272
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Performance evaluation of proton exchange membrane fuel cell and air source heat pump system with energy storage for residential application

, , , &
Pages 1785-1799 | Received 26 Nov 2022, Accepted 10 Mar 2023, Published online: 26 Mar 2023

References

  • Arsalis, A. 2019. A comprehensive review of fuel cell-based micro-combined-heat-and-power systems. Renewable and Sustainable Energy Reviews 105:391–414. doi:10.1016/j.rser.2019.02.013.
  • Barelli, L., G. Bidini, F. Gallorini, and A. Ottaviano. 2011. Analysis of the operating conditions influence on PEM fuel cell performances by means of a novel semi-empirical model. International Journal of Hydrogen Energy 36 (16):10434–42. doi:10.1016/j.ijhydene.2010.06.032.
  • Bellos, E., and C. Tzivanidis. 2019. Investigation of the environmentally-friendly refrigerant R152a for air conditioning purposes. Applied Sciences-Basel 9 (1):119. doi:10.3390/app9010119.
  • Cai, S., X. Li, L. Song, X. Luo, and T. Zhengkai. 2022. Flexible load regulation method for a residential energy supply system based on proton exchange membrane fuel cell. Energy Conversion and Management 258:115527. doi:10.1016/j.enconman.2022.115527.
  • Chang, K. Y., and Y. W. Teng. 2012. THE optimal design for pemfc modeling based on bpnn and Taguchi method. International Journal of Green Energy 9 (2):139–59. doi:10.1080/15435075.2011.622018.
  • Chang, H., X. Xiangxiang, J. Shen, S. Shu, and T. Zhengkai. 2019. Performance analysis of a micro-combined heating and power system with PEM fuel cell as a prime mover for a typical household in North China. International Journal of Hydrogen Energy 44 (45):24965–76. doi:10.1016/j.ijhydene.2019.07.183.
  • Chen, X., G. Gong, Z. Wan, L. Luo, and J. Wan. 2015. Performance analysis of 5 kW PEMFC-based residential micro-CCHP with absorption chiller. International Journal of Hydrogen Energy 40 (33):10647–57. doi:10.1016/j.ijhydene.2015.06.139.
  • Chen, J., and Y. Jianlin. 2017. Theoretical analysis on a new direct expansion solar assisted ejector-compression heat pump cycle for water heater. Solar Energy 142:299–307. doi:10.1016/j.solener.2016.12.043.
  • Chen, X., H. Zhou, L. Wenbin, Y. Zhengkun, G. Gong, Y. Yan, L. Luo, Z. Wan, and Y. Ding. 2018. Multi-criteria assessment and optimization study on 5 kW PEMFC based residential CCHP system. Energy Conversion and Management 160:384–95. doi:10.1016/j.enconman.2018.01.050.
  • Cho, E. A., U. S. Jeon, S. A. Hong, I. H. Oh, and S. G. Kang. 2005. Performance of a 1 kW-class PEMFC stack using TiN-coated 316 stainless steel bipolar plates. Journal of Power Sources 142 (1–2):177–83. doi:10.1016/j.jpowsour.2004.10.032.
  • Dincer, I. 2007. Environmental and sustainability aspects of hydrogen and fuel cell systems. International Journal of Energy Research 31 (1):29–55. doi:10.1002/er.1226.
  • Faghri, A., and Z. Guo. 2005. Challenges and opportunities of thermal management issues related to fuel cell technology and modeling. International Journal of Heat and Mass Transfer 48 (19–20):3891–920. doi:10.1016/j.ijheatmasstransfer.2005.04.014.
  • Gandiglio, M., A. Lanzini, M. Santarelli, and P. Leone. 2014. Design and optimization of a proton exchange membrane fuel cell CHP system for residential use. Energy and Buildings 69:381–93. doi:10.1016/j.enbuild.2013.11.022.
  • Gigliucci, G., L. Petruzzi, E. Cerelli, A. Garzisi, and A. La Mendola. 2004. Demonstration of a residential CHP system based on PEM fuel cells. Journal of Power Sources 131 (1–2):62–68. doi:10.1016/j.jpowsour.2004.01.010.
  • Giner-Sanz, J. J., E. M. Ortega, and V. Perez-Herranz. 2015. Statistical analysis of the effect of the temperature and inlet humidities on the parameters of a PEMFC model. Fuel Cells 15 (3):479–93. doi:10.1002/fuce.201400163.
  • Gonçalves, J. M., C. Melo, and C. J. L. Hermes. 2009. A semi-empirical model for steady-state simulation of household refrigerators. Applied Thermal Engineering 29 (8–9):1622–30. doi:https://doi.org/10.1016/j.applthermaleng.2008.07.021.
  • Guangsheng, Z., and S. G. Kandlikar. 2012. A critical review of cooling techniques in proton exchange membrane fuel cell stacks. International Journal of Hydrogen Energy 37 (3):2412–29. doi:10.1016/j.ijhydene.2011.11.010.
  • Huang, W., Q. Jian, S. Feng, and Z. Huang. 2022. A hybrid optimization strategy of electrical efficiency about cooling PEMFC combined with ultra-thin vapor chambers. Energy Conversion and Management 254:115301. doi:10.1016/j.enconman.2022.115301.
  • Hwang, J. J., M. Lin Zou, W. Ru Chang, A. Su, F. Bo Weng, and W. Wei. 2010. Implementation of a heat recovery unit in a proton exchange membrane fuel cell system. International Journal of Hydrogen Energy 35 (16):8644–53. doi:10.1016/j.ijhydene.2010.05.007.
  • Jin, Y., L. Sun, and J. Shen. 2019. Thermal economic analysis of hybrid open-cathode hydrogen fuel cell and heat pump cogeneration. International Journal of Hydrogen Energy 44 (56):29692–99. doi:10.1016/j.ijhydene.2019.03.098.
  • Kuo, J.K., J.J. Hwang, and C.H. Lin. 2012. Performance Analysis of a Stationary Fuel Cell Thermoelectric Cogeneration System. Fuel Cells 12 (6):1104–14. doi:10.1002/fuce.201200111.
  • Kwan, T. H., W. Xiaofeng, and Q. Yao. 2019. Performance comparison of several heat pump technologies for fuel cell micro-CHP integration using a multi-objective optimisation approach. Applied Thermal Engineering 160:114002. doi:10.1016/j.applthermaleng.2019.114002.
  • Liwei, J., Z. Tan, L. Huanhuan, Q. Tan, Y. Xiaobao, and X. Song. 2016. Multi-objective operation optimization and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China. Energy 111:322–40. doi:10.1016/j.energy.2016.05.085.
  • Llopis, R., L. Nebot-Andrés, R. Cabello, D. Sánchez, and J. Catalán-Gil. 2016. Experimental evaluation of a CO2 transcritical refrigeration plant with dedicated mechanical subcooling. International Journal of Refrigeration 69:361–68. doi:10.1016/j.ijrefrig.2016.06.009.
  • Mann, R. F., J. C. Amphlett, M. A. I. Hooper, H. M. Jensen, B. A. Peppley, and P. R. Roberge. 2000. Development and application of a generalised steady-state electrochemical model for a PEM fuel cell. Journal of Power Sources 86 (1–2):173–80. doi:10.1016/s0378-7753(99)00484-x.
  • Ohenoja, M., and K. Leiviskä. 2010. Validation of genetic algorithm results in a fuel cell model. International Journal of Hydrogen Energy 35 (22):12618–25. doi:10.1016/j.ijhydene.2010.07.129.
  • Özgür, T., and A. Cem Yakaryılmaz. 2018. A review: Exergy analysis of PEM and PEM fuel cell based CHP systems. International Journal of Hydrogen Energy 43 (38):17993–8000. doi:10.1016/j.ijhydene.2018.01.106.
  • Shabani, B., and J. Andrews. 2011. An experimental investigation of a PEM fuel cell to supply both heat and power in a solar-hydrogen RAPS system. International Journal of Hydrogen Energy 36 (9):5442–52. doi:10.1016/j.ijhydene.2011.02.003.
  • Si-Doek, O., K.Y. Kim, O. Shuk-Bum, and H.Y. Kwak. 2012. Optimal operation of a 1-kW PEMFC-based CHP system for residential applications. Applied Energy 95:93–101. doi:10.1016/j.apenergy.2012.02.019.
  • Sorace, M., M. Gandiglio, and M. Santarelli. 2017. Modeling and techno-economic analysis of the integration of a FC-based micro-CHP system for residential application with a heat pump. Energy 120:262–75. doi:10.1016/j.energy.2016.11.082.
  • Sridhar, P., R. Perumal, N. Rajalakshmi, M. Raja, and K. S. Dhathathreyan. 2001. Humidification studies on polymer electrolyte membrane fuel cell. Journal of Power Sources 101 (1):72–78. doi:10.1016/S0378-7753(01)00625-5.
  • Vialetto, G., M. Noro, and M. Rokni. 2019. Studying a hybrid system based on solid oxide fuel cell combined with an air source heat pump and with a novel heat recovery. Journal of Electrochemical Energy Conversion and Storage 16 (2). doi:10.1115/1.4041864.
  • Wile, D. D. 1935. The measurement of expansion valve capacity. Refrigeration Engineering 8 (1):108–112.
  • Xin, Y. 2020. Design and analysis of PEM fuel cell cogeneration system. Qingdao University. doi:10.27262/d.cnki.gqdau.2020.000555.
  • Yang, F., N. Huang, Q. Sun, L. Cheng, and R. Wennersten. 2018. Modeling and techno-economic analysis of the heat pump-integrated PEMFC-based micro-CHP system Applied Energy Symposium and Forum - Low-Carbon Cities and Urban Energy Systems (CUE) Shanghai. H. Wang, X. Wang, J. Yan, J. Wu, Y. Yang, and H. I. Li. 152. Shanghai, PEOPLES R CHINA: Elsevier.
  • Yousefi, M., M. A. Ehyaei, and M. A. Rosen. 2019. Optimizing a new configuration of a proton exchange membrane fuel cell cycle with burner and reformer through a particle swarm optimization algorithm for residential applications. Journal of Electrochemical Energy Conversion and Storage 16 (4). doi:10.1115/1.4044812.
  • Zhang, Q., L. Zhang, J. Nie, and L. Yinlong. 2017. Techno-economic analysis of air source heat pump applied for space heating in northern China. Applied Energy 207:533–42. doi:10.1016/j.apenergy.2017.06.083.
  • Zhao, J., H. Chang, X. Luo, T. Zhengkai, and S. Hwa Chan. 2022a. Dynamic analysis of a CCHP system based on fuel cells integrated with methanol-reforming and dehumidification for data centers. Applied Energy 309:118496. doi:10.1016/j.apenergy.2021.118496.
  • Zhao, J., H. Chang, X. Luo, T. Zhengkai, and S. Hwa Chan. 2022b. A novel type of PEMFC-based CCHP system with independent control of refrigeration and dehumidification. Applied Thermal Engineering 204:117915. doi:10.1016/j.applthermaleng.2021.117915.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.