210
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A self-powered flexible sensor based on thermoelectric generation for NO2 gas detection

, ORCID Icon, , , , , & show all
Pages 1776-1784 | Received 04 Nov 2022, Accepted 04 Feb 2023, Published online: 23 Mar 2023

References

  • Abdolmaleki, H., P. Kidmose, and S. Agarwala. 2021. Droplet-based techniques for printing of functional inks for flexible physical sensors. Advanced Materials 33 (20):2006792. doi:10.1002/adma.202006792.
  • Ando, B., S. Baglio, A. R. Bulsara, T. Emery, V. Marletta, and A. Pistorio. 2017. Low-cost inkjet printing technology for the rapid prototyping of transducers. Sensors 17 (4):748. doi:10.3390/s17040748.
  • Armando, G., J.U. Schroeder-Hinrichs, and A. I. Olcer. 2017. After 40 years of regional and coordinated ship safety inspections: Destination reached or new point of departure? Ocean Engineering 143:217–26. doi:10.1016/j.oceaneng.2017.06.050.
  • Bernardini, S., B. Lawson, K. Aguir, O. Margeat, C. Videlot-Ackermann, and J. Ackermann. 2017. Aluminum-doped zinc oxide nanocrystals for NO2 detection at low temperature. Paper presented at the Second International Conference on Advances in Sensors, Actuators, Shenzhen, China, Metering and Sensing.
  • Chen, X., L. Feng, Y. Penglu, C. Liu, J. Lan, Y.H. Lin, and X. Yang. 2021. Flexible thermoelectric films based on Bi2Te3 nanosheets and carbon nanotube network with high n-type performance. Acs Applied Materials & Interfaces 13 (4):5451–59. doi:10.1021/acsami.0c21396.
  • Choi, S.J., H.J. Choi, W.T. Koo, D. Huh, H. Lee, and I.D. Kim. 2017. Metal-organic framework-templated PdO-Co3O4 Nanocubes Functionalized by SWCNTs: Improved NO2 reaction kinetics on flexible heating film. Acs Applied Materials & Interfaces 9 (46):40593–603. doi:10.1021/acsami.7b11317.
  • Christiaan, H., G. E. Bijwaard, and S. Knapp. 2011. Ship inspection strategies: Effects on maritime safety and environmental protection. Transportation Research Part D-Transport and Environment 16 (1):42–48. doi:10.1016/j.trd.2010.07.006.
  • Dat, T., T. K. Nguyen, J. Noh, P. Hoa, G. Kang, and H. Ryeol Choi. 2021. Skin-type proximity sensor by using the change of electromagnetic field. IEEE Transactions on Industrial Electronics 68 (3):2379–88. doi:10.1109/tie.2020.2975503.
  • Goswami, R., and R. Das. 2020a. Experimental analysis of a novel solar pond driven thermoelectric energy system. Journal of Energy Resources Technology-Transactions of the Asme 142 (12). doi:10.1115/1.4047324.
  • Goswami, R., and R. Das. 2020b. Waste heat recovery from a biomass heat engine for thermoelectric power generation using two-phase thermosyphons. Renewable Energy 148:1280–91. doi:10.1016/j.renene.2019.10.067.
  • Guoneng, L., J. Ying, Y. Zheng, W. Guo, Y. Tang, and Y. Chao. 2022. Analytical design model for waste heat thermoelectric generator and experimental verification. Energy Conversion and Management 252:115034. doi:10.1016/j.enconman.2021.115034.
  • Guoneng, L., Y. Zheng, L. Hongkun, H. Jiangen, L. Jian, and W. Guo. 2020. Micro combined heat and power system based on stove-powered thermoelectric generator. Renewable Energy 155:160–71. doi:10.1016/j.renene.2020.03.130.
  • Huangfu, P., and R. Atkinson. 2020. Long-term exposure to NO2 and O−3 and all-cause and respiratory mortality: A systematic review and meta-analysis. Environment International 144:105998. doi:10.1016/j.envint.2020.105998.
  • Kaichen, X., Y. Fujita, L. Yuyao, S. Honda, M. Shiomi, T. Arie, S. Akita, and K. Takei. 2021. A wearable body condition sensor system with wireless feedback alarm functions. Advanced Materials 33 (18):2008701. doi:10.1002/adma.202008701.
  • Kaichen, X., L. Yuyao, T. Yamaguchi, T. Arie, S. Akita, and K. Takei. 2019. Highly precise multifunctional thermal management-based flexible sensing sheets. ACS Nano 13 (12):14348–56. doi:10.1021/acsnano.9b07805.
  • Khandelwal, G., and R. Dahiya. 2022. Self-powered active sensing based on triboelectric generators. Advanced Materials 34 (33):2200724. doi:10.1002/adma.202200724.
  • Khan, A., M. Usman, R. Raad, F. Tubbal, P. Ioannis Theoharis, S. Liu, and J. Foroughi. 2021. Bending analysis of polymer-based flexible antennas for wearable, general iot applications: A review. Polymers 13 (3):357. doi:10.3390/polym13030357.
  • Kumar, A., K. Singh, and R. Das. 2019. Response surface based experimental analysis and thermal resistance model of a thermoelectric power generation system. Applied Thermal Engineering 159:113935. doi:10.1016/j.applthermaleng.2019.113935.
  • Kumar, A., K. Singh, S. Verma, and R. Das. 2018. Inverse prediction and optimization analysis of a solar pond powering a thermoelectric generator. Solar Energy 169:658–72. doi:10.1016/j.solener.2018.05.035.
  • Kurosaki, J., A. Yamamoto, S. Tanaka, J. Cannon, K. Miyazaki, and H. Tsukamoto. 2009. Fabrication and evaluation of a thermoelectric microdevice on a free-standing substrate. Journal of Electronic Materials 38 (7):1326–30. doi:10.1007/s11664-009-0819-y.
  • Lim, H.R., H. Seok Kim, R. Qazi, Y.T. Kwon, J.W. Jeong, and W.H. Yeo. 2020. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Advanced Materials 32 (15). doi: 10.1002/adma.201901924.
  • Liu, C., Y. Fan, K. Zhao, B. Shan, Y. Wang, Y. Gao, Z. Han, X. Minyi, and X. Pan. 2022. Design and application of a new self-powered sensing device based on MTEG and FTENG. Journal of Energy Engineering 148 (6). doi: 10.1061/(asce)ey.1943-7897.0000861.
  • Liu, C., J. Liu, Y. Wenxiang, L. Huaan, C. Zhao, H. Wang, X. Minyi, and X. Pan. 2021. Study on a new cascade utilize method for ship waste heat based on TEG-ORC combined cycle. Environmental Progress & Sustainable Energy 40 (5). doi: 10.1002/ep.13661.
  • Liu, C., X. Pan, X. Zheng, Y. Yan, and L. Weizhong. 2016. An experimental study of a novel prototype for two-stage thermoelectric generator from vehicle exhaust. Journal of the Energy Institute 89 (2):271–81. doi:10.1016/j.joei.2015.01.019.
  • Liu, C., Y. Wenxiang, L. Huaan, J. Liu, C. Zhao, Z. Mao, and X. Pan. 2021. Experimental study on cascade utilization of ship’s waste heat based on TEG-ORC combined cycle. International Journal of Energy Research 45 (3):4184–96. doi:10.1002/er.6083.
  • Liu, C., K. Zhao, Y. Fan, Y. Gao, Z. Zhou, L. Mengze, Y. Gao, Z. Han, X. Minyi, and X. Pan. 2022. A flexible thermoelectric film based on Bi2Te3 for wearable applications. Functional Materials Letters 15 (01). doi: 10.1142/s1793604722510055.
  • Liu, C., C. Zhao, J. Liu, J. Wang, Y. Wang, Y. Fan, K. Zhao, B. Shan, Z. Qu, K. Ma, et al. 2021. Design and study of a combining energy harvesting system based on thermoelectric and flapping triboelectric nanogenerator. International Journal of Green Energy. 18(12):1304–10. doi:10.1080/15435075.2021.1904405.
  • Luo, H., G. Pang, X. Kaichen, Y. Zhiqiu, H. Yang, and G. Yang. 2021. A fully printed flexible sensor sheet for simultaneous proximity–pressure–temperature detection. Advanced Materials Technologies 6 (11):2100616. doi:10.1002/admt.202100616.
  • Szlapczynski, R., and J. Szlapczynska. 2017. Review of ship safety domains: Models and applications. Ocean Engineering 145:277–89. doi:10.1016/j.oceaneng.2017.09.020.
  • Weber, J., K. Potje-Kamloth, F. Haase, P. Detemple, F. Voeklein, and T. Doll. 2006. Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics. Sensors and Actuators A-Physical 132 (1):325–30. doi:10.1016/j.sna.2006.04.054.
  • Wei, S., X. Qiu, A. Jiaqi, Z. Chen, and X. Zhang. 2021. Highly sensitive, flexible, green synthesized graphene/biomass aerogels for pressure sensing application. Composites Science and Technology 207:108730. doi:10.1016/j.compscitech.2021.108730.
  • Yuyao, L., X. Kaichen, L. Zhang, M. Deguchi, H. Shishido, T. Arie, R. Pan, A. Hayashi, L. Shen, S. Akita, et al. 2020. Multimodal plant healthcare flexible sensor system. ACS Nano. 14(9):10966–75. doi:10.1021/acsnano.0c03757.
  • Zhang, F., Q. Lin, F. Han, Z. Wang, B. Tian, L. Zhao, T. Dong, and Z. Jiang. 2022. A flexible and wearable NO2 gas detection and early warning device based on a spraying process and an interdigital electrode at room temperature. Microsystems & Nanoengineering 8 (1). doi:10.1038/s41378-022-00369-z.
  • Zhang, J., S. Wang, Y. Wang, Y. Wang, B. Zhu, H. Xia, X. Guo, S. Zhang, W. Huang, and W. Shihua. 2009. NO2 sensing performance of SnO2 hollow-sphere sensor. Sensors and Actuators B-Chemical 135 (2):610–17. doi:10.1016/j.snb.2008.09.026.
  • Zhao, X., C. Zhao, Y. Jiang, J. Xingxiang, F. Kong, T. Lin, H. Shao, and W. Han. 2020. Flexible cellulose nanofiber/Bi2Te3 composite film for wearable thermoelectric devices. Journal of Power Sources 479:229044. doi:10.1016/j.jpowsour.2020.229044.
  • Zhao, Q., W. Zhou, M. Zhang, Y. Wang, Z. Duan, C. Tan, B. Liu, F. Ouyang, Z. Yuan, H. Tai, et al. 2022. Edge-Enriched Mo 2 TiC 2 T x /MoS 2 Heterostructure with coupling interface for selective NO 2 monitoring. Advanced Functional Materials 32 (39). doi: 10.1002/adfm.202203528.
  • Zheng, W., X. Yongshan, L. Zheng, C. Yang, N. Pinna, X. Liu, and J. Zhang. 2020. MoS 2 Van der waals p–n junctions enabling highly selective room-temperature NO 2 sensor. Advanced Functional Materials 30 (19):2000435. doi:10.1002/adfm.202000435.
  • Zhenhua, W., S. Zhang, Z. Liu, M. Erzhen, and H. Zhiyu. 2022. Thermoelectric converter: Strategies from materials to device application. Nano Energy 91:106692. doi:10.1016/j.nanoen.2021.106692.
  • Ziyang, L., L. Ping Tan, X. Zhao, M. Layani, T. Sun, S. Fan, Q. Yan, S. Magdassi, and H. Hoon Hng. 2013. Aqueous solution synthesis of (Sb, Bi)(2)(Te, Se)(3) nanocrystals with controllable composition and morphology. Journal of Materials Chemistry C 1 (39):6271–77. doi:10.1039/c3tc31241k.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.