-domestic buildings. Applied Energy 188:1–8. doi:10.1016/j.apenergy.2016.11.115.
  • Alexander, M. T., G. Sant, and L. Pilon. 2015. Diurnal thermal analysis of microencapsulated PCM-concrete composite walls. Energy Conversion and Management 93:215–27. doi:10.1016/j.enconman.2014.12.078.
  • Al-Homoud, M.S. 2005. Performance characteristics and practical applications of common building thermal insulation materials. Building and Environment 40 (3):353–66. doi:10.1016/j.buildenv.2004.05.013.
  • Al-Jabri, K. S., A. W. Hago, A. S. Al-Nuaimi, and A. H. Al-Saidy. 2005. Concrete blocks for thermal insulation in hot climate. Cement and Concrete Research 35 (8):1472–79. doi:10.1016/j.cemconres.2004.08.018.
  • Almarri, M., M. Al-Ghouti, V. C. Shunmugasamy, N. Zouari, and A. Khitab. 2021. Date pits based nanomaterials for thermal insulation applications—towards energy efficient buildings in Qatar. PLOS ONE 16 (3):e0247608. doi:10.1371/journal.pone.0247608.
  • Alotaibi, S.S., and S. Riffat. 2014. Vacuum insulated panels for sustainable buildings: A review of research and applications. International Journal of Energy Research 38 (1):1–19. doi:10.1002/er.3101.
  • Alsayed, M.F., and R.A. Tayeh. 2019. Life cycle cost analysis for determining optimal insulation thickness in Palestinian buildings. Journal of Building Engineering 22:101–12. doi:10.1016/j.jobe.2018.11.018.
  • Amir, S., R. Ahmadi, and A. Malekpour. 2021. Utilising latent thermal energy storage in building envelopes to minimise thermal loads and enhance comfort. Journal of Energy Storage 33:102–19.
  • Amiri Rad, E., and E. Fallahi. 2019. Optimizing the insulation thickness of external wall by a novel 3E (energy, environmental, economic) method. Construction and Building Materials 205:196–212. doi:10.1016/j.conbuildmat.2019.02.006.
  • Anand, P. 2015. Chemical and mechanical treatment of banana waste to develop an efficient insulating material. Biochemical Analysis Biochemistry 4:1–4.
  • Anastaselos, D., S. Oxizidis, and A.M. Papadopoulos. 2011. Energy, environmental and economic optimization of thermal insulation solutions by means of an integrated decision support system. Energy and Buildings 43 (2–3):686–94. doi:10.1016/j.enbuild.2010.11.013.
  • Arslanoglu, N., and A. Yigit. 2017. Investigation of efficient parameters on optimum insulation thickness based on theoretical‐taguchi combined method. Environmental Progress & Sustainable Energy 36 (6):1824–31. doi:10.1002/ep.12628.
  • Ascione, F., N. Bianco, G. Maria Mauro, and D.F. Napolitano. 2019. Building envelope design: Multi-objective optimization to minimize energy consumption, global cost and thermal discomfort. application to different Italian climatic zones. Energy 174:359–74. doi:10.1016/j.energy.2019.02.182.
  • Baetens, R., B.P. Jelle, A. Gustavsen, and S. Grynning. 2010. Gas-Filled panels for building applications: A state-of-the-art review. Energy and Buildings 42 (11):1969–75. doi:10.1016/j.enbuild.2010.06.019.2010/11/01.
  • Barnett, G., M. Beaty, D. Chen, S. Mcfallan, J. Meyers, M. Nguyen, Z. Ren, A. Spinks, and X. Wang. 2013. Pathways to climate adapted and healthy low income housing. National Climate Adaptation Research Facility, Gold Coast 95:1–108. https://nccarf.edu.au/wp-content/uploads/2019/03/Barnett_2013_Climate_adapted_low_income_housing.pdf
  • Barrau, J., M. Ibanez, and F. Badia. 2014. Impact of the insulation materials’ features on the determination of optimum insulation thickness. International Journal of Energy and Environmental Engineering 5 (2–3):1–9. doi:10.1007/s40095-014-0079-3.
  • Barrau, J., M. Ibanez, and F. Badia. 2014. Impact of the optimization criteria on the determination of the insulation thickness. Energy and Buildings 76:459–69. doi:10.1016/j.enbuild.2014.03.017.
  • Barreca, F., A. M. Gabarron, J. A. F. Yepes, and J. J. P. Pérez. 2019. Innovative use of giant reed and cork residues for panels of buildings in Mediterranean area, Resour. Resources, Conservation and Recycling 140:259–66. doi:10.1016/j.resconrec.2018.10.005.
  • Basim, A.-J., A.-H. Mourad, W. Hittini, M. Hassan, and S. Hameedi. 2019. Traditional, state-of-the-art and renewable thermal building insulation materials: An overview. Construction and Building Materials 214:709–35. doi:10.1016/j.conbuildmat.2019.04.102.
  • Behnam, R., A. Omidvar, and N. Monghasemi. 2020. Optimal insulation thickness of common classic and modern exterior walls in different climate zones of Iran. Journal of Building Engineering 27:100954. ISSN 2352-7102. doi:10.1016/j.jobe.2019.100954.
  • Benmansour, N., B. Agoudjil, A. Gherabli, A. Kareche, and A. Boudenne. 2014. Thermal and mechanical performance of natural mortar reinforced with date palm fibers for use as insulating materials in building. Energy and Buildings 81:98–104. doi:10.1016/j.enbuild.2014.05.032.
  • Berardi, U., and C. Sprengard. 2020. An overview of and introduction to current researches on super insulating materials for high-performance buildings. Energy and Buildings 214:109890. 2020/05/01. doi:10.1016/j.enbuild.2020.109890.
  • Binici, H., M. Eken, M. Dolaz, O. Aksogan, and M. Kara. 2014. An environmentally friendly thermal insulation material from sunflower stalk, textile waste and stubble fibres. Construction and Building Materials 51:24–33. doi:10.1016/j.conbuildmat.2013.10.038.
  • Binici, R., A. K. Gemci, H. H. Solak, and H. H. Solak. 2012. Investigating sound insulation, thermal conductivity and radioactivity of chipboards produced with cotton waste, fly ash and barite. Construction and Building Materials 30:826–32. doi:10.1016/j.conbuildmat.2011.12.064.
  • Błaszczynski, T., A. Slosarczyk, and M. Morawski. 2013. Synthesis of silica aerogel by supercritical drying method. Procedia Engineering 57:200–06. 2013/01/01. doi:10.1016/j.proeng.2013.04.028.
  • Bojic, M., M. Miletic, and L. Bojic. 2014. Optimization of thermal insulation to achieve energy savings in low energy house (refurbishment). Energy Conversion and Management 84:681–90. doi:10.1016/j.enconman.2014.04.095.
  • Bolattürk, A. 2008. Optimum insulation thicknesses for building walls with respect to cooling and heating degree-hours in the warmest zone of Turkey. Building and Environment 43 (6):1055–64. doi:10.1016/j.buildenv.2007.02.014.
  • Bozic, J. 2015. Nano insulation materials for energy efficient buildings. Contemporary Materials (Renewable Energy Sources) VI:376.
  • Briga-Sá, A., D. Nascimento, N. Teixeira, J. Pinto, F. Caldeira, H. Varum, and A. Paiva. 2013. Textile waste as an alternative thermal insulation building material solution. Construction and Building Materials 38:155–60. doi:10.1016/j.conbuildmat.2012.08.037.
  • Buratti, C., E. Belloni, E. Lascaro, F. Merli, and P. Ricciardi. 2018. Rice husk panels for building applications: Thermal, acoustic and environmental characterization and comparison with other innovative recycled waste materials. Construction and Building Materials 171:338–49. doi:10.1016/j.conbuildmat.2018.03.089.
  • Buratti, C., and E. Moretti. 2012. Experimental performance evaluation of aerogel glazing systems. Applied Energy 97:430–37. doi:10.1016/j.apenergy.2011.12.055.
  • Cabeza, L. F., A. Castell, C. Barreneche, A. de Garcia, and A. I. Fernández. 2011. Materials used as PCM in thermal energy storage in buildings: A review. Renewable and Sustainable Energy Reviews 15 (3):1675–95. doi:10.1016/j.rser.2010.11.018.
  • Cai, S., B. Zhang, and L. Cremaschi. 2017. Review of moisture behavior and thermal performance of polystyrene insulation in building applications. Building and Environment 123:50–65. doi:10.1016/j.buildenv.2017.06.034.
  • Carty, L. 2017. Analysis of the effects of aerogel insulation on the thermal performance of existing building envelopes, master of engineering, 9013398. United Kingdom: Edinburgh Napier University.
  • Celik, S., R. Family, and M. P. Menguc. 2016. Analysis of perlite and pumice-based building insulation materials. Journal of Building Engineering 6:105–11. doi:10.1016/j.jobe.2016.02.015.
  • Cellura, M., F. Guarino, S. Longo, and M. Mistretta. 2014. Energy life-cycle approach in net zero energy buildings balance: Operation and embodied energy of an Italian case study. Energy and Buildings 72:371–81. doi:10.1016/j.enbuild.2013.12.046.
  • Cetiner, I., and A. D. Shea. 2018. Wood waste as an alternative thermal insulation for buildings. Energy and Buildings 168:374–84. doi:10.1016/j.enbuild.2018.03.019.
  • Charoenvai, S., J. Khedari, J. Hirunlabh, C. Asasutjarit, B. Zeghmati, D. Quenard, and N. Pratintong. 2005. Heat and moisture transport in durian fiber based lightweight construction materials. Solar Energy 78 (4):543–53. doi:10.1016/j.solener.2004.03.013. ISSN 0038-092X.
  • Chengbin, Z., Y. Chen, L. Wu, and M. Shi. 2011. Thermal response of brick wall filled with phase change materials (PCM) under fluctuating outdoor temperatures. Energy and Buildings 43 (12):3514–20. doi:10.1016/j.enbuild.2011.09.028.
  • Cheng, C., S. Pouffary, N. Svenningsen, and M. Callaway (2008) The kyoto protocol, the clean development mechanism and the building and construction sector – a Report for the UNEP sustainable buildings and construction initiative, United Nations Environment Programme, Paris, France.
  • Chen, B., W. Zhen, and L. Ning. 2012. Experimental research on properties of high-strength foamed concrete. Journal of Materials in Civil Engineering 24(1):113–18.
  • Copiello, S. 2016. Economic implications of the energy issue: Evidence for a positive non-linear relation between embodied energy and construction cost. Energy and Buildings 123:59–70. doi:10.1016/j.enbuild.2016.04.054.
  • Cuce, E., and P.M. Cuce (2014), C.J. Wood, S.B. Riffat. Toward aerogel based thermal superinsulation in buildings: A comprehensive review. Renewable and Sustainable Energy Reviews 34:273–99. doi:10.1016/j.rser.2014.03.017.
  • D’Agostino, D., F. Rossi, M. Marigliano, C. Marino, and F. Minichiello. 2019. Evaluation of the optimal thermal insulation thickness for an office building in different climates by means of the basic and modified “cost-optimal” methodology. Journal of Building Engineering 24:100743. doi:10.1016/j.jobe.2019.100743.
  • Deng, J., R. Yao, W. Yu, Q. Zhang, and B. Li. 2019. Effectiveness of the thermal mass of external walls on residential buildings for part-time part-space heating and cooling using the state-space method. Energy and Buildings 190:155–71. doi:10.1016/j.enbuild.2019.02.029.
  • Deshmukh, R., and A. More. 2014. Low energy green materials by embodied energy analysis. International Journal of Civil and Structural Engineering Research 2 (1):58–65.
  • Dixit, M.K., C.H. Culp, and J.L. Fernandez-Solís. 2013. System boundary for embodied energy in buildings: A conceptual model for definition. Renewable and Sustainable Energy Reviews 21:153–64. doi:10.1016/j.rser.2012.12.037.
  • Djamai, Z. I., A. S. Larbi, and F. Salvatore. 2020. A non-paraffinic PCM modified textile reinforced concrete sand-wich panel. In CIGOS 2019, Innovation for Sustainable Infrastructure. Lecture Notes in Civil Engineering, 2019, C. Ha-Minh; D. Dao; F. Benboudjema; S. Derrible; D. Huynh, and A. Tang. ed., Vol. 54, Singapore: Springer. 10.1007/978-981-15-0802-8_70
  • Dodoo, A., and L. Gustavsson. 2016. Energy use and overheating risk of swedish multi-storey residential buildings under different climate scenarios. Energy 97:534–48. doi:10.1016/j.energy.2015.12.086.
  • Dombayci, Ö. A., H. Kemal Ozturk, Ö. Atalay, Ş. Güven Acar, and E. Yilmaz Ulu. 2016. The impact of optimum insulation thickness of external walls to energy saving and emissions of CO2 and SO2 for Turkey different climate regions. Energy and Power Engineering 8 (11):327–48. doi:10.4236/epe.2016.811030.
  • Duman, Ö., A. Koca, R. Can Acet, M. Gürsel Çetin, and A. Zafer Gemici (2015) A study on optimum insulation thickness in walls and energy savings based on degree day approach for 3 different demo-sites in Europe. In Proceedings of International Conference CISBAT 2015 Future Buildings and Districts Sustainability from Nano to Urban Scale, no. CONF, United Kingdom, pp. 155–60. LESO-PB, EPFL.
  • Dylewski, R., and J. Adamczyk. 2011. Economic and environmental benefits of thermal insulation of building external walls. Building and Environment 46 (12):2615–23. doi:10.1016/j.buildenv.2011.06.023.
  • Fantucci, S., S. Garbaccio, A. Lorenzati, and M. Perino. 2019.Thermo-Economic analysis of building energy retrofits using VIP - vacuum insulation panels. Energy and Buildings 196: 269–79.doi: 10.1016/j.enbuild.2019.05.019.
  • Farzane, G., H. R. Saba, and E. Shakeri. 2014. Impact of insulation on reduction of energy consumption in buildings based on climate in Iran. American-Eurasian Journal of Agricultural & Environmental Sciences 14 (2):97–103.
  • Fujimoto, H. 2009. High thermal insulation technology contributing to residential energy saving. Quarterly Review 33:69–88.
  • Gao, T., B.P. Jelle, T. Ihara, and A. Gustavsen. 2014. Insulating glazing units with silica aerogel granules: The impact of particle size. Applied Energy 128:27–34. doi:10.1016/j.apenergy.2014.04.037.
  • Gao, T., B.P. Jelle, L.I. Sandberg, and A. Gustavsen. 2013. Monodisperse hollow silica nanospheres for nano insulation materials: Synthesis, characterization, and life cycle assessment. ACS Applied Materials & Interfaces 5 (3):761–67. doi:10.1021/am302303b.
  • German, C. (2010) Comparison of thermal insulation materials for building envelopes of multi-storey buildings in saint-Petersburg, Finland, T630KA: Bachelor Thesis, Mikkeli University of Applied Sciences.
  • Ghislain, T., and F. Cyrille. 2016. The determination of the most economical combination between external wall and the optimum insulation material in Cameroonian’s buildings. Journal of Building Engineering 9. doi:10.1016/j.jobe.2016.12.008.
  • Gonçalves, M., N. Simoes, C. Serra, and I. Flores-Colen. 2020. A review of the challenges posed by the use of vacuum panels in external insulation finishing systems. Applied Energy 257:114028. 2020/01/01. doi:10.1016/j.apenergy.2019.114028.
  • Gounni, A., M. Mabrouk, M. El Wazna, A. Kheiri, M. Alami, E. B. Abdeslam, and O. Cherkaoui. 2018.Investigation on the contaminant distribution with improved ventilation system in hospital isolation rooms: Effect of supply and exhaust air diffuser configurations. Applied Thermal Engineering 148: 208–18.doi: 10.1016/j.applthermaleng.2018.11.023.
  • Günkaya, Z., A. Özkan, and M. Banar. 2021. The effect of energy-saving options on environmental performance of a building: A combination of energy audit–life cycle assessment for a university building. Environmental Science and Pollution Research 28 (7):1–11. doi:10.1007/s11356-020-11141-z.
  • Hadded, A., S. Benltoufa, F. Fayala, and A. M. Jemni. 2016. Thermo physical characterisation of recycled textile materials used for building insulating. Journal of BuildingEngineering 5:34–40.
  • Hamdan, M., M. Khatabi, J. Al-Ajlouni, E. Al-Antary, M. Hamdan, R. Rahmeh, D. Alhattab, O. Samara, M. Yasin, and A. A. Abdullah. 2017. Intra-Articular injection of expanded autologous bone marrow mesenchymal cells in moderate and severe knee osteoarthritis is safe: A phase I/II study. Journal of Orthopaedic Surgery and Research 12 (1). doi:10.1186/s13018-017-0689-6.
  • Hanifi, B., M. Eken, M. Dolaz, O. Aksogan, and M. Kara. 2016. An environmentally friendly thermal insulation material from sunflower stalk, textile waste and stubble fibres. Construction and Building Materials 51:24–33. ISSN 0950-0618. doi:10.1016/j.conbuildmat.2013.10.038.
  • Hasan, S. D., M. Mohamed, and M. Ziara. 2008. Enhancing concrete strength and thermal insulation using thermoset plastic waste. International Journal of Polymeric Materials and Polymeric Biomaterials 57 (7):635–56. doi:10.1080/00914030701551089.
  • Higueras, E., and O. Omar (2016). Smart nanotechnology To Deliver Zero Carbon Econeighborhoods. Published in Proceeding of ECOARCHITECTURE 2016 6th International Conference on Harmonisation between Architecture and Nature, 11–13 May, Alicante, Spain. ISSN:1743-7601. https://www.witpress.com/Secure/elibrary/papers/ARC16/ARC16017FU1.pdf
  • Hill, C., A. Norton, and J. Dibdiakova. 2018. A comparison of the environmental impacts of different categories of insulation materials. Energy and Buildings 162:12–20. doi:10.1016/j.enbuild.2017.12.009.
  • Hong, S.H., J. Gilbertson, T. Oreszczyn, G. Green, and I. Ridley. 2009. A field study of thermal comfort in low-income dwellings in England before and after energy efficient refurbishment. Building and Environment 44 (6):1228–36. doi:10.1016/j.buildenv.2008.09.003.
  • Huang, H., Y. Zhou, R. Huang, W. Huijun, Y. Sun, G. Huang, and T. Xu. 2019. Optimum insulation thicknesses and energy conservation of building thermal insulation materials in Chinese zone of humid subtropical climate. Sustainable Cities and Society. doi:10.1016/j.scs.2019.101840.
  • Hu, Q., Y. Chen, J. Hong, S. Jin, G. Zou, L. Chen, and D.-Z. Chen. 2019. A Smart epoxy composite based on phase change microcapsules: Preparation, microstructure. Thermal and Dynamic Mechanical Performances. Molecules 24:916.
  • Hung Anh, L. D., and J. Zoltan Pasztory. 2021. An overview of factors influencing thermal conductivity of building. Journal of Building Engineering 44:102604. doi:10.1016/j.jobe.2021.102604.
  • Ibrahim, M., P.H. Biwole, P. Achard, E. Wurtz, and G. Ansart. 2015. Building envelope with a new aerogel-based insulating rendering: Experimental and numerical study, cost analysis, and thickness optimization. Applied Energy 159:490–501. doi:10.1016/j.apenergy.2015.08.090.
  • Illera, D., J. Mesa, H. Gomez, and H. Maury. 2018. Cellulose aerogels for thermal insulation in buildings: Trends and challenges. Coatings 8 (10):345. doi:10.3390/coatings8100345.
  • Ingrao, C., A. Lo Giudice, C. Tricase, R. Rana, C. Mbohwa, and V. Siracusa. 2014. Recycled-PET fibre-based panels for building thermal insulation: Environmental impact and improvement potential assessment for a greener production. The Science of the Total Environment 493:914–29. doi:10.1016/j.scitotenv.2014.06.022.
  • Isogai, A. 2013. Wood, nanocelluloses: Fundamentals and applications as new biobased nanomaterials. Journal of Wood Science 59 (6):449–59. doi:10.1007/s10086-013-1365-z.
  • Jelle, B. P. 2011. Traditional, state-of-the-art and future thermal building insulation materials and solutions – properties, requirements and possibilities. Energy and Buildings 43 (10):2549–63. doi:10.1016/j.enbuild.2011.05.015.
  • Jie, P., F. Zhang, Z. Fang, H. Wang, and Y. Zhao. 2018. Optimizing the insulation thickness of walls and roofs of existing buildings based on primary energy consumption, global cost and pollutant emissions. Energy 159:1132–47. doi:10.1016/j.energy.2018.06.179.
  • Jihui, Y., C. Farnham, and K. Emura. 2017. Optimal combination of thermal resistance of insulation materials and primary fuel sources for six climate zones of Japan. Energy and Buildings 153:403–11. ISSN 0378-7788. doi:10.1016/j.enbuild.2017.08.039.
  • Kaynakli, Ö, and F. Kaynakli. 2016. Determination of optimum thermal insulation thicknesses for external walls considering the heating Cooling and Annual Energy Requirement. Uludağ University Journal of the Faculty of Engineering 21 (1):227–42.
  • Kedari, J., N. Nankongnab, J. Hirunlabh, and S. Teekasap. 2004. New low-cost insulation particleboards from mixture of durian peel and coconut coir, build. Environ 39:59–65.
  • Kisilewicz, T. 2019. On the role of external walls in the reduction of energy demand and the mitigation of human thermal discomfort. Sustainability 11 (4):1061–80. doi:10.3390/su11041061.
  • Koenders, S. J. M., R. Loonen, J. Hensen, and C. O’Fallon. 2018.An exploration of the relationship between improvements in energy efficiency and life-cycle energy and carbon emissions using the birds low-energy residential database. Energy and Buildings 160: 173.doi: 10.1016/j.enbuild.2017.11.030.
  • Kumar, D., M. Alam, P. X. W. Zou, J. G. Sanjayan, and R. Ahmed Memon. 2020. Comparative analysis of building insulation material properties and performance. Renewable and Sustainable Energy Reviews 131:110038. doi:10.1016/j.rser.2020.110038.
  • Kumar, A., and B.M. Suman. 2013. Experimental evaluation of insulation materials for walls and roofs and their impact on indoor thermal comfort under composite climate. Building and Environment 59:635–43. doi:10.1016/j.buildenv.2012.09.023.
  • Kumar, D., P.X.W. Zou, R.A. Memon, M.M. Alam, J.G. Sanjayan, and S. Kumar. 2020. Life cycle cost analysis of building wall and insulation materials. Journal of Building Physics 43 (5):428–55. doi:10.1177/1744259119857749.
  • Kurekci, N. A. 2016. Determination of optimum insulation thickness for building walls by using heating and cooling degree-day values of all Turkey’s provincial centers. Energy and Buildings 118:197–213. doi:10.1016/j.enbuild.2016.03.004.
  • Kuznik, F., J. Virgone, and K. Johannes. 2010. Development and validation of a new trnsys type for the simulation of external building walls containing pcm. Energy and Buildings 42 (7):1004–09. doi:10.1016/j.enbuild.2010.01.012.
  • Kyoung, O. L., A. M. Mario, and S. Xiaoqin. 2015. On the use of plug-and-play walls (PPW) for evaluating thermal enhancement technologies for building enclosures: evaluation of a thin phase change material (PCM) layer. Energy and Buildings 86:86–92. doi:10.1016/j.enbuild.2014.10.020.
  • La Rosa, A. D., A. Recca, A. Gagliano, J. Summerscales, A. Latteri, G. Cozzo, and G. Cicala. 2014. Environmental impacts and thermal insulation performance of innovative composite solutions for building applications. Construction and Building Materials 55:406–14. doi:10.1016/j.conbuildmat.2014.01.054.
  • Latif, E., M.A. Ciupala, S. Tucker, D.C. Wijeyesekera, and D.J. Newport. 2015.Hygrothermal performance of woodhemp insulation in timber frame wall panels with and without a vapour barrier. Building and Environment 92: 122–34.doi: 10.1016/j.buildenv.2015.04.025.
  • Lazzarin, R.M., F. Busato, and F. Castellotti. 2008. Life cycle assessment and life cycle cost of buildings’ insulation materials in Italy. International Journal of Low-Carbon Technologies 3 (1):44–58. doi:10.1093/ijlct/3.1.44.
  • Lee, J., J. Kim, D. Song, J. Kim, and C. Jang. 2017. Impact of external insulation and internal thermal density upon energy consumption of buildings in a temperate climate with four distinct seasons. Renewable and Sustainable Energy Reviews 75:1081–88. doi:10.1016/j.rser.2016.11.087.
  • Li, Y., N. Nord, Q. Xiao, and T. Tereshchenko. 2018. Building heating applications with phase change material: A comprehensive review. Journal of Energy Storage 31:101634. doi:10.1016/j.est.2020.101634.
  • Liu, X., Y. Chen, H. Ge, P. Fazio, and G. Chen. 2015. Determination of optimum insulation thickness of exterior wall with moisture transfer in hot summer and cold winter zone of China. Procedia Engineering 121:1008–15. doi:10.1016/j.proeng.2015.09.072.
  • Lopez Hurtado, P., A. Rouilly, B. V. Vanden, and C. Raynaud. 2016. A review on the properties of cellulose fibre insulation. Building and Environment 96:170–77. doi:10.1016/j.buildenv.2015.09.031.
  • Lorenzati, A., S. Fantucci, A. Capozzoli, and M. Perino. 2016. Experimental and numerical investigation of thermal bridging effects of jointed vacuum insulation panels. Energy and Buildings 111:164–75. doi:10.1016/j.enbuild.2015.11.026.
  • Mahlia, M. I., and A. Iqbal. 2010. Cost benefits analysis and emission reductions of optimum thickness and air gaps for selected insulation materials for building walls in Maldives. Energy 35 (5):2242–50. doi:10.1016/j.energy.2010.02.011. ISSN 0360-5442.
  • Mahlia, T., B. Taufiq, H. Masjuki, and H. H. Masjuki. 2007. Correlation between thermal conductivity and the thickness of selected insulation materials for building wall. Energy and Buildings 39 (2):182–87. doi:10.1016/j.enbuild.2006.06.002.
  • Mandilaras, A. I., G. Zannis, M. Founti, and M. Founti. 2014. Thermal performance of a building envelope incorporating ETICS with vacuum insulation panels and EPS. Energy and Buildings 85:654–65. doi:10.1016/j.enbuild.2014.06.053.
  • Marif, Y., M. Hammou, M. Zerrouki, and M. Belhadj. 2013. Thermal performance of internal and external wall insulation in existing buildings in the South of Algeria. ISESCO Journal of Science and Technology 9:53–59.
  • Martin, Š., M. Krajčík, and O. Šikula. 2019. Radiant wall cooling with pipes arranged in insulation panels attached to facades of existing buildings, E3S 111 CLIMA. E3S Web of Conferences 9:3013–13.
  • Masni, A. M., R. Ahmad Tajudin, N. Salleh, and N. Azlina Abd Hamid. 2017. Passive wall cooling panel with phase change material as a cooling agent. Materials Science and Engineering 271:012022. doi:10.1088/1757-899X/271/1/012022.
  • Mateus, R., S. Neiva, L. Bragança, P. Mendonça, and M. Macieira. 2013. Sustainability assessment of an innovative lightweight building technology for partition walls – Comparison with conventional technologies. Building and Environment 67:147–59. doi:10.1016/j.buildenv.2013.05.012.
  • Meng, X., Y. Huang, Y. Cao, Y. Gao, C. Hou, L. Zhang, and Q. Shen. 2018. Optimization of the wall thermal insulation characteristics based on the intermittent heating operation. Case Studies in Construction Materials 9:e00188. 2018/12/01. doi:10.1016/j.cscm.2018.e00188.
  • Miljan, M., and J. Miljan. 2015.Thermal transmittance and the embodied energy of timber frame lightweight walls insulated with straw and reed. IOP Conference Series: Materials Science and Engineering 96: 12076.doi: 10.1088/1757-899x/96/1/012076.
  • Mohammad, K., M. Azenha, J. L. B. de Aguiar, and K. J. Krakowiak. 2014. Thermal behavior of cement based plastering mortar containing hybrid microencapsulated phase change materials. Energy and Buildings 84:526–36. doi:10.1016/j.enbuild.2014.08.010.
  • Mohammed, S.-E.-I. 2006. Modular breathing panels for energy efficient, healthy building construction. Renewable Energy 31 (5):729–38. doi:10.1016/j.renene.2005.08.009. ISSN 0960-1481.
  • Mohammed, S.-E.-I. 2012. A passive–active dynamic insulation system for all climates. International Journal of Sustainable Built Environment 1(2):247–58. ISSN 2212-6090. doi:10.1016/j.ijsbe.2013.03.002.
  • Morsy, M., M. Fahmy, H. Elshakour, and A. Belal. 2017. Effect of thermal insulation on building thermal comfort and energy consumption in Egypt. 2nd International Conference on Advanced Technology and Applied Sciences 1:108. doi:10.1186/s12978-017-0371-9.
  • Muhammad, R. A., B. Chen, Y. Maierdan, S. Minhaj Saleem Kazmi, and M. Junaid Munir. 2021. Study of a new capillary active bio-insulation material by hygrothermal simulation of multilayer wall. Energy and Buildings 234:110724. ISSN0378-7788. doi:10.1016/j.enbuild.2021.110724.
  • Mujeebu, M. A., N. Ashraf, and A. H. Alsuwayigh. 2016. Effect of nano vacuum insulation panel and nanogel glazing on the energy performance of office building. Applied Energy 173:141–51. doi:10.1016/j.apenergy.2016.04.014.
  • Mukhopadhyaya, P., D. MacLean, J. Korn, D. van Reenen, and S. Molleti. 2014. Building application and thermal performance of vacuum insulation panels (VIPs) in Canadian subarctic climate. Energy and Buildings 85:672–80. doi:10.1016/j.enbuild.2014.08.038.
  • Necib, H., S. Noureddine, S. Nadiab, and D. Djamila. 2013. Experimental and numerical study of a usual brick filled with PCM to improve the thermal inertia of buildings. Energy Procedia 36:766–75. doi:10.1016/j.egypro.2013.07.089.
  • Nematchoua, M. K., P. Ricciardi, S. Reiter, and A. Yvon. 2017. A comparative study on optimum insulation thickness of walls and energy savings in equatorial and tropical climate. International Journal of Sustainable Built Environment 6 (1):170–82. doi:10.1016/j.ijsbe.2017.02.001.
  • Niang, I., C. Maalouf, T. Moussa, C. Bliard, E. Samin, C. Thomachot-Schneider, M. Lachi, H. Pron, T. H. Mai, and S. Gaye. 2018. Hygrothermal performance of various Typha–clay composite. Journal of Building Physics 42 (3):316–35. doi:10.1177/1744259118759677.
  • Nuri, S., E. Kahya, N. Aras, and H. Aras. 2007. Determination of optimum insulation thicknesses of the external walls and roof (ceiling) for Turkey’s different degree-day regions. Energy Policy 35 (10):5151–55. doi:10.1016/j.enpol.2007.04.037. ISSN 0301-4215.
  • Omar, O., and Y. Sabsaby (2015a). Paths towards zero carbon city using nanotechnology tripoli city case study. Published in Proceeding of World Sustainable Building 14 Conference in Barcelona, Spain, ( ISBN978-84-697-1815-5).
  • Omar, O., and Y. Sabsaby. 2015b. Thermal comfort in lebanese residential unit case studies: A coastal region in lebanon. WIT Transactions on Ecology and the Environment 195:337–49. doi:10.2495/ESUS150291.
  • Oreshkin, D., V. R. Semenov, and T. Rozovskaya. 2016. T. properties of light-weight extruded concrete with hollow glass microspheres. Procedia Engineering 153:638–43. doi:10.1016/j.proeng.2016.08.214.
  • Ozel, M. 2013. Determination of optimum insulation thickness based on cooling transmission load for building walls in a hot climate. Energy Conversion and Management 66:106–14. doi:10.1016/j.enconman.2012.10.002.
  • Paneri, A., I.L. Wong, and S. Burek. 2019. Transparent insulation materials: An overview on past, present and future developments. Solar Energy 184:59–83. doi:10.1016/j.solener.2019.03.091.
  • Panyakaew, S., and S. Fotios. 2011. New thermal insulation boards made from coconut husk and bagasse. Energy and Buildings 43 (7):1732–39. doi:10.1016/j.enbuild.2011.03.015.
  • Paolo, P., and R. Fiorett. 2012. Numerical study of the influence of the convective heat transfer on the dynamical behaviour of a phase change material wall. Energy and Buildings 51:131–42.
  • Papadopoulos, A.M. 2005. State of the art in thermal insulation materials and aims for future developments. Energy and Buildings 37:77–86.
  • Pargana, N., M.D. Pinheiro, J.D. Silvestre, and J. de Brito. 2014. Comparative environmental life cycle assessment of thermal insulation materials of buildings. Energy and Buildings 82:466–81. doi:10.1016/j.enbuild.2014.05.057.
  • Pedroso, M., I. Flores-Colen, J.D. Silvestre, M.G. Gomes, L. Silva, and L. Ilharco. 2020. Physical, mechanical, and microstructural characterisation of an innovative thermal insulating render incorporating silica aerogel. Energy and Buildings 211:109793. doi:10.1016/j.enbuild.2020.109793.
  • Peeters, L., R. de Dear, D. W. Hensen Jan, and W. D’Haeseleer. 2009. Thermal comfort in residential buildings: Comfort values and scales for building energy simulation. Applied Energy 86 (5):772–80. doi:10.1016/j.apenergy.2008.07.011.
  • Porritt, S.M., P.C. Cropper, L. Shao, and C.I. Goodier. 2012. Ranking of interventions to reduce dwelling overheating during heat waves. Energy and Buildings 55:16–27. doi:10.1016/j.enbuild.2012.01.043.
  • Pradeep, L., S. Pragyan Dash, and D. Jivan Pati (2022) Determining the feasibility of using PET bottles as construction material in urban context, Materials Today: Proceedings, 10.1016/j.matpr.2022.01.254
  • Psomas, T., P. Heiselberg, K. Duer, and E. Bjørn. 2016. Overheating risk barriers to energy renovations of single-family houses: Multicriteria analysis and assessment. Energy and Buildings 117:138–48. doi:10.1016/j.enbuild.2016.02.031.
  • Pushpendra, K. S. R., N. Kumar Gupta, D. Yadav, S. Kumar Shukla, and S. Kaul. 2022. Thermal performance of the building envelope integrated with phase change material for thermal energy storage: An updated review. Sustainable Cities and Society 79:103690. doi:10.1016/j.scs.2022.103690.
  • Rafid, J. K., Z. H. B. Md, and D. Hasan Ahmed. 2020. Investigation of heat transfer of a building wall in the presence of phase change material (PCM. Energy and Built Environment 1 (2):199–206. doi:10.1016/j.enbenv.2020.01.002. ISSN 2666-1233.
  • Rakshit, M., C. Vinceslas Fohagui, G. Tchuen, A. Byrne, R. Tchitnga, and A. James Robinson. 2019. The economic and environmental combination between building materials and fuel source to improve building energy performance. International Journal of Ambient Energy. doi:10.1080/01430750.2019.1636877.
  • Rao, P.V.K.J., M. Das, and S.K. Das. 2008. Thermophysical properties of sugarcane, palmyra palm, and date-palm granular jaggery. International Journal of Food Properties 11 (4):876–86. doi:10.1080/10942910701671281.
  • Rashad, A. 2022. Possibility of producing thermal insulation materials from cementitious materials without foaming agent or lightweight aggregate. Environmental Science and Pollution Research 29 (3):1–10. doi:10.1007/s11356-021-15873-4.
  • Robert, D. 2019. Optimal thermal insulation thicknesses of external walls based on economic and ecological heating cost. Energies 12 (18):3415. doi:10.3390/en12183415.
  • Robert, D., and J. Adamczyk. 2016. Study on ecological cost-effectiveness for the thermal insulation of building external vertical walls in Poland. Journal of Cleaner Production 133:467–78. ISSN 0959-6526. doi:10.1016/j.jclepro.2016.05.155.
  • Rodríguez, N. J., M. Yáñez-Limón, F. A. Gutiérrez-Miceli, O. Gomez-Guzman, T. P. Matadamas-Ortiz, L. Lagunez-Rivera, and V. Feijoo J A. 2011. Assessment of coconut fibre insulation characteristics and its use to modulate temperatures in concrete slabs with the aid of a finite element methodology. Energy and Buildings 43 (6):1264–72. doi:10.1016/j.enbuild.2011.01.005. ISSN 0378-7788.
  • Rojas, C., M. Cea, A. Iriarte, G. Valdes, R. Navia, and J.P. Cardenas-R. 2019. Thermal insulation materials based on agricultural residual wheat straw and corn husk biomass, for application in sustainable buildings. Sustainable Materials and Technologies 20. doi:10.1016/j.susmat.2019.e00102.
  • Rosanne, W., and S. Pavía. 2015. Thermal performance of a selection of insulation materials suitable for historic buildings. Building and Environment 94:155–65. doi:10.1016/j.buildenv.2015.07.033.
  • Ruifang, Z., J. Feng, X. Cheng, L. Gong, Y. Li, and H. Zhang. 2014. Porous thermal insulation materials derived from fly ash using a foaming and slip casting method. Energy and Buildings 81:262–67. doi:10.1016/j.enbuild.2014.06.028.
  • Ruiz-Herrero, J. L., D. Velasco Nieto, A. López-Gil, A. Arranz, A. Fernández, A. Lorenzana, S. Merino, J. A. De Saja, and M. Á. Rodríguez-Pérez. 2016. Mechanical and thermal performance of concrete and mortar cellular materials containing plastic waste. Construction and Building Materials 104:298–310. doi:10.1016/j.conbuildmat.2015.12.005.
  • Saez de Guinoa, A., D. Zambrana-Vasquez, A. Alcalde, M. Corradini, and I. ZabalzaBribian. 2017. Environmental assessment of a nano-technological aerogel-based panel for building insulation. Journal of Cleaner Production 161:1404–15. doi:10.1016/j.jclepro.2017.06.102.
  • Saffari, M., A. de Gracia, S. Ushak, and L. F. Cabeza. 2017. Passive cooling of buildings with phase change materials using whole-building energy simulation tools: A review. Renewable and Sustainable Energy Reviews 80:1239–55. doi:10.1016/j.rser.2017.05.139.
  • Schiavoni, S., F. D’Alessandro, F. Bianchi, and F. Asdrubali. 2016. Insulation materials for the building sector: A review and comparative analysis. Renewable and Sustainable Energy Reviews 62:988–1011. doi:10.1016/j.rser.2016.05.045.
  • Sierra-Perez, J., S. García-Perez, S. Blanc, J. Boschmonart-Rives, and X. Gabarrell. 2018. The use of forest-based materials for the efficient energy of cities: Environmental and economic implications of cork as insulation material. Sustainable Cities and Society 37:628–36. doi:10.1016/j.scs.2017.12.008.
  • Somarathna, H.M.C.C., S.N. Raman, D. Mohotti, A.A. Mutalib, and K.H. Badri. 2018. The use of polyurethane for structural and infrastructural engineering applications: A state of-the-art review. Construction and Building Materials 190:995–1014. doi:10.1016/j.conbuildmat.2018.09.166.
  • Song, M., F. Niu, N. Mao, Y. Hu, and S. S. Deng. 2018. Review on building energy performance improvement using phase change materials. Energy and Buildings 158:776–93.
  • Sun, Y., R. Wilson, and Y. Wu. 2018. A review of transparent insulation material (TIM) for building energy saving and daylight comfort. Applied Energy 226:713–29. doi:10.1016/j.apenergy.2018.05.094.
  • Thibault, P., B. Bueno, M. Siroux, and T. E. Kuhn. 2017. Potential analysis of a new removable insulation system. Energy and Buildings 154:391–403. ISSN 0378-7788. doi:10.1016/j.enbuild.2017.08.033.
  • Tilioua, A., L. Libessart, and S. Lassue. 2018. Characterization of the thermal properties of fibrous insulation materials made from recycled textile fibers for building applications: Theoretical and experimental analyses. Applied Thermal Engineering 142:56–67. doi:10.1016/j.applthermaleng.2018.06.071.
  • Tingley, D.D., A. Hathway, B. Davison, and D. Allwood. 2017. The environmental impact of phenolic foam insulation boards. Proceedings of the Institution of Civil Engineers -Construction Materials 170 (2):91–103. doi:10.1680/coma.14.00022.
  • Toguyeni, D. Y. K., O. Coulibaly, A. Ouedraogo, J. Koulidiati, Y. Dutil, and D. Rousse. 2012. Study of the influence of roof insulation involving local materials on cooling loads of houses built of clay and straw. Energy and Buildings 50:74–80. doi:10.1016/j.enbuild.2012.03.021.
  • Triantafillou, T. C., K. Karlos, K. Kefalou, and E. Argyropoulou. 2017. An innovative structural and energy retrofitting system for URM walls using textile reinforced mortars combined with thermal insulation: Mechanical and fire behavior. Construction and Building Materials 133:1–13. doi:10.1016/j.conbuildmat.2016.12.032.
  • Ucar, A., and F. Balo. 2010. Determination of the energy savings and the optimum insulation thickness in the four different insulated exterior walls. Renewable Energy 35 (1):88–94. doi:10.1016/j.renene.2009.07.009.
  • Udawattha, C., and R. Halwatura. 2016. Embodied energy of mud concrete block (MCB) versus brick and cement blocks. Energy and Buildings 126:28–35. doi:10.1016/j.enbuild.2016.04.059.
  • Vaitkus, S., R. Karpaviciute, S. Vejelis, and L. Lekunaite. 2014. Development and research of thermal insulation materials from natural fibres. Key Engineering Materials 604:285–88. doi:10.4028/scientific.net/KEM.604.285.
  • Verbeke, S., and A. Audenaert. 2018. Thermal inertia in buildings: A review of impacts across climate and building use. Renewable and Sustainable Energy Reviews 82:2300–18. 2018/02/01. doi:10.1016/j.rser.2017.08.083.
  • Villasmil, W., L.J. Fischer, and J. Worlitschek. 2019. A review and evaluation of thermal insulation materials and methods for thermal energy storage systems. Renewable and Sustainable Energy Reviews 103:71–84. doi:10.1016/j.rser.2018.12.040.
  • Vytautas, S., V. Paukstys, R. Bliudzius, J. Sadauskiene, Z. Turskis, and R. Samajauskas. 2013. Convection in mineral wool used as insulation for buildings. Journal of Civil Engineering and Management 19 (2):296–304. doi:10.3846/13923730.2013.775182.
  • Wang, Y., Z. Chen, Y. Shengjie, D. Awuye, L. Binbin, J. Liao, and R. Luo. 2017. Improved sandwich structured ceramic matrix composites with excellent thermal insulation. Composites Part B: Engineering 129. doi:10.1016/j.compositesb.2017.07.068.
  • Willand, N., I. Ridley, A. Pears, and M. G. da Silva. 2015.Air exchange rates from atmospheric CO2 daily cycle. Energy and Buildings 92: 113.doi: 10.1016/j.enbuild.2015.01.062.
  • Wong, I.L., P.C. Eames, and R.S. Perera. 2007. A review of transparent insulation systems and the evaluation of payback period for building applications. Solar Energy 81 (9):1058–71. doi:10.1016/j.solener.2007.04.004.
  • Yamankaradeniz, N. 2015. Minimization of thermal insulation thickness taking into account condensation on external walls. Advances in Mechanical Engineering 7 (9):1–11. doi:10.1177/1687814015604803.
  • Yan, D., X. Wei, and Q. Wang. 2020. Optimization approach of passive cool skin technology application for the building’s exterior walls. Journal of Cleaner Production 256:120751. ISSN 0959-6526. doi:10.1016/j.jclepro.2020.120751.
  • Yao, J. 2014. A multi-objective (energy, economic and environmental performance) life cycle analysis for better building design. Sustainability 6 (2):602–14. doi:10.3390/su6020602.
  • Yayi, A., D. Mutiari, N. Rahmawati Syamsiyah, and S. A. H. Suharyani. 2020. Thermal insulation of plastic waste brick composite with rice husk and sawdust. Civil Engineering and Architecture 8 (6):283–1289. doi:10.13189/cea.2020.080612.
  • Yesilata, B., Y. Isıker, and P. Turgut. 2009. Thermal insulation enhancement in concretes by adding waste PET and rubber pieces. Construction and Building Materials 23 (5):1878–82. doi:10.1016/j.conbuildmat.2008.09.014.
  • Yildiz, A., G. Gurlek, M. Erkek, and N. Ozbalta. 2008. Economical and environmental analyses of thermal insulation thickness in buildings. Journal of Thermal Science and Technology 28:25–34.
  • Yuan, J. 2018. Impact of insulation type and thickness on the dynamic thermal characteristics of an external wall structure. Sustainability 10 (8):2835–48. doi:10.3390/su10082835.
  • Yu, H., C. Li, K. Zhang, Y. Tang, Y. Song, and M. Wang. 2020. Preparation and thermophysical performance of diatomite-based composite PCM wallboard for thermal energy storage in buildings. Journal of Building Engineering 32:74. doi:10.1016/j.jobe.2020.101753.
  • Zabalza Bribian, I., A. Valero Capilla, and A. Aranda Uson. 2011. Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment 46 (5):1133–40. doi:10.1016/j.buildenv.2010.12.002.
  • Zach, J., J. Hroudová, J. Brozˇovsky, Z. Krejza, and A. Gailius. 2013. Development of thermal insulating materials on natural base for thermal insulation systems. Procedia Engineering 57:1288–94. doi:10.1016/j.proeng.2013.04.162.
  • Zhang, R., C. Ye, X. Hou, S. Li, and B. Wang. 2016. Microstructure and properties of lightweight fibrous porous mullite ceramics prepared by vacuum squeeze moulding technique. Ceramics International 42 (13):14843–48. doi:10.1016/j.ceramint.2016.06.118.
  • Zhou, D., C. Y. Zhao, and Y. Tian. 2012. Review on thermal energy storage with phase change materials (PCMs) in building applications. Applied Energy 92:593–605. doi:10.1016/j.apenergy.2011.08.025.
  • Zhu, L., R. Hurt, D. Correia, and R. Boehm. 2014. Detailed energy saving performance analyses on thermal mass walls demonstrated in a zero energy house. Energy and Buildings 41 (3):303–10. doi:10.1016/j.enbuild.2008.10.003.
  • Zukowski, M., and G. Haese. 2010. Experimental and numerical investigation of a hollow brick filled with perlite insulation. Energy and Buildings 42 (9):1402–08. doi:10.1016/j.enbuild.2010.03.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.