393
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Remaining useful life prediction of PEMFC based on CNN-Birnn model

, , &
Pages 1729-1740 | Received 27 Aug 2022, Accepted 02 Jan 2023, Published online: 23 Mar 2023

References

  • Benaggoune, K., M. Yue, S. Jemei, and N. Zerhouni. 2022. A data-driven method for multi-step-ahead prediction and long-term prognostics of proton exchange membrane fuel cell. Applied Energy 313:118835. doi:10.1016/j.apenergy.2022.118835.
  • Bressel, M., M. Hilairet, D. Hissel, and B. Ould Bouamama. 2016a. Extended kalman filter for prognostic of proton exchange membrane fuel cell. Applied Energy 164:220–27. doi:10.1016/j.apenergy.2015.11.071.
  • Bressel, M., M. Hilairet, D. Hissel, and B. Ould Bouamama. 2016b. Remaining useful life prediction and uncertainty quantification of proton exchange membrane fuel cell under variable load. IEEE Transactions on Industrial Electronics 63 (4):2569–77. doi:10.1109/tie.2016.2519328.
  • Cheng, Y., N. Zerhouni, and C. Lu. 2018. A hybrid remaining useful life prognostic method for proton exchange membrane fuel cell. International Journal of Hydrogen Energy 43 (27):12314–27. doi:10.1016/j.ijhydene.2018.04.160.
  • Chen, K., S. Laghrouche, and A. Djerdir. 2019a. Degradation model of proton exchange membrane fuel cell based on a novel hybrid method. Applied Energy 252:113439. doi:10.1016/j.apenergy.2019.113439.
  • Chen, K., S. Laghrouche, and A. Djerdir. 2019b. Degradation prediction of proton exchange membrane fuel cell based on grey neural network model and particle swarm optimization. Energy Conversion and Management 195:810–18. doi:10.1016/j.enconman.2019.05.045.
  • Chen, J., D. Zhou, C. Lyu, and C. Lu. 2017. A novel health indicator for PEMFC state of health estimation and remaining useful life prediction. International Journal of Hydrogen Energy 42 (31):20230–38. doi:10.1016/j.ijhydene.2017.05.241.
  • de Bruijn, F. A., V. A. T. Dam, and G. J. M. Janssen. 2008. Review: durability and degradation issues of PEM fuel cell components. Fuel Cells 8 (1):3–22. doi:10.1002/fuce.200700053.
  • Enz, S., T. A. Dao, M. Messerschmidt, and J. Scholta. 2015. Investigation of degradation effects in polymer electrolyte fuel cells under automotive-related operating conditions. Journal of Power Sources 274:521–35. doi:10.1016/j.jpowsour.2014.10.127.
  • Garcia-Sanchez, D., T. Morawietz, P. G. da Rocha, R. Hiesgen, P. Gazdzicki, and K. A. Friedrich. 2020. Local impact of load cycling on degradation in polymer electrolyte fuel cells. Applied Energy 259:259. doi:10.1016/j.apenergy.2019.114210.
  • Gouriveau, R., M. Hilairet, D. Hissel, S. Jeme, M. Jouin, E. Lechartier, S. Morando, E. Pahon, M. Pra, and N. Zerhouni. 2014. IEEE PHM 2014 data challenge-details for participants.
  • Guo, J., Y. Liu, Q. Yang, Y. Wang, and S. Fang. 2020. GPS-based citywide traffic congestion forecasting using CNN-RNN and C3D hybrid model. Transportmetrica A: Transport Science 17 (2):190–211. doi:10.1080/23249935.2020.1745927.
  • Habek, G. C., M. A. Toçoğlu, and A. Onan. 2022. Bi-directional CNN-RNN architecture with group-wise enhancement and attention mechanisms for cryptocurrency sentiment analysis. Applied Artificial Intelligence 36 (1). doi:10.1080/08839514.2022.2145641.
  • Hammad, M., M. H. Alkinani, B. B. Gupta, and A. A. Abd El-Latif. 2021. Myocardial infarction detection based on deep neural network on imbalanced data. Multimedia Systems 28 (4):1373–85. doi:10.1007/s00530-020-00728-8.
  • Helmly, S., B. Ohnmacht, P. Gazdzicki, R. Hiesgen, E. Gülzow, and K. A. Friedrich. 2014. Influence of the distribution of platinum deposits on the properties and degradation of platinum-impregnated nafion membranes. Journal of the Electrochemical Society 161 (14):F1416–26. doi:10.1149/2.0531414jes.
  • He, L., Z. Zhan, H. Chen, P. Jiang, Y. Yu, X. Yang, Y. Sun, X. Wan, L. Liao, S. Li, et al. 2021. A quick evaluation method for the lifetime of the fuel cell MEA with the particle filter algorithm. International Journal of Green Energy 18 (14):1536–49. doi:10.1080/15435075.2021.1911809.
  • Hou, J., Y. Wang, J. Zhou, and Q. Tian. 2022. Prediction of hourly air temperature based on CNN–LSTM. Geomatics, Natural Hazards and Risk 13 (1):1962–86. doi:10.1080/19475705.2022.2102942.
  • Huang, S. -Y., P. Ganesan, H. -Y. Jung, and B. N. Popov. 2012. Development of supported bifunctional oxygen electrocatalysts and corrosion-resistant gas diffusion layer for unitized regenerative fuel cell applications. Journal of Power Sources 198:23–29. doi:10.1016/j.jpowsour.2011.09.071.
  • Hua, Z., Z. Zheng, E. Pahon, M. -C. Péra, and F. Gao. 2021. Remaining useful life prediction of PEMFC systems under dynamic operating conditions. Energy Conversion and Management 231:113825. doi:10.1016/j.enconman.2021.113825.
  • Kongkanand, A., J. Zhang, Z. Liu, Y. -H. Lai, P. Sinha, E. L. Thompson, and R. Makharia. 2014. Degradation of PEMFC observed on NSTF electrodes. Journal of the Electrochemical Society 161 (6):F744–53. doi:10.1149/2.074406jes.
  • Masud, M., M. S. Hossain, H. Alhumyani, S. S. Alshamrani, O. Cheikhrouhou, S. Ibrahim, G. Muhammad, A. E. E. Rashed, and B. Gupta. 2021. Pre-trained convolutional neural networks for breast cancer detection using ultrasound images. ACM Transactions on Internet Technology (TOIT) 21 (4):1–17. doi:10.1145/3418355.
  • Ma, R., T. Yang, E. Breaz, Z. Li, P. Briois, and F. Gao. 2018. Data-driven proton exchange membrane fuel cell degradation predication through deep learning method. Applied Energy 231:102–15. doi:10.1016/j.apenergy.2018.09.111.
  • Mezzi, R., N. Yousfi-Steiner, M. C. Péra, D. Hissel, and L. Larger. 2021. An echo state network for fuel cell lifetime prediction under a dynamic micro-cogeneration load profile. Applied Energy 283:283. doi:10.1016/j.apenergy.2020.116297.
  • Niu, T., W. Huang, C. Zhang, T. Zeng, J. Chen, Y. Li, and Y. Liu. 2022. Study of degradation of fuel cell stack based on the collected high-dimensional data and clustering algorithms calculations. Energy and AI 10:100184. doi:10.1016/j.egyai.2022.100184.
  • Pan, M., P. Hu, R. Gao, and K. Liang. 2022. Multistep prediction of remaining useful life of proton exchange membrane fuel cell based on temporal convolutional network. International Journal of Green Energy 20 (4):1–15. doi:10.1080/15435075.2022.2050377.
  • Pan, R., D. Yang, Y. Wang, and Z. Chen. 2020. Performance degradation prediction of proton exchange membrane fuel cell using a hybrid prognostic approach. International Journal of Hydrogen Energy 45 (55):30994–1008. doi:10.1016/j.ijhydene.2020.08.082.
  • Pei, P., and H. Chen. 2014. Main factors affecting the lifetime of proton exchange membrane fuel cells in vehicle applications: A review. Applied Energy 125:60–75. doi:10.1016/j.apenergy.2014.03.048.
  • Silva, R. E., R. Gouriveau, S. Jemeï, D. Hissel, L. Boulon, K. Agbossou, and N. Yousfi Steiner. 2014. Proton exchange membrane fuel cell degradation prediction based on adaptive neuro-fuzzy inference systems. International Journal of Hydrogen Energy 39 (21):11128–44. doi:10.1016/j.ijhydene.2014.05.005.
  • Sun, Y., C. Xia, B. Yin, H. Gao, J. Han, and J. Liu. 2022. Energy management strategy for FCEV considering degradation of fuel cell. International Journal of Green Energy 20 (1):1–12. doi:10.1080/15435075.2021.2023546.
  • Wang, F. -K., X. -B. Cheng, and K. -C. Hsiao. 2020. Stacked long short-term memory model for proton exchange membrane fuel cell systems degradation. Journal of Power Sources 448:227591. doi:10.1016/j.jpowsour.2019.227591.
  • Wang, T., H. Huang, X. Li, X. Guo, M. Liu, and H. Lei. 2022. Optimal estimation of proton exchange membrane fuel cell model parameters based on an improved chicken swarm optimization algorithm. International Journal of Green Energy 1–20. doi:10.1080/15435075.2022.2131432.
  • Wang, F. -K., T. Mamo, and X. -B. Cheng. 2020. Bi-directional long short-term memory recurrent neural network with attention for stack voltage degradation from proton exchange membrane fuel cells. Journal of Power Sources 461:228170. doi:10.1016/j.jpowsour.2020.228170.
  • Wang, Y., K. Wu, H. Zhao, J. Li, X. Sheng, Y. Yin, Q. Du, B. Zu, L. Han, and K. Jiao. 2023. Degradation prediction of proton exchange membrane fuel cell stack using semi-empirical and data-driven methods. Energy and AI 11:100205. doi:10.1016/j.egyai.2022.100205.
  • Wu, Y., E. Breaz, F. Gao, and A. Miraoui. 2015. Prediction of PEMFC stack aging based on relevance vector machine. 2015 IEEE Transportation Electrification Conference and Expo (ITEC), Chennai, India. IEEE, 1–5.
  • Wu, Y., E. Breaz, F. Gao, D. Paire, and A. Miraoui. 2016. Nonlinear performance degradation prediction of proton exchange membrane fuel cells using relevance vector machine. IEEE Transactions on Energy Conversion 31 (4):1570–82. doi:10.1109/tec.2016.2582531.
  • Yin, L., Q. Li, W. Chen, T. Wang, and H. Liu. 2019. Experimental analysis of optimal performance for a 5 kW PEMFC system. International Journal of Hydrogen Energy 44 (11):5499–506. doi:10.1016/j.ijhydene.2018.08.157.
  • Yue, M., Z. Li, R. Roche, S. Jemei, and N. Zerhouni. 2022. Degradation identification and prognostics of proton exchange membrane fuel cell under dynamic load. Control Engineering Practice 118:118. doi:10.1016/j.conengprac.2021.104959.
  • Zhang, D., P. Baraldi, C. Cadet, N. Yousfi-Steiner, C. Bérenguer, and E. Zio. 2019. An ensemble of models for integrating dependent sources of information for the prognosis of the remaining useful life of proton exchange membrane fuel cells. Mechanical Systems and Signal Processing 124:479–501. doi:10.1016/j.ymssp.2019.01.060.
  • Zhang, T., P. Wang, H. Chen, and P. Pei. 2018. A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition. Applied Energy 223:249–62. doi:10.1016/j.apenergy.2018.04.049.
  • Zheng, J., Y. Qin, Q. Guo, Z. Dong, C. Zhu, and Y. Wang. 2022. Block structure optimization in PEMFC flow channels using a data-driven surrogate model based on random forest. International Journal of Green Energy 1–7. doi:10.1080/15435075.2022.2118540.
  • Zhou, D., F. Gao, E. Breaz, A. Ravey, and A. Miraoui. 2017. Degradation prediction of PEM fuel cell using a moving window based hybrid prognostic approach. Energy 138:1175–86. doi:10.1016/j.energy.2017.07.096.
  • Zuo, B., J. Cheng, and Z. Zhang. 2021. Degradation prediction model for proton exchange membrane fuel cells based on long short-term memory neural network and savitzky-golay filter. International Journal of Hydrogen Energy 46:15928–37. doi:10.1016/j.ijhydene.2021.02.069.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.