284
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Electrochemical and operation performance of electrolytic air dehumidification with different catalyst coated membrane methods

&
Pages 934-945 | Received 16 Jun 2022, Accepted 08 Sep 2022, Published online: 25 Sep 2022

References

  • Ashdot, A., M. Kattan, A. Kitayev, E. Tal-Gutelmacher, A. Amel, M. Page. 2021. Design strategies for alkaline exchange membrane-electrode assemblies: optimization for fuel cells and electrolyzers. Membranes (Basel) 11(9):686. doi: 10.3390/membranes11090686.
  • BENíTEZ, R., J. Soler, L. Daza Novel method for preparation of PEMFC electrodes by the electrospray technique. Journal of Power Sources, 2005, 151:108–13. doi:10.1016/j.jpowsour.2005.02.047.
  • Bhosale, A.C, P.C. Ghosh, and L. Assaud. 2020. Preparation methods of membrane electrode assemblies for proton exchange membrane fuel cells and unitized regenerative fuel cells: A review. Renewable and Sustainable Energy Reviews 133:10286. doi:10.1016/j.rser.2020.110286.
  • Chen, M. 2019. Investigations on interface structure design and durability of membrane electrode assembly for proton exchange membrane fuel cell. Thesis. Beijing: University of Science and Technology Beijing. (in Chinese).
  • Chen, M., M. Wang, Z. Yang, X. Ding, Q. Li, X. Wang. A novel catalyst layer structure based surface-patterned nafion® membrane for high-performance direct methanol fuel cell. Electrochimica Acta, 2018, 263:201–08. doi:10.1016/j.electacta.2018.01.015.
  • Corona-Guinto, J.L., L. Cardeño-García, D.C. Martínez-Casillas, J. M. Sandoval-Pineda, P. Tamayo-Meza, R. Silva-Casarin, and R. G. González-Huerta. 2013. Performance of a PEM electrolyzer using RuIrcoox electrocatalysts for the oxygen evolution electrode. International Journal of Hydrogen Energy 38 (28):12667–73. doi:10.1016/j.ijhydene.2012.12.071.
  • Feng, H., D. Ma, Q. Liu, C. Ye. 2019. Method for calculating three dimensional apparent porosity of soils based on SEM images. Chinese Journal of Geotechnical Engineering 41(3):574–80. doi:10.11779/CJGE201903021.
  • Huang, H., H. Kim, A. ee, S. Kim, W.-G. Lim, C.-Y. Park, S. Kim, S.-K. Kim, and J. Lee. 2021. Structure engineering defective and mass transfer-enhanced RuO2 nanosheets for proton exchange membrane water electrolyzer. Nano Energy 88:106276. doi:10.1016/j.nanoen.2021.106276.
  • Hu, J., J. Zhang, C. Cao. 2004. Oxygen evolution reaction on IrO2-based DSA® type electrodes: Kinetics analysis of Tafel lines and EIS. International Journal of Hydrogen Energy 29 (8):791–97. doi:10.1016/j.ijhydene.2003.09.007.
  • Jang, S., S. Kim, S.M. Kim, J. Choi, J. Yeon, K. Bang, C.-Y. Ahn, W. Hwang, M. Her, Y.-H. Cho, Y.-E. Sung, M. Choi. 2018Interface engineering for high-performance direct methanol fuel cells using multiscale patterned membranes and guided metal cracked layers. Nano Energy 43:149–58.
  • Ji, G. Q., Q. luo, C. Ma. 2016. Interfacial modification of organic solar cells for doctor blade fabrication process. China Academic Journal Electronic Publishing House.
  • Jin, H., B. Ruqia, Y. Park, H. J. Kim, H. S. Oh, S. Choi, K. Lee. 2020. NanocataLyst design for long‐term operation of proton/anion exchange membrane water electrolysis. Advanced Energy Materials 11:2003188. doi:10.1002/aenm.202003188.
  • Jung, J., H.S. Park, J. Han, H.-J. Kim, D. Henkensmeier, S. J. Yoo, J. Y. Kim, S. Y. Lee, K. H. Song, H.-Y. Park, Jang, J. H., et al. 2020. Effect of the fabrication condition of membrane electrode assemblies with carbon-supported ordered PtCo electrocatalyst on the durability of polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy. 45(57):32834–43. doi:10.1016/j.ijhydene.2020.03.053.
  • Kim, O.H., Y.-H. Cho, S.H. Kang, H.Y. Park, M. Kim, J. W. Lim, D. Y. Chung, M. J. Lee, H. Choe, Y.E. Sung, et al. 2013. Ordered macroporous platinum electrode and enhanced mass transfer in fuel cells using inverse opal structure. Nature Communications 4:2473. doi: 10.1038/ncomms3473.
  • Kim, K.-H., K.-Y. Lee, H.-J. Kim, E. A. Cho, S.-Y. Lee, T.-H. Lim, S. P. Yoon, I. C. Hwang, and J. H. Jang. 2010. The effects of nafion® ionomer content in PEMFC MEAs prepared by a catalyst-coated membrane (CCM) spraying method. International Journal of Hydrogen Energy 35 (5):2119–26. doi:10.1016/j.ijhydene.2009.11.058.
  • Lim, B.H., E.H. Majlan, A. Tajuddin, T. Husaini, W. R. W. Daud, N. A. M. Radzuan, M. Haque. 2021. Comparison of catalyst-coated membranes and catalyst-coated substrate for PEMFC membrane electrode assembly: A review. Chinese Journal of Chemical Engineering 33:1–16. doi:10.1016/j.cjche.2020.07.044.
  • Li, D., R. Qi, T. Li, et al. 2020. Durability analysis and degradation mechanism for an electrolytic air dehumidifier based on PEM. International Journal of Hydrogen Energy. 45(7):3971–85. doi:10.1016/j.ijhydene.2019.12.050.
  • Liu, L., X. Han, Q. Lu, J. Zhao, Y. Wang, Z. Chen, C. Zhong, W. Hu, and Y. Deng. 2019. Co3O4 nanoparticles supported on N-doped electrospinning carbon nanofibers as an efficient and bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. Inorganic Chemistry Frontiers 6 (12):3554–61. doi:10.1039/C9QI01020C.
  • Liu, C.Y., C.C. Sung A review of the performance and analysis of proton exchange membrane fuel cell membrane electrode assemblies. Journal of Power Sources, 2012, 220: 348–53 doi:10.1016/j.jpowsour.2012.07.090.
  • Li, G., H. Yu, W. Song, Y. Li, Z. Shao, B. Yi. 2012. Zeolite-Templated IrxRu1−xo2 electrocatalysts for oxygen evolution reaction in solid polymer electrolyte water electrolyzers. International Journal of Hydrogen Energy. 37(22):16786–94. doi:10.1016/j.ijhydene.2012.08.087.
  • Martemianov, S., V. A. Raileanu Ilie, and C. Coutanceau. 2013. Improvement of the proton exchange membrane fuel cell performances by optimization of the hot pressing process for membrane electrode assembly. Journal of Solid State Electrochemistry 18 (5):1261–69. doi:10.1007/s10008-013-2273-2.
  • Martemianov, S., V. A. Raileanu Ilie, and C. Coutanceau. 2014. Improvement of the proton exchange membrane fuel cell performances by optimization of the hot pressing process for membrane electrode assembly. Journal of Solid State Electrochemistry, 18 (5):1261–69. doi:10.1007/s10008-013-2273-2.
  • Meng, X., X. Deng, L. Zhou, B. Hu, W. Tan, W. Zhou, M. Liu, and Z. Shao. 2020. A highly ordered hydrophilic–hydrophobic janus bi-functional layer with ultralow pt loading and fast gas/water transport for fuel cells. Energy & Environmental Materials, 4 (1):126–33. doi:10.1002/eem2.12105.
  • Nguyen, X.V., B. S. Nguyen, and T. N. Tran. 2022. Effects of via hot-pressing loads and co-sintering temperature on anode–electrolyte substrate expansion in solid oxide fuel cells. Materials Letters 4:126–33. doi:10.1016/j.matlet.2022.131867.
  • Park, I.-S., W. Li, and A. Manthiram. 2010. Fabrication of catalyst-coated membrane-electrode assemblies by doctor blade method and their performance in fuel cells. Journal of Power Sources, 195 (20):7078–82. doi:10.1016/j.jpowsour.2010.05.004.
  • Prasanna, M., E.A. Cho, T.-H. Lim, and I.-H. Oh. 2008. Effects of MEA fabrication method on durability of polymer electrolyte membrane fuel cells. Electrochimica Acta, 53 (16):5434–41. doi:10.1016/j.electacta.2008.02.068.
  • Qi, R., D. Li, L.-Z. Zhang Performance investigation on polymeric electrolyte membrane-based electrochemical air dehumidification system. Applied Energy, 2017, 2081174–83 doi:10.1016/j.apenergy.2017.09.035.
  • Qi, R., T. Li, and L.-Z. Zhang. 2020. A new approach for air dehumidification at refrigerator temperatures: Electrolytic vapor dehumidifier with proton exchange membrane (PEM) [J]. International Journal of Refrigeration 118(453–61.
  • Sassin, M. B., Y. Garsany, B.D. Gould, and K. E. Swider-Lyons. 2017. Fabrication method for laboratory-scale high-performance membrane electrode assemblies for fuel cells. Analytical Chemistry 89 (1):511–18. doi:10.1021/acs.analchem.6b03005.
  • Sill, T.J., and H.A. Recum. 2008. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 29 (13):1989–2006. doi:10.1016/j.biomaterials.2008.01.011.
  • Siracusano, S., V. Baglio, A. Stassi, R. Ornelas, V. Antonucci, A. S. Aricò. 2011. Investigation of IrO2 electrocatalysts prepared by a sulfite-couplex route for the O2 evolution reaction in solid polymer electrolyte water electrolyzers. International Journal of Hydrogen Energy 36(13):7822–31. doi:10.1016/j.ijhydene.2010.12.080.
  • Tang, H., S. Wang, J. S. P, and M. Pan. 2007. A comparative study of CCM and hot-pressed MEAs for PEM fuel cells [J]. Journal of Power Sources 170 (1):140–44. doi:10.1016/j.jpowsour.2007.03.062.
  • Tian, Z.Q., S.H. Lim, C.K. Poh, Z. Tang, Z. Xia, Z. Luo, P. K. Shen, D. Chua, Y. P. Feng, Z. Shen, J. Lin. 2011. A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low pt loading PEM fuel cells. Advanced Energy Materials 1(6):1205–14. doi:10.1002/aenm.201100371.
  • Vengatesan, S., K. Panha, M.W. Fowler, X.-Z. Yuan, and H. Wang. 2012. Membrane electrode assembly degradation under idle conditions via unsymmetrical reactant relative humidity cycling. Journal of Power Sources 207:101–10. doi:10.1016/j.jpowsour.2012.01.133.
  • Wan, Z. H. 2018. Preparation, structure and properties of low platinum loading catalyst layer for high oxygen transportation in proton exchange membrane fuel. Thesis. Wuhan: Wuhan University of Technology. (in Chinese).
  • Wang, P., Guo, J., Wang, Y. 2015. FacIle synthesis and characterisation ofiro2/ato as novel OER electrocatalysts. Chemical Industry and Engineering 32 (2):50–55. doi:10.13353/j.issn.
  • Wang, S., Y. Shang, Y. Wang, J. Wang. 2013. Fabrication and electrochemical performance of Poly (2,5-benzimidazole) (ABPBI)-based MEA by catalyst coated membrane (CCM) method for high-temperature polymer electrolyte fuel cells. International Journal of Hydrogen Energy. 38(25):11060–66. doi:10.1016/j.ijhydene.2013.01.102.
  • Wang, X., Z.-G. Shao, G. Li, L. Zhang, Y. Zhao, W. Lu, B. Yi. 2013. A cocrystallized catalyst-coated membrane with high performance for solid polymer electrolyte water electrolysis. Journal of Power Sources 240:525–29. doi:10.1016/j.jpowsour.2013.04.069.
  • Wang, L., D.M. Xing, Y.H. Liu, Y. H. Cai, Z.-G. Shao, Y. F. Zhai, H. X. Zhong, B. L. Yi, and H. M. Zhang. 2006. Pt/sio2 catalyst as an addition to Nafion/PTFE self-humidifying composite membrane. Journal of Power Sources 161 (1):61–67. doi:10.1016/j.jpowsour.2006.03.068.
  • Wang, X., Y. Zhang, Y. Zhu, S. Lv, H. Ni, Y. Deng, Y. Yuan. 2022. Effect of different hot-pressing pressure and temperature on the performance of titanium mesh-based MEA for DMFC. Membranes (Basel) 12(4):431. doi:10.3390/membranes12040431.
  • Wilson, M. S., S. Gottesfeld. 1992. Thin-Film catalyst layers for fuel cell electrodes polymer electrolyte. Journal of Applied Electrochemistry 22:1–7.
  • Woo, S., J. Lee, D.S. Lee, J. K., Kim, B. Lim. 2020. ElectrospuN carbon nanofibers with embedded co-ceria nanoparticles for efficient hydrogen evolution and overall water splitting. Materials (Basel) 13(4):856.
  • Yang, G., S. Yu, J. Mo, Y. Li, Z. Kang, G. Bender, B. S. Pivovar, J. B. Green, D. A. Cullen, F.-Y. Zhang. 2020. Impacts of catalyst nanolayers on water permeation and swelling of polymer electrolyte membranes. Journal of Power Sources 448:227582. doi:10.1016/j.jpowsour.2019.227582.
  • Yasuda, K., A. Taniguchi, T. Akita, T. Ioroi, Z. Siroma. 2001. Platinum electrodeposition for polymer electrolyte membrane fuel cells. Electrochimica Acta 46:1657–63. doi:10.1039/b514342j.
  • Yoon, Y.J., T.-H. Kim, S.U. Kim, D. M. Yu, and Y. T. Hong. 2011. Low temperature decal transfer method for hydrocarbon membrane based membrane electrode assemblies in polymer electrolyte membrane fuel cells. Journal of Power Sources 196 (22):9800–09. doi:10.1016/j.jpowsour.2011.08.038.
  • Yurko, Y., and L. Elbaz. 2021. The effect of membrane electrode assembly methods on the performance in fuel cells. Electrochimica Acta 389:138676. doi:10.1016/j.electacta.2021.138676.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.