887
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Review of green hydrogen technologies application in maritime transport

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1800-1825 | Received 14 Nov 2022, Accepted 24 Jan 2023, Published online: 29 Mar 2023

References

  • Abad, A. V., and P. E. Dodds. 2020. Green hydrogen characterisation initiatives: Definitions, standards, guarantees of origin, and challenges. Energy Policy 138:111300. doi:10.1016/j.enpol.2020.111300.
  • Abdalla, A. M., S. Hossain, O. B. Nisfindy, A. T. Azad, M. Dawood, and A. K. Azad. 2018. Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Conversion Management 165:602–27. doi:10.1016/j.enconman.2018.03.088.
  • Abdin, Z., A. Zafaranloo, A. Rafiee, W. Mérida, W. Lipiński, and K. R. Khalilpour. 2020. Hydrogen as an energy vector. Renewable and Sustainable Energy Reviews 120:109620. doi:10.1016/j.rser.2019.109620.
  • Abuşoğlu, A., A. İ. K. Emrah Özahi, S. Demir, and S. Demir. 2017. Exergy analyses of green hydrogen production methods from biogas-based electricity and sewage sludge. International Journal of Hydrogen Energy 42 (16):10986–96. doi:10.1016/j.ijhydene.2017.02.144.
  • Acar, C., and I. Dincer. 2014. Comparative assessment of hydrogen production methods from renewable and non-renewable sources. International Journal of Hydrogen Energy 39 (1):1–12. doi:10.1016/j.ijhydene.2013.10.060.
  • Acar, C., and I. Dincer. 2018. 3.1 hydrogen production. In Comprehensive energy systems, ed. I. Dincer, Vol. 3, 1–40. Elsevier Inc. doi:10.1016/B978-0-12-809597-3.00304-7.
  • Ahmadi, P., S. Hosein Torabi, H. Afsaneh, Y. Sadegheih, H. Ganjehsarabi, and M. Ashjaee. 2020. The effects of driving patterns and PEM fuel cell degradation on the lifecycle assessment of hydrogen fuel cell vehicles. International Journal of Hydrogen Energy 45 (5):3595–608. doi:10.1016/j.ijhydene.2019.01.165.
  • Alnes, O., S. Eriksen, and B. J. Vartdal. 2017. Battery-Powered Ships: A Class Society Perspective. In IEEE Electrification Magazine, 10–21. IEEE. doi:10.1109/MELE.2017.2718823.
  • Al-Qahtani, A., B. Parkinson, K. Hellgardt, N. Shah, and G. Guillen-Gosalbez. 2021. Uncovering the true cost of hydrogen production routes using life cycle monetisation. Applied Energy 281:115958. doi:10.1016/j.apenergy.2020.115958.
  • Alrazen, H. A., A. R. Abu Talib, R. Adnan, and K. A. Ahmad. 2016. A review of the effect of hydrogen addition on the performance and emissions of the compression – Ignition engine. Renewable and Sustainable Energy Reviews 54:785–96. doi:10.1016/j.rser.2015.10.088.
  • Ammar, N. R., and N. F. S. H. Alshammari. 2018. Overview of the green hydrogen applications in marine power plants onboard ships. International Journal of Multidisciplinary and Current Research 6 (01). doi: 10.14741/ijmcr.v6i01.10912.
  • Andersson, J., and S. Grönkvist. 2019. Large-scale storage of hydrogen. International Journal of Hydrogen Energy 44 (23):11901–19. doi:10.1016/j.ijhydene.2019.03.063.
  • Atilhan, S., S. Park, M. M. El-Halwagi, M. Atilhan, M. Moore, and R. B. Nielsen. 2021. Green hydrogen as an alternative fuel for the shipping industry. Current Opinion in Chemical Engineering 31:100668. doi:10.1016/j.coche.2020.100668.
  • Aydin, M. I., and I. Dincer. 2022. An assessment study on various clean hydrogen production methods. Energy 245:123090. doi:10.1016/j.energy.2021.123090.
  • Aydin, M. I., A. Erdogan Karaca, A. M. Qureshy, and I. Dincer. 2021. A comparative review on clean hydrogen production from wastewaters. Journal of Environmental Management 279:111793. doi:10.1016/j.jenvman.2020.111793.
  • Ayodele, T. R., and J. Lange Munda. 2019. The potential role of green hydrogen production in the South Africa energy mix. Journal of Renewable Sustainable Energy 11 (4):044301. doi:10.1063/1.5089958.
  • Aziz, M., A. Tri Wijayanta, and A. Bayu Dani Nandiyanto. 2020. Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization. Energies 13 (12):3062. doi:10.3390/en13123062.
  • Baldi, F., S. Brynolf, and F. Maréchal. 2019. The cost of innovative and sustainable future ship energy systems. Paper presented at the ECOS 2019 - THE 32ND INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS, WROCLAW, POLAND.
  • Baldi, F., S. Moret, K. Tammi, and F. Maréchal. 2020. The role of solid oxide fuel cells in future ship energy systems. Energy 194:116811. doi:10.1016/j.energy.2019.116811.
  • Barthelemy, H., M. Weber, and F. Barbier. 2017. Hydrogen storage: Recent improvements and industrial perspectives. International Journal of Hydrogen Energy 42 (11):7254–62. doi:10.1016/j.ijhydene.2016.03.178.
  • Baykara, S. Z. 2004. Experimental solar water thermolysis. International Journal of Hydrogen Energy 29 (14):1459–69. doi:10.1016/j.ijhydene.2004.02.011.
  • Bethoux, O. 2020. Hydrogen fuel cell road vehicles and their infrastructure: An option towards an environmentally friendly energy transition. Energies 13 (22):6132. doi:10.3390/en13226132.
  • Bicer, Y., and I. Dincer. 2017. Life cycle assessment of nuclear-based hydrogen and ammonia production options: A comparative evaluation. International Journal of Hydrogen Energy 42 (33):21559–70. doi:10.1016/j.ijhydene.2017.02.002.
  • Braga, L. B., J. L. Silveira, M. E. da Silva, E. Blanco Machin, D. Travieso Pedroso, and C. Eduardo Tuna. 2014. Comparative analysis between a PEM fuel cell and an internal combustion engine driving an electricity generator: Technical, economical and ecological aspects. Applied Thermal Engineering 63 (1):354–61. doi:10.1016/j.applthermaleng.2013.10.053.
  • Buhaug, Ø., J. J. Corbett, Ø. Endresen, V. Eyring, J. Faber, S. Hanayama, D. S. Lee, D. Lee, H. Lindstad, and A. Z. Markowska. 2009. Second IMO GHG study 2009. In International maritime organization. International maritime organization. London, UK. https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/SecondIMOGHGStudy2009.pdf.
  • Buttler, A., and H. Spliethoff. 2018. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review. Renewable Sustainable Energy Reviews 82:2440–54. doi:10.1016/j.rser.2017.09.003.
  • Ceran, B. 2020. Multi-criteria comparative analysis of clean hydrogen production scenarios. Energies 13 (16):4180. doi:10.3390/en13164180.
  • CertifHy. 2019. “CertifHy - Developing a European guarantee of origin scheme for green hydrogen_definition of Green Hydrogen.” CertifHy, Accessed 19January https://ec.europa.eu/jrc/sites/jrcsh/files/Vanhoudt%20Definition%20of%20Green%20Hydrogen%20SFEM.pdf.
  • CertifHy. 2021. “CertifHy - the first European guarantee of origin for green & low carbon hydrogen.” CertifHy, Accessed 20January https://www.certifhy.eu/images/media/files/CertifHy_Leaflet_final-compressed.pdf.
  • Cetinkaya, E., I. Dincer, and G. F. Naterer. 2012. Life cycle assessment of various hydrogen production methods. International Journal of Hydrogen Energy 37 (3):2071–80. doi:10.1016/j.ijhydene.2011.10.064.
  • Chen, D., D. Liang, L. Lei, X. Guo, J. Lang, and Y. Zhou. 2021. The temporal and spatial changes of ship-contributed PM2.5 due to the inter-annual meteorological variation in Yangtze River Delta, China. Atmosphere 12 (6):722. doi:10.3390/atmos12060722.
  • Chen, Z. S., and J. Siu Lee Lam. 2022. Life cycle assessment of diesel and hydrogen power systems in tugboats. Transportation Research Part D: Transport and Environment 103:103192. doi:10.1016/j.trd.2022.103192.
  • Chunwee, N., I. C. K. Tam, and B. Wetenhall. 2022. Waste heat source profiles for marine application of organic rankine cycle. Journal of Marine Science and Engineering 10 (8):1122. doi:10.3390/jmse10081122.
  • CleanTech, N. M. 2019. Norwegian future value chains for liquid hydrogen. https://maritimecleantech.no/wp-content/uploads/2016/11/Report-liquid-hydrogen.pdf.
  • Commission, E. 2022. “Reducing emissions from the shipping sector.” Accessed 7th June. https://ec.europa.eu/clima/eu-action/transport-emissions/reducing-emissions-shipping-sector_en.
  • Czermański, E., A. Oniszczuk-Jastrząbek, E. F. Spangenberg, Ł. Kozłowski, M. Adamowicz, J. Jankiewicz, and G. T. Cirella. 2022. Implementation of the Energy Efficiency Existing Ship Index: An important but costly step towards ocean protection. Marine Policy 145:105259. doi:10.1016/j.marpol.2022.105259.
  • d’Amore-Domenech, R., Ó. Santiago, and T. J. Leo. 2020. Multicriteria analysis of seawater electrolysis technologies for green hydrogen production at sea. Renewable Sustainable Energy Reviews 133:110166. doi:10.1016/j.rser.2020.110166.
  • Deniz, C., and B. Zincir. 2016. Environmental and economical assessment of alternative marine fuels. Journal of Cleaner Production 113:438–49. doi:10.1016/j.jclepro.2015.11.089.
  • Diab, F., H. Lan, and S. Ali. 2016. Novel comparison study between the hybrid renewable energy systems on land and on ship. Renewable and Sustainable Energy Reviews 63:452–63. doi:10.1016/j.rser.2016.05.053.
  • Dimitriou, P., and T. Tsujimura. 2017. A review of hydrogen as a compression ignition engine fuel. International Journal of Hydrogen Energy 42 (38):24470–86. doi:10.1016/j.ijhydene.2017.07.232.
  • Dincer, I. 2012. Green methods for hydrogen production. International Journal of Hydrogen Energy 37 (2):1954–71. doi:10.1016/j.ijhydene.2011.03.173.
  • Dincer, I., and C. Acar. 2015. Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy 40 (34):11094–111. doi:10.1016/j.ijhydene.2014.12.035.
  • Dincer, I., and C. Acar. 2018. Smart energy solutions with hydrogen options. International Journal of Hydrogen Energy 43 (18):8579–99. doi:10.1016/j.ijhydene.2018.03.120.
  • Dincer, I., and C. Zamfirescu. 2016a. Chapter 2 - Hydrogen and Its Production. In Sustainable Hydrogen Production, ed. I. Dincer and C. Zamfirescu, 65–97. Elsevier.
  • Dincer, I., and C. Zamfirescu. 2016b. Chapter 3 - hydrogen production by electrical energy. In Sustainable Hydrogen Production, ed. I. Dincer, and C. Zamfirescu, 99–161. Elsevier. doi:10.1016/B978-0-12-801563-6.00003-0.
  • Dincer, I., and C. Zamfirescu. 2016c. Chapter 4 - hydrogen production by thermal energy. In Sustainable hydrogen production, ed. I. Dincer, and C. Zamfirescu, 163–308. Elsevier. doi:10.1016/B978-0-12-801563-6.00004-2.
  • Dincer, I., and C. Zamfirescu. 2016d. Chapter 5 - Hydrogen Production by Photonic Energy. In Sustainable hydrogen production, ed. I. Dincer, and C. Zamfirescu, 309–91. Elsevier. doi:10.1016/B978-0-12-801563-6.00005-4.
  • Dincer, I., and C. Zamfirescu. 2016e. Chapter 8 - novel systems and applications of hydrogen production. In Sustainable hydrogen production, ed. I. Dincer and C. Zamfirescu, 441–70. Elsevier. doi:10.1016/B978-0-12-801563-6.00008-X.
  • Dincer, I., and C. Zamfirescu. 2017. Sustainable hydrogen production. Elsevier.
  • Ding, R., S. Zhang, Y. Chen, Z. Rui, K. Hua, W. Yongkang, L. Xiaoke, X. Duan, X. Wang, J. Li, et al. 2022. Application of machine learning in optimizing proton exchange membrane fuel cells: A review. Energy and AI 9:100170. doi:10.1016/j.egyai.2022.100170.
  • Dnv, G. L. 2018. Assessment of selected alternative fuels and technologies. https://sustainableworldports.org/wp-content/uploads/DNV-GL_2018_Assessment-of-selected-alternative-fuels-and-tech-report.pdf.
  • Dnv, G. L. 2019. Comparison of alternative marine fuels. 11C8I1KZ-1. https://sea-lng.org/wp-content/uploads/2020/04/Alternative-Marine-Fuels-Study_final_report_25.09.19.pdf.
  • Donkers, K. 2020. “Hydrogen production on offshore platforms: A techno-economic analysis.” Master Thesis, Utrecht University.
  • Doulgeris, G., T. Korakianitis, P. Pilidis, and E. Tsoudis. 2012. Techno-economic and environmental risk analysis for advanced marine propulsion systems. Applied Energy 99:1–12. doi:10.1016/j.apenergy.2012.04.026.
  • Dutta, S. 2014. A review on production, storage of hydrogen and its utilization as an energy resource. Journal of Industrial Engineering Chemistry 20 (4):1148–56. doi:10.1016/j.jiec.2013.07.037.
  • Dvoynikov, M., G. Buslaev, A. Kunshin, D. Sidorov, A. Kraslawski, and M. Budovskaya. 2021. New concepts of hydrogen production and storage in Arctic Region. Resources 10 (1):3. doi:10.3390/resources10010003.
  • El-Emam, R. S., and H. Özcan. 2019. Comprehensive review on the techno-economics of sustainable large-scale clean hydrogen production. Journal of Cleaner Production 220:593–609. doi:10.1016/j.jclepro.2019.01.309.
  • El-Shafie, M., S. Kambara, and Y. Hayakawa. 2019. Hydrogen production technologies overview. Journal of Power Energy Engineering 7 (01):107. doi:10.4236/jpee.2019.71007.
  • Energy, Office of Energy Efficiency & Renewable. 2021. “Hydrogen and fuel cell technologies office.” Accessed 27May https://www.energy.gov/eere/fuelcells/fuel-cells.
  • Fan, Y. V., S. Perry, J. Jaromír Klemeš, and C. Tin Lee. 2018. A review on air emissions assessment: Transportation. Journal of Cleaner Production 194:673–84. doi:10.1016/j.jclepro.2018.05.151.
  • Faye, O., J. A. Szpunar, B. Szpunar, and A. Chedikh Beye. 2017. Hydrogen adsorption and storage on Palladium – functionalized graphene with NH-dopant: A first principles calculation. Applied Surface Science 392:362–74. doi:10.1016/j.apsusc.2016.09.032.
  • Fernández, I. A., M. Romero Gomez, J. Romero Gómez, and L. M. López-González. 2020. Generation of H2 on board LNG vessels for consumption in the propulsion system. Polish Maritime Research 27 (1):83–95. doi:10.2478/pomr-2020-0009.
  • Fernández, I. A., M. Romero Gómez, J. Romero Gómez, and L. M. López-González. 2017. H2 production by the steam reforming of excess boil off gas on LNG vessels. Energy Conversion Management 134:301–13. doi:10.1016/j.enconman.2016.12.047.
  • Furat, D., M. Anda, and G. M. Shafiullah. 2020. Hydrogen production for energy: An overview. International Journal of Hydrogen Energy 45 (7):3847–69. doi:10.1016/j.ijhydene.2019.12.059.
  • Gambou, F., D. Guilbert, M. Zasadzinski, and H. Rafaralahy. 2022. A comprehensive survey of alkaline electrolyzer modeling: electrical domain and specific electrolyte conductivity. 15 (9): 3452. doi:10.3390/en15093452.
  • Geertsma, R. D., R. R. Negenborn, K. Visser, and J. J. Hopman. 2017. Design and control of hybrid power and propulsion systems for smart ships: A review of developments. Applied Energy 194:30–54. doi:10.1016/j.apenergy.2017.02.060.
  • Gianni, M., V. Bucci, and A. Marinò. 2021. “System simulation as decision support tool in ship design.” In International Conference on Industry 4.0 and Smart Manufacturing, ed. P. C. Science, 754–63. Elsevier B.V. doi:10.1016/j.procs.2021.01.323.
  • Gkanas, E., and M. Khzouz. 2018. Metal hydride hydrogen compression systems–materials, applications and numerical analysis. Hydrogen Storage Technologies 1–37.
  • Gondal, I. A. 2019. Offshore renewable energy resources and their potential in a green hydrogen supply chain through power-to-gas. Sustainable Energy Fuels 3 (6):1468–89. doi:10.1039/C8SE00544C.
  • Halewadimath, S. S., N. R. Banapurmath, V. S. Yaliwal, M. G. Prasad, S. S. Jalihal, M. E. M. Soudagar, M. A. M. Haseeb Yaqoob, K. Shahapurkar, M. Reza Safaei, and M. R. Safaei. 2022. Effect of manifold injection of hydrogen gas in producer gas and neem biodiesel fueled CRDI dual fuel engine. International Journal of Hydrogen Energy 47 (62):25913–28. doi:10.1016/j.ijhydene.2022.02.135.
  • Hoecke, L. V., L. Laffineur, P. Perreault, S. W. Verbrugge, S. Lenaerts, and S. Lenaerts. 2021. Challenges in the use of hydrogen for maritime applications. Energy & Environmental Science 14 (2):815–43. doi:10.1039/D0EE01545H.
  • Hosseini, S. E., and M. Abdul Wahid. 2016. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renewable and Sustainable Energy Reviews 57:850–66. doi:10.1016/j.rser.2015.12.112.
  • IAEA. 2013. Hydrogen production using nuclear energy. In International atomic energy agency (iaea). international atomic energy agency (iaea). VIENNA. https://www-pub.iaea.org/MTCD/Publications/PDF/Pub1577_web.pdf.
  • Iannuzzi, L., J. Antonio Hilbert, and E. Eduardo Silva Lora. 2021. Life Cycle Assessment (LCA) for use on renewable sourced hydrogen fuel cell buses vs diesel engines buses in the city of Rosario, Argentina. International Journal of Hydrogen Energy 46 (57):29694–705. doi:10.1016/j.ijhydene.2021.01.065.
  • IEA. 2021. “International Shipping.” IEA, Accessed 3January. https://www.iea.org/reports/international-shipping.
  • (IMO), International Maritime Organization. 2018. Resolution MEPC.304(72) (adopted on 13 April 2018) Initial IMO Strategy on Reduction of GHG Emission from Ships. MEPC 72/17/Add.1 Annex 11. https://wwwcdn.imo.org/localresources/en/KnowledgeCentre/IndexofIMOResolutions/MEPCDocuments/MEPC.304(72).pdf
  • (IMO), International Maritime Organization. 2020. Fourth IMO GHG Study 2020 Full Report https://wwwcdn.imo.org/localresources/en/OurWork/Environment/Documents/Fourth%20IMO%20GHG%20Study%202020%20-%20Full%20report%20and%20annexes.pdf.
  • (IMO), International Maritime Organization. 2022a. “IMO 2020 – cutting sulphur oxide emissions.” Accessed 2November. https://www.imo.org/en/MediaCentre/HotTopics/Pages/Sulphur-2020.aspx.
  • (IMO), International Maritime Organization. 2022b. “Rules on ship carbon intensity and rating system enter into force.” Accessed 2November. https://www.imo.org/en/MediaCentre/PressBriefings/pages/CII-and-EEXI-entry-into-force.aspx.
  • (IMO), International Maritime Organization. 2022c. “UN body adopts climate change strategy for shipping.” Accessed 6November. https://www.imo.org/en/MediaCentre/PressBriefings/Pages/06GHGinitialstrategy.aspx.
  • Inal, O. B., and C. Deniz. 2020. Assessment of fuel cell types for ships: Based on multi-criteria decision analysis. Journal of Cleaner Production 265:121734. doi:10.1016/j.jclepro.2020.121734.
  • Inal, O. B., B. Zincir, and C. Dere. 2022. Hydrogen as Maritime Transportation Fuel: A Pathway for Decarbonization. In Greener and Scalable E-fuels for Decarbonization of Transport, ed. A. K. Agarwal and H. Valera, 67–110. Singapore: Springer Singapore.
  • Ishaq, H., I. Dincer, and C. Crawford. 2022. A review on hydrogen production and utilization: Challenges and opportunities. International Journal of Hydrogen Energy 47 (62):26238–64. doi:10.1016/j.ijhydene.2021.11.149.
  • Jiang, L., and F. Xianzhi. 2021. An ammonia–hydrogen energy roadmap for carbon neutrality: Opportunity and Challenges in China. Engineering 7 (12):1688–91. doi:10.1016/j.eng.2021.11.004.
  • Jiaxin, F., Y. Liu, and F. Sun. 2021. Identifying and regulating the environmental risks in the development and utilization of natural gas as a low-carbon energy source. Frontiers in Energy Research 9. doi:10.3389/fenrg.2021.638105.
  • Julio, M.B., G. Petitpas, F. Espinosa-Loza, F. Elizalde-Blancas, J. Martinez-Frias, and S. M. Aceves. 2019a. The fill density of automotive cryo-compressed hydrogen vessels. International Journal of Hydrogen Energy 44 (2):1010–20. doi:10.1016/j.ijhydene.2018.10.227.
  • Julio, M.B., G. Petitpas, F. Espinosa-Loza, F. Elizalde-Blancas, J. Martinez-Frias, and S. M. Aceves. 2019b. The storage performance of automotive cryo-compressed hydrogen vessels. International Journal of Hydrogen Energy 44 (31):16841–51. doi:10.1016/j.ijhydene.2019.04.189.
  • Kamil, M. S., M. Adli Mustapa, N. Azri Bin Anuar, and M. Nashrulrizal Ahmad Khairi. 2022. Viability of a multi-stage exhaust gas cleansing module for ship installation. Paper presented at the Advanced Maritime Technologies and Applications, Cham.
  • Kannangara, M., F. Bensebaa, and M. Vasudev. 2021. An adaptable life cycle greenhouse gas emissions assessment framework for electric, hybrid, fuel cell and conventional vehicles: Effect of electricity mix, mileage, battery capacity and battery chemistry in the context of Canada. Journal of Cleaner Production 317:128394. doi:10.1016/j.jclepro.2021.128394.
  • Keshavarzzadeh, A. H., P. Ahmadi, and M. Reza Safaei. 2019. Assessment and optimization of an integrated energy system with electrolysis and fuel cells for electricity, cooling and hydrogen production using various optimization techniques. International Journal of Hydrogen Energy 44 (39):21379–96. doi:10.1016/j.ijhydene.2019.06.127.
  • Konur, O., C. O. Colpan, and Y. S. Omur. 2022. A comprehensive review on organic Rankine cycle systems used as waste heat recovery technologies for marine applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 44 (2):4083–122. doi:10.1080/15567036.2022.2072981.
  • Korberg, A. D., S. Brynolf, M. Grahn, and I. R. Skov. 2021. Techno-economic assessment of advanced fuels and propulsion systems in future fossil-free ships. Renewable and Sustainable Energy Reviews 142:110861. doi:10.1016/j.rser.2021.110861.
  • Korri, M. A. 2018. Comparative study of the prospects of hydrogen as an energy source. Universitat Politècnica de València.
  • Koten, H. 2018. Hydrogen effects on the diesel engine performance and emissions. International Journal of Hydrogen Energy 43 (22):10511–19. doi:10.1016/j.ijhydene.2018.04.146.
  • Kulagin, V. A., and D. A. Grushevenko. 2020. Will hydrogen be able to become the fuel of the future? Thermal Engineering 67:189–201. doi:10.1134/S0040601520040023.
  • Lenivova, V. 2020. “The potential role of Power-to-Gas in the Russian-European energy system.” Master thesisFaculty of Environment and Natural Sciences, Brandenburgische Technische Universität, Cottbus-Senftenberg.
  • Ling-Chin, J., and A. P. Roskilly. 2016. A comparative life cycle assessment of marine power systems. Energy Conversion and Management 127:477–93. doi:10.1016/j.enconman.2016.09.012.
  • Liu, Z., Y. Teng, C. Huang, K.L. Choy, and C. Liu. 2021. Thermodynamic and kinetics of hydrogen photoproduction enhancement by concentrated sunlight with CO2 photoreduction by heterojunction photocatalysts. Energy and AI 6:100102. doi:10.1016/j.egyai.2021.100102.
  • L van, B., M. K. C. Pieter‘t Hart, and K. Mrozewski. 2021. Public final report: Inventory of the application of Fuel Cells in the MARitime sector (FCMAR). MIIP. 007–2020. https://www.koersenvaart.nl/files/MIIP%20007-2020%20FCMAR%2003022021.pdf
  • Madsen, R. T., L. E. Klebanoff, S. A. M. Caughlan, J. W. Pratt, T. S. Leach, S. K. Tb Appelgate Jr, H. -C. Wintervoll, G. P. Haugom, A. T. Y. Teo, A. T. Y. Teo, et al. 2020. Feasibility of the Zero-V: A zero-emissions hydrogen fuel-cell coastal research vessel. International Journal of Hydrogen Energy 45 (46):25328–43. doi:10.1016/j.ijhydene.2020.06.019.
  • Makepeace, J. W., H. Teng, C. Weidenthaler, T. R. Jensen, F. Chang, T. Vegge, P. Ngene, Y. Kojima, P. E. de Jongh, P. Chen, et al. 2019. Reversible ammonia-based and liquid organic hydrogen carriers for high-density hydrogen storage: Recent progress. International Journal of Hydrogen Energy. 44(15):7746–67. doi:10.1016/j.ijhydene.2019.01.144.
  • Makridis, S. 2017. Hydrogen storage and compression. In Methane and Hydrogen for Energy Storage, ed. R. Carriveau, and D. S-K. Ting, 1–28. IET Digital Library. doi:10.1049/PBPO101E_ch1.
  • Markowski, J., and I. Pielecha. 2019. “The potential of fuel cells as a drive source of maritime transport.” IOP Conference Series: Earth and Environmental Science 214:012019. doi: 10.1088/1755-1315/214/1/012019.
  • McKinlay, C. J., S. R. Turnock, and D. A. Hudson. 2020. A Comparison of hydrogen and ammonia for future long distance shipping fuels. LNG/LPG and Alternative Fuel Ships, 29th – 30th January 2020, London, UK, 13. The Royal Institution of Naval Architects.
  • Mehrpooya, M., and R. Habibi. 2020. A review on hydrogen production thermochemical water-splitting cycles. Journal of Cleaner Production 275:123836. doi:10.1016/j.jclepro.2020.123836.
  • Miranda, P. E. V. D. 2019. Hydrogen energy: Sustainable and Perennial. In Science and engineering of hydrogen-based energy technologies, ed. P. E. V. D. Miranda, 1–38. Elsevier. doi:10.1016/B978-0-12-814251-6.00001-0.
  • Mondejar, M. E., J. G. Andreasen, L. Pierobon, U. Larsen, M. Thern, and F. Haglind. 2018. A review of the use of organic Rankine cycle power systems for maritime applications. Renewable and Sustainable Energy Reviews 91:126–51. doi:10.1016/j.rser.2018.03.074.
  • Moreno-Gutiérrez, J., E. Pájaro-Velázquez, Y. Amado-Sánchez, R. Rodríguez-Moreno, F. Calderay-Cayetano, and V. Durán-Grados. 2019. Comparative analysis between different methods for calculating on-board ship’s emissions and energy consumption based on operational data. The Science of the Total Environment 650:575–84. doi:10.1016/j.scitotenv.2018.09.045.
  • Nasirudin, A., R. M. Chao, and I. Ketut Aria Pria Utama. 2017. “Solar powered boat design optimization.” In 10th International Conference on Marine Technology, MARTEC, Vol. 194, 260–67. Dhaka, Bangladesh: Elsevier Procedia.
  • Nicita, A., G. Maggio, A. P. F. Andaloro, and G. Squadrito. 2020. Green hydrogen as feedstock: Financial analysis of a photovoltaic-powered electrolysis plant. International Journal of Hydrogen Energy 45 (20):11395–408. doi:10.1016/j.ijhydene.2020.02.062.
  • Nikolaidis, P., and A. Poullikkas. 2017. A comparative overview of hydrogen production processes. Renewable Sustainable Energy Reviews 67:597–611. doi:10.1016/j.rser.2016.09.044.
  • Noussan, M., P. Paolo Raimondi, R. Scita, and M. Hafner. 2021. The role of green and blue hydrogen in the energy transition—a technological and geopolitical perspective. Sustainability 13 (1):298. doi:10.3390/su13010298.
  • Nuchturee, C., L. Tie, and H. Xia. 2020. Energy efficiency of integrated electric propulsion for ships–a review. Renewable and Sustainable Energy Reviews 134:110145. doi:10.1016/j.rser.2020.110145.
  • Ogden, J., A. Myers Jaffe, D. Scheitrum, Z. McDonald, and M. Miller. 2018. Natural gas as a bridge to hydrogen transportation fuel: Insights from the literature. Energy Policy 115:317–29. doi:10.1016/j.enpol.2017.12.049.
  • Olabi, A. G., A. Saleh Bahri, A. Ahmed Abdelghafar, A. Baroutaji, E. Taha Sayed, A. Hai Alami, H. Rezk, and M. Ali Abdelkareem. 2020. Large-scale hydrogen production and storage technologies: Current status and future directions. International Journal of Hydrogen Energy 46 (45):23498–528. doi:10.1016/j.ijhydene.2020.10.110.
  • Olaniyi, E. O., and G. Prause. 2020. Investment analysis of waste heat recovery system installations on ships’ engines. Journal of Marine Science and Engineering 8 (10):811. doi:10.3390/jmse8100811.
  • Olgun, K., S. A. K. Onur Yuksel, C. Ozgur Colpan, Y. S. Omur, I. Muslu, and I. Muslu. 2022. Thermal design and analysis of an organic rankine cycle system utilizing the main engine and cargo oil pump turbine based waste heats in a large tanker ship. Journal of Cleaner Production 368:133230. doi:10.1016/j.jclepro.2022.133230.
  • Osman, A. I., N. Mehta, A. M. Elgarahy, M. Hefny, A. Al-Hinai, A. H. Al-Muhtaseb, and D. W. Rooney. 2021. Hydrogen production, storage, utilisation and environmental impacts: A review. Environmental Chemistry Letters 20 (1):153–88. doi:10.1007/s10311-021-01322-8.
  • Ozturk, M., and I. Dincer. 2020. An integrated system for clean hydrogen production from municipal solid wastes. International Journal of Hydrogen Energy 46 (9):6251–61. doi:10.1016/j.ijhydene.2020.11.145.
  • Palhares, D. D. D. F., L. Gustavo Martins Vieira, and J. Jorge Ribeiro Damasceno. 2018. Hydrogen production by a low-cost electrolyzer developed through the combination of alkaline water electrolysis and solar energy use. International Journal of Hydrogen Energy 43 (9):4265–75. doi:10.1016/j.ijhydene.2018.01.051.
  • Palmer, G., A. Roberts, A. Hoadley, R. Dargaville, and D. Honnery. 2021. Life-cycle greenhouse gas emissions and net energy assessment of large-scale hydrogen production via electrolysis and solar PV. Energy & Environmental Science 14 (10):5113–31. doi:10.1039/D1EE01288F.
  • Pan, P., Y. Sun, C. Yuan, X. Yan, and X. Tang. 2021. Research progress on ship power systems integrated with new energy sources: A review. Renewable and Sustainable Energy Reviews 144:111048. doi:10.1016/j.rser.2021.111048.
  • Perčić, M., N. Vladimir, I. Jovanović, and M. Koričan. 2021. “Holistic environmental analysis of selected zero-emission powering options for ro-ro passenger ships in Croatia.” In 14th Annual Baška GNSS Conference: Technologies, Techniques and Applications Across PNT and The 1st Workshop on Smart, Blue and Green Maritime Technologies. Baška, Krk, Croatia.
  • Perčić, M., N. Vladimir, I. Jovanović, and M. Koričan. 2022. Application of fuel cells with zero-carbon fuels in short-sea shipping. Applied Energy 309:118463. doi:10.1016/j.apenergy.2021.118463.
  • Pope, K., I. Dincer, and G. F. Naterer. 2010. Energy and exergy efficiency comparison of horizontal and vertical axis wind turbines. Renewable Energy 35 (9):2102–13. doi:10.1016/j.renene.2010.02.013.
  • Proost, J. 2020. Critical assessment of the production scale required for fossil parity of green electrolytic hydrogen. International Journal of Hydrogen Energy 45 (35):17067–75. doi:10.1016/j.ijhydene.2020.04.259.
  • Prussi, M., N. Scarlat, M. Acciaro, and V. Kosmas. 2021. Potential and limiting factors in the use of alternative fuels in the European maritime sector. Journal of Cleaner Production 291:125849. doi:10.1016/j.jclepro.2021.125849.
  • Qubeissi, M. A., and A. El-Kharouf. 2020. Renewable energy: Resources, challenges and applications. London, United Kingdom: IntechOpen.
  • Rahul, K., E. Titus, M. Salimian, O. Okhay, S. Rajendran, J. S. Ananth Rajkumar, A. L. C. Ferreira, J. Campos Gil, and J. Gracio. 2012. Hydrogen storage for energy application. In Hydrogen storage, ed. J. Liu, IntechOpen. doi:10.5772/51238.
  • Renssen, S. V. 2020. The hydrogen solution? Nature Climate Change 10 (9):799–801. doi:10.1038/s41558-020-0891-0.
  • Ren, L., S. Zhou, and O. Xunmin. 2020. Life-cycle energy consumption and greenhouse-gas emissions of hydrogen supply chains for fuel-cell vehicles in China. Energy 209:118482. doi:10.1016/j.energy.2020.118482.
  • Ríos, A. F. 2020. “Life cycle assessment of hydrogen as an energy vector for future power generation for marine transportation.” Master thesis, Universidad de Cantabria y Universidad de País Vasco.
  • Rivard, E., M. Trudeau, and K. Zaghib. 2019. Hydrogen storage for mobility: A review. Materials 12 (12):1973. doi:10.3390/ma12121973.
  • Roeb, M., C. Agrafiotis, and C. Sattler. 2015. Hydrogen production via thermochemical water splitting. In Compendium of hydrogen energy, ed. V. Subramani, A. Basile, and T. N. Veziroğlu, 319–47. Woodhead Publishing Series in Energy: Elsevier.
  • Rosen, M. A., and S. Koohi-Fayegh. 2016. The prospects for hydrogen as an energy carrier: An overview of hydrogen energy and hydrogen energy systems. Energy, Ecology Environment 1 (1):10–29. doi:10.1007/S40974-016-0005-Z.
  • Rosli, R. E., A. B. Sulong, W. R. W. Daud, M. A. Zulkifley, T. Husaini, M. I. Rosli, E. H. Majlan, and M. A. Haque. 2017. A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system. International Journal of Hydrogen Energy 42 (14):9293–314. doi:10.1016/j.ijhydene.2016.06.211.
  • Rusman, N. A. A., and M. Dahari. 2016. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. International Journal of Hydrogen Energy 41 (28):12108–26. doi:10.1016/j.ijhydene.2016.05.244.
  • Sarafraz, M. M., F. C. Christo, and M. Reza Safaei. 2022. Potential of plasmonic microreactor for Photothermal hydrogen-enriched fuel production from biomethane. International Journal of Hydrogen Energy 47 (62):26355–68. doi:10.1016/j.ijhydene.2022.01.078.
  • Sarafraz, M. M., M. Reza Safaei, M. Goodarzi, and M. Arjomandi. 2019. Reforming of methanol with steam in a micro-reactor with Cu–SiO2 porous catalyst. International Journal of Hydrogen Energy 44 (36):19628–39. doi:10.1016/j.ijhydene.2019.05.215.
  • Seddiek, I. S., M. M. Elgohary, and N. R. Ammar. 2015. The hydrogen-fuelled internal combustion engines for marine applications with a case study. Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike 66 (1):23–38.
  • Senary, K., A. Tawfik, E. Hegazy, and A. Ali. 2016. Development of a waste heat recovery system onboard LNG carrier to meet IMO regulations. Alexandria Engineering Journal 55 (3):1951–60. doi:10.1016/j.aej.2016.07.027.
  • Shakeri, N., M. Zadeh, and J. Bremnes Nielsen. 2020. “Hydrogen fuel cells for ship electric propulsion: Moving toward greener ships.” In IEEE Electrification Magazine, 27–43. IEEE Xplore. doi:10.1109/MELE.2020.2985484.
  • Shu, G., Y. Liang, H. Wei, H. Tian, J. Zhao, and L. Liu. 2013. A review of waste heat recovery on two-stroke IC engine aboard ships. Renewable and Sustainable Energy Reviews 19:385–401. doi:10.1016/j.rser.2012.11.034.
  • Singh, D. V., and E. Pedersen. 2016. A review of waste heat recovery technologies for maritime applications. Energy Conversion and Management 111:315–28. doi:10.1016/j.enconman.2015.12.073.
  • Smith, T. W. P., J. P. Jalkanen, B. A. Anderson, J. J. Corbett, J. Faber, S. Hanayama, E. O’keeffe et al. 2014. Third IMO GHG study 2014: Executive summary and final report, IMO (International Maritime Organisation). IMO. https://www.researchgate.net/publication/281242722_Third_IMO_GHG_Study_2014_Executive_Summary_and_Final_Report.
  • Taibi, E., R. Miranda, W. Vanhoudt, T. Winkel, J.C. Lanoix, and F. Barth. 2018. Hydrogen from Renewable Power_Technology outlook for the energy transition. https://www.researchgate.net/publication/339788785_Hydrogen_from_renewable_power_Technology_outlook_for_the_energy_transition.
  • Talluri, L., D. K. Nalianda, K. G. Kyprianidis, T. Nikolaidis, and P. Pilidis. 2016. Techno economic and environmental assessment of wind assisted marine propulsion systems. Ocean Engineering 121:301–11. doi:10.1016/j.oceaneng.2016.05.047.
  • Tashie-Lewis, B. C., and S. Godfrey Nnabuife. 2021. Hydrogen production, distribution, storage and power conversion in a hydrogen economy - a technology review. Chemical Engineering Journal Advances 8:100172. doi:10.1016/j.ceja.2021.100172.
  • Tomczak, H. J., G. Benelli, L. Carrai, and D. Cecchini. 2002. Investigation of a gas turbine combustion system fired with mixtures of natural gas and hydrogen. IFRF Combustion Journal 19:1–19.
  • Touili, S., A. Alami Merrouni, Y. El Hassouani, A.I. Amrani, and S. Rachidi. 2020. Analysis of the yield and production cost of large-scale electrolytic hydrogen from different solar technologies and under several Moroccan climate zones. International Journal of Hydrogen Energy 45 (51):26785–99. doi:10.1016/j.ijhydene.2020.07.118.
  • Tronstad, T., H. Høgmoen Åstrand, G. Petra Haugom, and L. Langfeldt. 2017. Study on the use of fuel cells in shipping. European Maritime Safety Agency European Maritime Safety Agency. http://www.dieselduck.info/machine/01%20prime%20movers/2016%20EMSA%20Study%20on%20the%20use%20of%20Fuel%20Cells%20in%20Shipping.pdf.
  • Tsujimura, T., and Y. Suzuki. 2017. The utilization of hydrogen in hydrogen/diesel dual fuel engine. International Journal of Hydrogen Energy 42 (19):14019–29. doi:10.1016/j.ijhydene.2017.01.152.
  • UNCTAD. 2017. Review of maritime transport. https://unctad.org/system/files/official-document/rmt2017_en.pdf.
  • van Biert, L., M. Godjevac, K. Visser, and P. V. Aravind. 2016. A review of fuel cell systems for maritime applications. Journal of Power Sources 327:345–64. doi:10.1016/j.jpowsour.2016.07.007.
  • Viana, M., V. Rizza, A. Tobías, E. Carr, J. Corbett, M. Sofiev, A. Karanasiou, G. Buonanno, and N. Fann. 2020. Estimated health impacts from maritime transport in the Mediterranean region and benefits from the use of cleaner fuels. Environment International 138:105670. doi:10.1016/j.envint.2020.105670.
  • Wang, B., N. Meng, and K. Jiao. 2022. Green ammonia as a fuel. Science Bulletin 67 (15):1530–34. doi:10.1016/j.scib.2022.06.023.
  • Wang, Z., Y. Wang, S. Afshan, and J. Hjalmarsson. 2021. A review of metallic tanks for H2 storage with a view to application in future green shipping. International Journal of Hydrogen Energy 46 (9):6151–79. doi:10.1016/j.ijhydene.2020.11.168.
  • Welaya, Y. M. A., M. M. El Gohary, and N. R. Ammar. 2012. Steam and partial oxidation reforming options for hydrogen production from fossil fuels for PEM fuel cells. Alexandria Engineering Journal 51 (2):69–75. doi:10.1016/j.aej.2012.03.001.
  • Widera, B. 2020. Renewable hydrogen implementations for combined energy storage, transportation and stationary applications. Thermal Science and Engineering Progress 16:100460. doi:10.1016/j.tsep.2019.100460.
  • Wijayanta, A. T., T. Oda, C. Wahyu Purnomo, T. Kashiwagi, and M. Aziz. 2019. Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: Comparison review. International Journal of Hydrogen Energy 44 (29):15026–44. doi:10.1016/j.ijhydene.2019.04.112.
  • Winnefeld, C., T. Kadyk, B. Bensmann, U. Krewer, and R. Hanke-Rauschenbach. 2018. Modelling and designing cryogenic hydrogen tanks for future aircraft applications. Energies, 11 (1):1. doi. doi:https://doi.org/10.3390/en11010105.
  • Xiaojin, Z., C. Bauer, C. L. Mutel, and K. Volkart. 2017. Life cycle assessment of power-to-gas: Approaches, system variations and their environmental implications. Applied Energy 190:326–38. doi:10.1016/j.apenergy.2016.12.098.
  • Xing, H., C. Stuart, S. Spence, and H. Chen. 2021. Fuel cell power systems for maritime applications: Progress and perspectives. Sustainability 13 (3):1213. doi:10.3390/su13031213.
  • Yanfei, L., and F. Taghizadeh-Hesary. 2022. The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China. Energy Policy 160:112703. doi:10.1016/j.enpol.2021.112703.
  • Yang, R., and W. Zhang. 2019. Research on modeling and simulation of new energy ship power system. Paper presented at the 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2), Changsha, China, 8–10 Nov.
  • Yilmaz, F., M. Ozturk, and R. Selbas. 2020. Design and thermodynamic modeling of a renewable energy based plant for hydrogen production and compression. International Journal of Hydrogen Energy 45 (49):26126–37. doi:10.1016/j.ijhydene.2019.12.133.
  • Yuan, Y., J. Wang, X. Yan, B. Shen, and T. Long. 2020. A review of multi-energy hybrid power system for ships. Renewable Sustainable Energy Reviews 132:110081. doi:10.1016/j.rser.2020.110081.
  • Zhang, J., B. Ling, H. Yong, Y. Zhu, and Z. Wang. 2022. Life cycle assessment of three types of hydrogen production methods using solar energy. International Journal of Hydrogen Energy 47 (30):14158–68. doi:10.1016/j.ijhydene.2022.02.150.
  • Zhuo, R., and H. Wang. 2022. Decarbonising shipping and the role of LNG: International law and policy trends. In The Palgrave handbook of natural gas and global energy transitions, ed. D. S. Olawuyi and E. G. Pereira, 319–43. Cham: Springer International Publishing.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.