356
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A review on artificial roughened solar air heaters with and without thermal energy storage

ORCID Icon &
Pages 1826-1860 | Received 18 Oct 2022, Accepted 24 Jan 2023, Published online: 02 Apr 2023

References

  • Abdulmunem, A. R., A. H. Abed, H. A. Hussien, P. Mohd Samin, and H. Abdul Rahman. 2019. Improving the performance of solar air heater using high thermal storage materials. Annales de Chimie: Science Des Materiaux 43 (6):389–94. doi:10.18280/acsm.430605.
  • Abdulmunem, A. R., A. H. Abed, and H. I. Qatta. 2016. Applicability of Using Thermal Storage. The Iraqi Journal For Mechanical And Material Engineering 16:76–86.
  • Abi Mathew, A., and V. Thangavel. 2021. A novel thermal storage integrated evacuated tube heat pipe solar air heater: Energy, exergy, economic and environmental impact analysis. Solar Energy 220 (April):828–42. doi:10.1016/j.solener.2021.03.057.
  • Aboul-Enein, S., A. A. El-Sebaii, M. R. I. Ramadan, and H. G. El-Gohary. 2000. Parametric study of a solar air heater with and without thermal storage for solar drying applications. Renewable Energy 21 (3–4):505–22. doi:10.1016/S0960-1481(00)00092-6.
  • Abuşka, M., and S. Şevik. 2017. Energy, exergy, economic and environmental (4E) Analyses of flat-Plate and V-Groove solar air collectors based on aluminium and copper. Solar Energy 158 (October):259–77. doi:10.1016/j.solener.2017.09.045.
  • Abuşka, M., S. Şevik, and A. Kayapunar. 2019. A comparative investigation of the effect of honeycomb core on the latent heat storage with PCM in solar air heater. Applied Thermal Engineering 148 (February):684–93. doi:10.1016/J.APPLTHERMALENG.2018.11.056.
  • Adelakun, N. O., and B. A. Olanipekun. 2020. A review of solar energy. SSRN Electronic Journal 5:120–26. doi:10.2139/ssrn.3579939.
  • Aghili, K., M. Hafidz Ruslan, and P. Ooshaksaraei. n.d. Cost Analysis of a Combined Hybrid PV/T Model 2 Proposed Model 3 Cost Analysis. Computer Applications in Environmental Sciences and Renewable Energy Cost. 92–96.
  • Al-Abidi, A. A., S. B. Mat, K. Sopian, M. Y. Sulaiman, and A. Th Mohammed. 2013. CFD applications for latent heat thermal energy storage: A review. Renewable and Sustainable Energy Reviews 20:353–63. Elsevier Ltd. doi:10.1016/j.rser.2012.11.079.
  • Alam, T., and M. Hoe Kim. 2017a. Heat transfer enhancement in solar air heater duct with conical protrusion roughness ribs. Applied Thermal Engineering 126 (November):458–69. doi:10.1016/J.APPLTHERMALENG.2017.07.181.
  • Alam, T., and M. Hoe Kim. 2017b. Performance improvement of double-Pass solar air heater – a state of art of review. Renewable and Sustainable Energy Reviews 79:779–93. Elsevier Ltd. doi:10.1016/j.rser.2017.05.087.
  • Aldabbagh, L. B. Y., F. Egelioglu, and M. Ilkan. 2010. Single and double pass solar air heaters with wire mesh as packing bed. Energy 35 (9):3783–87. doi:10.1016/j.energy.2010.05.028.
  • Aldosari, M. N., K. K. Yalamanchi, X. Gao, and S. Mani Sarathy. 2021. Predicting entropy and heat capacity of hydrocarbons using machine learning. Energy and AI 4 (June):100054. doi:10.1016/J.EGYAI.2021.100054.
  • Alkhayat, G., and R. Mehmood. 2021. A review and taxonomy of wind and solar energy forecasting methods based on deep learning. Energy and AI 4 (June):100060. doi:10.1016/J.EGYAI.2021.100060.
  • Alkilani, M. M., K. Sopian, M. Sohif, and M. A. Alghoul. 2009. Output air temperature prediction in a solar air heater integrated with phase change material. European Journal of Scientific Research 27 (3):334–41.
  • Ameri, M., R. Sardari, and H. Farzan. 2021. Thermal performance of a V-Corrugated serpentine solar air heater with integrated PCM: A comparative experimental study. Renewable Energy 171 (June):391–400. doi:10.1016/j.renene.2021.02.113.
  • Arfaoui, N., S. Bouadila, and A. Guizani. 2017. A highly efficient solution of off-Sunshine solar air heating using two packed beds of latent storage energy. Solar Energy 155:1243–53. doi:10.1016/j.solener.2017.07.075.
  • Azaizia, Z., S. Kooli, A. Elkhadraoui, I. Hamdi, and A. Allah Guizani. 2017. Investigation of a new solar greenhouse drying system for peppers. International Journal of Hydrogen Energy 42 (13):8818–26. doi:10.1016/j.ijhydene.2016.11.180.
  • Bansal, N. K., and R. Uhlemann. 1984. Development and testing of low cost solar energy collectors for heating air. Solar Energy 33 (2):197–208. doi:10.1016/0038-092X(84)90238-X.
  • Bekele, A., M. Mishra, and S. Dutta. 2014. Performance characteristics of solar air heater with surface mounted obstacles. Energy Conversion and Management 85 (September):603–11. doi:10.1016/J.ENCONMAN.2014.04.079.
  • Belloulid, M. O., H. Hamdi, L. Mandi, and N. Ouazzani. 2019. Solar drying of wastewater sludge: A Case study in Marrakesh, morocco. Environmental Technology (United Kingdom) 40 (10):1316–22. doi:10.1080/09593330.2017.1421713.
  • Bhagoria, J. L., J. S. Saini, and S. C. Solanki. 2002. Heat transfer coefficient and friction factor correlations for rectangular solar air heater duct having transverse wedge shaped rib roughness on the absorber plate. Renewable Energy 25 (3):341–69. doi:10.1016/S0960-1481(01)00057-X.
  • Bhale, P. V., M. K. Rathod, and L. Sahoo. 2015. Thermal analysis of a solar concentrating system integrated with sensible and latent heat storage. Energy Procedia 75 (August):2157–62. doi:10.1016/J.EGYPRO.2015.07.357.
  • Bhargava, A. K., H. P. Garg, V. K. Sharma, and R. B. Mahajan. 1985. Investigation on double-glazed solar air heater connected in series with rock bed solar collector-Cum-Storage system. Energy Conversion and Management 25 (2):139–46. doi:10.1016/0196-8904(85)90024-X.
  • Bhattacharya, S. C., and C. Jana. 2009. Renewable energy in India: Historical developments and prospects. Energy 34 (8):981–91. doi:https://doi.org/10.1016/j.energy.2008.10.017.
  • Bhattacharyya, S., D. Sarkar, R. Roy, S. Chakraborty, V. Goel, and E. Almatrafi. 2021. Application of new artificial neural network to predict heat transfer and thermal performance of a solar air-Heater tube. Sustainability 2021 13 (13):7477. doi:10.3390/SU13137477.
  • Biplab, D., J. Deb Mondol, S. Debnath, A. Pugsley, M. Smyth, and A. Zacharopoulos. 2020. Effect of the absorber surface roughness on the performance of a solar air collector: An experimental investigation. Renewable Energy 152:567–78. doi:10.1016/j.renene.2020.01.056.
  • Bolaji, B. O. 2005. Performance evaluation of a box-Type absorber solar air collector for crop drying. Journal of Food Technology 3 (4):595–600.
  • Bopche, S. B., and M. S. Tandale. 2009. International journal of heat and mass transfer experimental investigations on heat transfer and frictional characteristics of a turbulator roughened solar air heater duct. International Journal of Heat and Mass Transfer 52 (11–12):2834–48. doi:10.1016/j.ijheatmasstransfer.2008.09.039.
  • Bouadila, S., M. Lazaar, S. Skouri, S. Kooli, and A. Farhat. 2014. Energy and exergy analysis of a new solar air heater with latent storage energy. International Journal of Hydrogen Energy 39 (27):15266–74. doi:10.1016/j.ijhydene.2014.04.074.
  • Camci, M. 2020. Thermodynamic analysis of a novel integration of a spray dryer and solar collectors: A case study of a milk powder drying system. Drying Technology 38 (3):350–60. doi:10.1080/07373937.2019.1570935.
  • Charvát, P., L. Klimeš, and M. Ostrý. 2014. Numerical and experimental investigation of a PCM-Based thermal storage unit for solar air systems. Energy and Buildings 68 (PART A):488–97. doi:10.1016/J.ENBUILD.2013.10.011.
  • Choudhury, C., P. M. Chauhan, and H. P. Garg. 1995a. Economic design of a rock bed storage device for storing solar thermal energy. Solar Energy 55 (1):29–37. doi:10.1016/0038-092X(95)00023-K.
  • Choudhury, C., P. M. Chauhan, and H. P. Garg. 1995b. Performance and cost analysis of two-pass solar air heaters. Heat Recovery Systems and CHP 15 (8):755–73. doi:10.1016/0890-4332(95)00003-H.
  • Choudhury, C., P. M. Chauhan, H. P. Garg, and S. N. Garg. 1996. Cost-Benefit ratio of triple pass solar air heaters. Energy Conversion and Management 37 (1):95–116. doi:10.1016/0196-8904(95)00017-8.
  • Dey, M., and D. Singh Dandotiya. 2013. Effect of artificial roughness on solar air heater: An experimental investigation. Journal of Engineering Research and Applications 3 (5):88–95. www.ijera.com.
  • Dhiman, P., N. S. Thakur, A. Kumar, and S. Singh. 2011. An analytical model to predict the thermal performance of a novel parallel flow packed bed solar air heater. Applied Energy 88 (6):2157–67. doi:10.1016/J.APENERGY.2010.12.033.
  • Dosapati, C., and M. Jagadeesh Kumar Mandapati. 2020. Thermal performance of a packed bed double pass solar air heater with a latent heat storage system: An experimental investigation. World Journal of Engineering 17 (2):203–13. doi:10.1108/WJE-08-2019-0221.
  • Duffie, J. A., and W. A. Beckman. 2005. Solar Engineering of Thermal Processes, Vol. 3, 4th ed., 910. Hoboken, New Jersey: John Wiley & Sons.
  • Eggers Lura, A. 1979. Solar energy in developing countries. An overview and buyers’ guide for solar scientists and engineers, Vol. 1, 212. Oxford, England: Pergamon Press.
  • El-Sebaii, A. A., S. Aboul-Enein, M. R. I. Ramadan, and E. El-Bialy. 2007. Year round performance of double pass solar air heater with packed bed. Energy Conversion and Management 48 (3):990–1003. doi:10.1016/J.ENCONMAN.2006.08.010.
  • El-Sebaii, A. A., S. Aboul-Enein, M. R. I. Ramadan, S. M. Shalaby, and B. M. Moharram. 2011. Investigation of thermal performance of-double pass-Flat and v-Corrugated plate solar air heaters. Energy 36 (2):1076–86. doi:10.1016/j.energy.2010.11.042.
  • Esakkimuthu, S., A. H. Hassabou, C. Palaniappan, M. Spinnler, J. Blumenberg, and R. Velraj. 2013. Experimental investigation on phase change material based thermal storage system for solar air heating applications. Solar Energy 88 (February):144–53. doi:10.1016/J.SOLENER.2012.11.006.
  • Eswaramoorthy, M. 2016. Thermal performance of V-Trough solar air heater with the thermal storage for drying applications. Applied Solar Energy (English Translation of Geliotekhnika) 52 (4):245–50. doi:10.3103/S0003701X16040071.
  • Fath, H. E. S. 1995a. Thermal performance of a simple design solar air heater with built-in thermal energy storage system. Renewable Energy 6 (8):1033–39. doi:10.1016/0960-1481(94)00085-6.
  • Fath, H. E. S. 1995b. Transient analysis of thermosyphon solar air heater with built-in latent heat thermal energy storage system. Renewable Energy 6 (2):119–24. doi:10.1016/0960-1481(94)00050-G.
  • Fudholi, A., K. Sopian, M. Hafidz Ruslan, and M. Yusof Othman. 2013. “Performance and Cost Benefits Analysis of Double-Pass Solar Collector with and without Fins.” Energy Conversion and Management 76: 8–19. doi:10.1016/j.enconman.2013.07.015.
  • Garg, H. P., and V. K. Sharma. 1984. “Performance of integrated rock bed solar air heater.” Energy Developments: New Forms, Renewables, Conservation: Pergamon Press Canada Ltd. doi:10.1016/b978-0-08-025407-4.50097-1.
  • Ghiami, A., and S. Ghiami. 2018. Comparative study based on energy and exergy analyses of a baffled solar air heater with latent storage collector. Applied Thermal Engineering 133 (March):797–808. doi:10.1016/j.applthermaleng.2017.11.111.
  • Gholami, A., Y. Ajabshirchi, and S. Faramarz Ranjbar. 2019. Thermo-Economic optimization of solar air heaters with arcuate-shaped obstacles. Journal of Thermal Analysis and Calorimetry 138 (2):1395–403. doi:10.1007/s10973-019-08273-x.
  • Ghritlahre, H. K., and M. Verma. 2021. Solar air heaters performance prediction using multi-layer perceptron neural network– a systematic review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–18. doi:10.1080/15567036.2021.1923869.
  • Gill, R. S., V. S. Hans, and J. S. Saini. 2015. Heat transfer and friction characteristics of solar air heater duct roughened by broken arc shaped ribs combined with staggered rib piece. International Journal of Engineering Research And 4 (11):604–10. doi:10.17577/IJERTV4IS110607.
  • Gill, R. S., V. Singh Hans, and R. Pal Singh. 2021. Optimization of artificial roughness parameters in a solar air heater duct roughened with hybrid ribs. Applied Thermal Engineering 191:116871. October, ( 2020). doi: 10.1016/j.applthermaleng.2021.116871.
  • Goel, V., V. S. Hans, S. Singh, R. Kumar, S. Kumar Pathak, M. Singla, S. Bhattacharyya, R. S. G. Eydhah Almatrafi, and R. P. Saini. 2021. A comprehensive study on the progressive development and applications of solar air heaters. Solar Energy 229 (November):112–47. doi:10.1016/J.SOLENER.2021.07.040.
  • Habib, N. A., A. J. Ali, M. T. Chaichan, and M. Kareem. 2021. Carbon nanotubes/Paraffin wax nanocomposite for improving the performance of a solar air heating system. Thermal Science and Engineering Progress 23 (February):100877. doi:10.1016/j.tsep.2021.100877.
  • Haldorai, S., S. Gurusamy, and M. Pradhapraj. 2019. A review on thermal energy storage systems in solar air heaters. International Journal of Energy Research 43 (12):6061–77. doi:10.1002/ER.4379.
  • Hamdy, H., M. S. Yousef, and S. Abo-Elfadl. 2021. Energy, exergy, economic and environmental assessment of double pass V-Corrugated-Perforated finned solar air heater at different air mass ratios. Sustainable Energy Technologies and Assessments 43 (February):100936. doi:10.1016/j.seta.2020.100936.
  • Hans, V. S., R. S. Gill, and S. Singh. 2017. Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with broken arc ribs. Experimental Thermal and Fluid Science 80:77–89. doi:10.1016/j.expthermflusci.2016.07.022.
  • Hans, V. S., R. P. Saini, and J. S. Saini. 2010. Heat transfer and friction factor correlations for a solar air heater duct roughened artificially with multiple V-Ribs. Solar Energy 84 (6):898–911. doi:10.1016/J.SOLENER.2010.02.004.
  • Hedayatizadeh, M., Y. Ajabshirchi, F. Sarhaddi, S. Farahat, A. Safavinejad, and H. Chaji. 2012. Analysis of exergy and parametric study of a V-Corrugated solar air heater. Heat and Mass Transfer/Waerme- und Stoffuebertragung 48 (7):1089–101. doi:10.1007/s00231-011-0957-7.
  • Hegde, V. N., V. Shrikanth Hosur, S. K. Rathod, P. A. Harsoor, and K. Badari Narayana. 2015. Design, fabrication and performance evaluation of solar dryer for banana. Energy, Sustainability and Society 5 (1):1. doi:10.1186/s13705-015-0052-x.
  • Hernández, A. L., and J. E. Quiñonez. 2013. Analytical models of thermal performance of solar air heaters of double-Parallel flow and double-Pass counter flow. Renewable Energy 55 (July):380–91. doi:10.1016/J.RENENE.2012.12.050.
  • Ikechukwu, O. A., A. Okechukwu Odukwe, and S. Ogbonna Enibe. 2011. Performance simulation of a natural circulation solar air heater with phase change material energy storage. 30th ISES Biennial Solar World Congress 2011, SWC 2011 6:4815–26. doi:10.4314/njt.v33i1.14.
  • Jain, D. 2005. Modeling the system performance of multi-tray crop drying using an inclined multi-pass solar air heater with in-built thermal storage. Journal of Food Engineering 71 (1):44–54. doi:10.1016/J.JFOODENG.2004.10.016.
  • Jaurker, A. R., J. S. Saini, and B. K. Gandhi. 2006. Heat transfer and friction characteristics of rectangular solar air heater duct using rib-Grooved artificial roughness. Solar Energy 80 (8):895–907. doi:10.1016/J.SOLENER.2005.08.006.
  • Jin, D., J. Zuo, S. Quan, X. Shiming, and H. Gao. 2017. Thermohydraulic performance of solar air heater with staggered multiple V-Shaped ribs on the absorber plate. Energy 127:68–77. doi:10.1016/j.energy.2017.03.101.
  • Josyula, T., S. Singh, and P. Dhiman. 2018. Numerical investigation of a solar air heater comprising longitudinally finned absorber plate and thermal energy storage system. Journal of Renewable and Sustainable Energy 10 (5):5. doi:https://doi.org/10.1063/1.5035136.
  • Jurinak, J. J., and S. I. Abdel-Khalik. 1978. Properties optimization for phase-Change energy storage in air-Based solar heating systems. Solar Energy 21 (5):377–83. doi:10.1016/0038-092X(78)90169-X.
  • Kabeel, A. E., A. Khalil, S. M. Shalaby, and M. E. Zayed. 2016a. Experimental investigation of thermal performance of flat and V-Corrugated plate solar air heaters with and without pcm as thermal energy storage. Energy Conversion and Management 113 (April):264–72. doi:10.1016/j.enconman.2016.01.068.
  • Kabeel, A. E., A. Khalil, S. M. Shalaby, and M. E. Zayed. 2016b. Investigation of the thermal performances of flat, finned, and v-Corrugated plate solar air heaters. Journal of Solar Energy Engineering, Transactions of the ASME 138 (5):5. doi:https://doi.org/10.1115/1.4034027.
  • Kabeel, A. E., A. Khalil, S. M. Shalaby, and M. E. Zayed. 2017. Improvement of thermal performance of the finned plate solar air heater by using latent heat thermal storage. Applied Thermal Engineering 123 (August):546–53. doi:10.1016/j.applthermaleng.2017.05.126.
  • Kabeel, A. E., H. H. Mofreh, Z. M. Omara, and A. W. Kandeal. 2017. Solar air heaters: design configurations, improvement methods and applications – a detailed review. Renewable and Sustainable Energy Reviews 70 (December):1189–206. doi:10.1016/j.rser.2016.12.021.
  • Kalaiarasi, G., R. Velraj, and V. S. Muthusamy. 2016. Experimental energy and exergy analysis of a flat plate solar air heater with a new design of integrated sensible heat storage. Energy 111 (September):609–19. doi:10.1016/j.energy.2016.05.110.
  • Kalaiarasi, G., R. Velraj, M. N. Vanjeswaran, and N. Ganesh Pandian. 2020. Experimental analysis and comparison of flat plate solar air heater with and without integrated sensible heat storage. Renewable Energy 150 (May):255–65. doi:10.1016/j.renene.2019.12.116.
  • Kalogirou, S. A. 2004. Solar thermal collectors and applications. Progress in Energy and Combustion Science 30 (3):231–95. doi:10.1016/J.PECS.2004.02.001.
  • Karim, M. A., E. Perez, and Z. M. Amin. 2014. Mathematical modelling of counter flow V-Grove solar air collector. Renewable Energy 67:192–201. doi:10.1016/j.renene.2013.11.027.
  • Karmare, S. V., and A. N. Tikekar. 2007. Heat transfer and friction factor correlation for artificially roughened duct with metal grit ribs. International Journal of Heat and Mass Transfer 50 (21–22):4342–51. doi:10.1016/J.IJHEATMASSTRANSFER.2007.01.065.
  • Karmveer, N. K. G., M. Irfanul Haque Siddiqui, D. Dobrotă, T. Alam, M. Ashraf Ali, and J. Orfi. 2022. The effect of roughness in absorbing materials on solar air heater performance. Materials 15 (9):3088. doi:10.3390/MA15093088.
  • Karthikeyan, S., G. Ravikumar Solomon, V. Kumaresan, and R. Velraj. 2014. Parametric studies on packed bed storage unit filled with PCM encapsulated spherical containers for low temperature solar air heating applications. Energy Conversion and Management 78:74–80. doi:10.1016/j.enconman.2013.10.042.
  • Karwa, R. 2003. Experimental studies of augmented heat transfer and friction in asymmetrically heated rectangular ducts with ribs on the heated wall in transverse, inclined, V-Continuous and V-Discrete pattern. International Communications in Heat and Mass Transfer 30 (2):241–50. doi:10.1016/S0735-1933(03)00035-6.
  • Karwa, R., S. C. Solanki, and J. S. Saini. 1999. Heat transfer coefficient and friction factor correlations for the transitional flow regime in rib-Roughened rectangular ducts. International Journal of Heat and Mass Transfer 42 (9):1597–615. doi:10.1016/S0017-9310(98)00252-X.
  • Kennedy, C. E. 2002. Review of mid- to high-Temperature solar selective absorber materials. NREL Technical Report: 1–58. no. July (July). doi:10.2172/15000706.
  • Kesavan, S., and T. V. Arjunan. 2018. Experimental study on triple pass solar air heater with thermal energy storage for drying mint leaves. International Journal of Energy Technology and Policy 14 (1):34–48. doi:10.1504/IJETP.2018.088276.
  • Khadraoui, A. E., S. Bouadila, S. Kooli, A. Guizani, and A. Farhat. 2016. Solar air heater with phase change material: An energy analysis and a comparative study. Applied Thermal Engineering 107 (August):1057–64. doi:10.1016/j.applthermaleng.2016.07.004.
  • Khouya, A., and A. Draoui. 2019. Computational drying model for solar kiln with latent heat energy storage: Case studies of thermal application. Renewable Energy 130:796–813. doi:10.1016/j.renene.2018.06.090.
  • Korti, A. I. N. 2016. Numerical heat flux simulations on double-Pass solar collector with PCM spheres media. International Journal of Air-Conditioning and Refrigeration 24 (2):1–13. doi:10.1142/S2010132516500103.
  • Krishnananth, S. S., and K. Kalidasa Murugavel. 2013. Experimental study on double pass solar air heater with thermal energy storage. Journal of King Saud University - Engineering Sciences 25 (2):135–40. doi:10.1016/j.jksues.2012.05.004.
  • Kumar, R., B. G. B. Arul, and M. Mohanraj. 2017. Experimental investigations on a forced convection solar air heater using packed bed absorber plates with phase change materials. International Journal of Green Energy 14 (15):1238–55. doi:10.1080/15435075.2017.1330753.
  • Kumar, A., J. L. Bhagoria, and R. M. Sarviya. 2009. Heat transfer and friction correlations for artificially roughened solar air heater duct with discrete W-Shaped ribs. Energy Conversion and Management 50 (8):2106–17. doi:10.1016/J.ENCONMAN.2009.01.025.
  • Kumaresan, G., R. Sridhar, and R. Velraj. 2012. Performance studies of a solar parabolic trough collector with a thermal energy storage system. Energy 47 (1):395–402. doi:10.1016/j.energy.2012.09.036.
  • Kumar, R., V. Goel, and A. Kumar. 2018. Investigation of heat transfer augmentation and friction factor in triangular duct solar air heater due to forward facing chamfered rectangular ribs: A CFD based analysis. Renewable Energy 115:824–35. doi:10.1016/j.renene.2017.09.010.
  • Kumar, A., R. Kumar, R. Maithani, R. Chauhan, M. Sethi, A. Kumari, S. Kumar, and S. Kumar. 2017. Correlation development for nusselt number and friction factor of a multiple type V-Pattern dimpled obstacles solar air passage. Renewable Energy 109:461–79. doi:10.1016/j.renene.2017.03.030.
  • Kumar, A., A. Mahato, A. Behura, and A. Kumar Behura. 2008. CFD analysis of solar air heater having corrugated absorber plate numerical analysis of a modified type pulse tube refrigerator view project electronics cooling view project international journal of emerging technology and advanced engineering CFD analysis. Certified Journal 9001: https://www.researchgate.net/publication/320223422.
  • Kumar, K., D. R. Prajapati, and S. Samir. 2017. Heat transfer and friction factor correlations development for solar air heater duct artificially roughened with ‘S’ shape ribs. Experimental Thermal and Fluid Science 82:249–61. doi:10.1016/j.expthermflusci.2016.11.012.
  • Kumar, S., and R. P. Saini. 2009. CFD based performance analysis of a solar air heater duct provided with artificial roughness. Renewable Energy 34 (5):1285–91. doi:10.1016/j.renene.2008.09.015.
  • Kumar, A., R. P. Saini, and J. S. Saini. 2013. Development of correlations for nusselt number and friction factor for solar air heater with roughened duct having multi V-Shaped with gap rib as artificial roughness. Renewable Energy 58 (October):151–63. doi:10.1016/J.RENENE.2013.03.013.
  • Lakshmi, D. V. N., A. Layek, and P. Muthu Kumar. 2017. Performance analysis of trapezoidal corrugated solar air heater with sensible heat storage material. Energy Procedia 109:463–70. Elsevier Ltd. 10.1016/j.egypro.2017.03.069
  • Lamrani, B., and A. Draoui. 2021. Thermal performance and economic analysis of an indirect solar dryer of wood integrated with packed-Bed thermal energy storage system: A case study of solar thermal applications. Drying Technology 39 (10):1371–88. doi:10.1080/07373937.2020.1750025.
  • Lanjewar, A., J. L. Bhagoria, and R. M. Sarviya. 2011a. Experimental study of augmented heat transfer and friction in solar air heater with different orientations of W-Rib roughness. Experimental Thermal and Fluid Science 35 (6):986–95. doi:10.1016/J.EXPTHERMFLUSCI.2011.01.019.
  • Layek, A., J. S. Saini, and S. C. Solanki. 2007. Second law optimization of a solar air heater having chamfered rib–Groove roughness on absorber plate. Renewable Energy 32 (12):1967–80. doi:10.1016/J.RENENE.2006.11.005.
  • Lin, W., H. Ren, and M. Zhenjun. 2020. Mathematical modelling and experimental investigation of solar air collectors with corrugated absorbers. Renewable Energy 145 (January):164–79. doi:10.1016/j.renene.2019.05.129.
  • Lin, W., M. Zhenjun, H. Ren, S. Gschwander, and S. Wang. 2019. Multi-Objective optimisation of thermal energy storage using phase change materials for solar air systems. Renewable Energy 130 (January):1116–29. doi:10.1016/J.RENENE.2018.08.071.
  • Liu, Y., O. Christopher Esan, Z. Pan, and A. Liang. 2021. Machine Learning for Advanced Energy Materials. Energy and AI 3 (March):100049. doi:10.1016/J.EGYAI.2021.100049.
  • López-Sosa, L. B., A. Ortíz-Carrión, D. Espinosa-Gómez, J. Zárate Medina, and M. González-Avilés. 2021. Solar air heating system with low environmental impact materials: Mathematical model and optothermal characterization. Sustainable Energy Technologies and Assessments 47 (January):101399. doi:https://doi.org/10.1016/j.seta.2021.101399.
  • Mahmood, A. S. 2019. “Experimental Study on Double-Pass Solar Air Heater with and without Using Phase Change Material.” Journal of Engineering 25 (2): 1–17. doi:10.31026/J.ENG.2019.02.01.
  • Mahmud, A., K. Sopian, M. A. Alghoul, M. Sohif, and M. G. Abdualbasit. 2009. Using a paraffin wax-Aluminum compound as a thermal storage material in a solar air heater. Journal of Engineering and Applied Sciences 4 (10):74–77.
  • Maithani, R., A. K. Patil, and J. S. Saini. 2013. Investigation of effect of stratification on the thermal performance of packed bed solar air heater. International Journal of Energy Science 3 (4):267–75. www.ijesci.org.
  • Manieniyan, V., M. Thambidurai, and R. Selvakumar. 2009. Study on energy crisis and the future of fossil. National Conference on Safety, Health, Environment and Energy, India, 11-12 December. Annamalai University.
  • Manjunath, M. S., K. Vasudeva Karanth, and N. Yagnesh Sharma. 2018. numerical investigation on heat transfer enhancement of solar air heater using sinusoidal corrugations on absorber plate. International Journal of Mechanical Sciences 138–139 (April):219–28. doi:10.1016/j.ijmecsci.2018.01.037.
  • Mojtaba, E., A. Kianifar, K. Aryana, and G. N. Tiwari. 2016. Energy, exergy, and cost analyses of a double-glazed solar air heater using phase change material. Journal of Renewable and Sustainable Energy 8 (1):1. doi:10.1063/1.4940433.
  • Momin, E., J. S. S. Abdul Malik, S. C. Solanki, and A.M. Ebrahim Momin. 2002. Heat transfer and friction in solar air heater duct with V-Shaped rib roughness on absorber plate. International Journal of Heat and Mass Transfer 45 (16):3383–96. doi:10.1016/S0017-9310(02)00046-7.
  • Moradi, R., A. Kianifar, and S. Wongwises. 2017. Optimization of a solar air heater with phase change materials: Experimental and numerical study. Experimental Thermal and Fluid Science 89:41–49. doi:10.1016/j.expthermflusci.2017.07.011.
  • Morrison, D. J., and S. I. Abdel-Khalik. 1978. Effects of phase-Change energy storage on the performance of air-Based and liquid-based solar heating systems. Solar Energy 20 (1):57–67. doi:10.1016/0038-092X(78)90141-X.
  • Nallusamy, N., S. Sampath, and R. Velraj. 2007. Experimental investigation on a combined sensible and latent heat storage system integrated with constant/Varying (Solar) heat sources. Renewable Energy 32 (7):1206–27. doi:10.1016/j.renene.2006.04.015.
  • Naphon, P. 2005. On the performance and entropy generation of the double-Pass solar air heater with longitudinal fins. Renewable Energy 30 (9):1345–57. doi:10.1016/J.RENENE.2004.10.014.
  • Njomo, D. 1995. Techno-Economic analysis of a plastic cover solar air heater. Energy Conversion and Management 36 (10):1023–29. doi:10.1016/0196-8904(94)00073-9.
  • Ojike, O. 2011. Characterization of flat plate double glazed solar collectors. Continental Journal of Renewable Energy 2 (2):10–18. http://www.wiloludjournal.com/ojs/index.php/cjre/article/viewArticle/339.
  • Ojike, O., and W. I. Okonkwo. 2019. Study of a passive solar air heater using palm oil and paraffin as storage media. Case Studies in Thermal Engineering 14 (February):100454. doi:10.1016/j.csite.2019.100454.
  • Palaniappan, C., and S. V. Subramanian. 1998. Economics of solar air pre-Heating in South Indian tea factories: A case study. Solar Energy 63 (1):31–37. doi:10.1016/S0038-092X(98)00028-0.
  • Pandey, N. K., V. K. Bajpai, and Varun. 2016. Experimental investigation of heat transfer augmentation using multiple arcs with gap on absorber plate of solar air heater. Solar Energy 134 (September):314–26. doi:10.1016/J.SOLENER.2016.05.007.
  • Patel, J., D. Shukla, H. Raval, and A. Mudgal. 2019. Experimental evaluation of the performance of latent heat storage unit integrated with solar air heater. International Journal of Ambient Energy 43 (1):1–9. doi:10.1080/01430750.2019.1636862.
  • Poblete, R., and O. Painemal. 2020, October. Improvement of the solar drying process of sludge using thermal storage. Journal of Environmental Management 255:109883. ( 2019), doi:10.1016/j.jenvman.2019.109883.
  • Poongavanam, G. K., K. Panchabikesan, A. Joseph Deeyoko Leo, and V. Ramalingam. 2018. Experimental investigation on heat transfer augmentation of solar air heater using shot blasted V-Corrugated absorber plate. Renewable Energy 127 (November):213–29. doi:10.1016/j.renene.2018.04.056.
  • Prakash, C., and R. P. Saini. 2019. Use of artificial roughness for performance enhancement of solar air heaters—a review. International Journal of Green Energy 16 (7):551–72. doi:10.1080/15435075.2019.1598418.
  • Prasad, K., and S. C. Mullick. 1983. Heat transfer characteristics of a solar air heater used for drying purposes. Applied Energy 13 (2):83–93. doi:10.1016/0306-2619(83)90001-6.
  • Prasad, B. N., and J. S. Saini. 1988. Effect of artificial roughness on heat transfer and friction factor in a solar air heater. Solar Energy 41 (6):555–60. doi:10.1016/0038-092X(88)90058-8.
  • Purohit, I., and G. Purohoit. 2016. Solar power sc enario of India – Potential, technology, policy, deployment and commerc ialization. Energy Resources: Development, Harvesting and Management August:102–38.
  • Raj, A. K., M. Srinivas, and S. Jayaraj. 2019, June. A cost-Effective method to improve the performance of solar air heaters using discrete macro-Encapsulated PCM Capsules for Drying Applications. Applied Thermal Engineering 146:910–20. ( 2018), doi:10.1016/j.applthermaleng.2018.10.055.
  • Ravi, R. K., and R. Prasad Saini. 2016. A review on different techniques used for performance enhancement of double pass solar air heaters. Renewable and Sustainable Energy Reviews 56:941–52. Elsevier Ltd. doi:10.1016/j.rser.2015.12.004.
  • Ravi, R. K., and R. P. Saini. 2018. Effect of roughness elements on thermal and thermohydraulic performance of double pass solar air heater duct having discrete multi V-Shaped and staggered rib roughness on both sides of the absorber plate. Experimental Heat Transfer 31 (1):47–67. doi:10.1080/08916152.2017.1350217.
  • Razak, A. A., Z. A. A. Majid, F. Basrawi, A. F. Sharol, M. H. Ruslan, and K. Sopian. 2019, December. A performance and technoeconomic study of different geometrical designs of compact single-Pass cross-matrix solar air collector with square-Tube absorbers. Solar Energy 178:314–30. ( 2018), doi:10.1016/j.solener.2018.12.010.
  • Reyes, A., A. Mahn, and F. Vásquez. 2014. Mushrooms Dehydration in a Hybrid-Solar Dryer, Using a Phase Change Material. Energy Conversion and Management 83 (July):241–48. doi:10.1016/J.ENCONMAN.2014.03.077.
  • Saha, S. N., and S. Prasad Sharma. 2017. Energy and exergy analysis of double flow corrugated absorber solar air heaters. International Energy Journal 17: www.rericjournal.ait.ac.th.
  • Saini, R. P., and J. S. Saini. 1997. Heat transfer and friction factor correlations for artificially roughened ducts with expanded metal mesh as roughness element. International Journal of Heat and Mass Transfer 40 (4):973–86. doi:10.1016/0017-9310(96)00019-1.
  • Saini, S. K., and R. P. Saini. 2008. Development of correlations for nusselt number and friction factor for solar air heater with roughened duct having arc-shaped wire as artificial roughness. Solar Energy 82 (12):1118–30. doi:10.1016/J.SOLENER.2008.05.010.
  • Sajawal, M., T. U. Rehman, H. M. Ali, U. Sajjad, A. Raza, and M. S. Bhatti. 2019. “Experimental Thermal Performance Analysis of Finned Tube-Phase Change Material Based Double Pass Solar Air Heater.” Case Studies in Thermal Engineering 15 (November): 100543. doi:10.1016/J.CSITE.2019.100543.
  • Saleh, A.E., S. Y. Mohamed, M. F. El-Dosoky, and H. Hassan. 2021. Energy, exergy, and economic analysis of tubular solar air heater with porous material: An experimental study. Applied Thermal Engineering 196 (September):117294. doi:10.1016/J.APPLTHERMALENG.2021.117294.
  • Salih, S. M., J. M. Jalil, and S. E. Najim. 2019a. “Double-Pass solar air heater (DP-SAH) utilizing Latent Thermal Energy Storage (LTES).” IOP Conference Series: Materials Science and Engineering 518 (3). 10.1088/1757-899X/518/3/032038.
  • Salih, S. M., J. M. Jalil, and S. E. Najim. 2019b. Experimental and numerical analysis of double-Pass solar air heater utilizing multiple capsules PCM. Renewable Energy 143 (December):1053–66. doi:10.1016/j.renene.2019.05.050.
  • Saravanakumar, P. T., and K. Mayilsamy. 2010. Forced convection flat plate solar air heaters with and without thermal storage. Journal of Scientific and Industrial Research 69 (12):966–68.
  • Sarnavi, H. J., A. M. Nikbakht, A. Hasanpour, F. Shahbazi, N. Aste, and F. Leonforte. 2019. A novel stochastic energy analysis of a solar air heater: Case study in solar radiation uncertainty. Energy Systems 10 (1):141–61. doi:10.1007/s12667-017-0263-7.
  • Sawhney, J. S., R. Maithani, and S. Chamoli. 2017. Experimental investigation of heat transfer and friction factor characteristics of solar air heater using wavy delta winglets. Applied Thermal Engineering 117 (May):740–51. doi:10.1016/J.APPLTHERMALENG.2017.01.113.
  • Saxena, A., N. Agarwal, and E. Cuce. 2020. Thermal performance evaluation of a solar air heater integrated with helical tubes carrying phase change material. Journal of Energy Storage 30 (March):101406. doi:10.1016/j.est.2020.101406.
  • Saxena, A., and V. Goel. 2013. Solar air heaters with thermal heat storages. Chinese Journal of Engineering 2013:1–11. doi:https://doi.org/10.1155/2013/190279.
  • Saxena, A., G. Srivastava, and V. Tirth. 2015. Design and thermal performance evaluation of a novel solar air heater. Renewable Energy 77:501–11. doi:10.1016/j.renene.2014.12.041.
  • Saxena, A., P. Verma, G. Srivastava, and N. Kishore. 2020. Design and thermal performance evaluation of an air heater with low cost thermal energy storage. Applied Thermal Engineering 167 (February):114768. doi:10.1016/J.APPLTHERMALENG.2019.114768.
  • Sethi, M., and N. S. Thakur. 2012. Correlations for solar air heater duct with dimpled shape roughness elements on absorber plate. Solar Energy 86 (9):2852–61. doi:10.1016/j.solener.2012.06.024.
  • Shadi, M., S. Davodabadi Farahani, and A. Hajizadeh Aghdam. 2020. Energy, exergy and economic analysis of solar air heaters with different roughness geometries. Journal of Solar Energy Research 5 (2):390–99. doi:10.22059/JSER.2020.297646.1142.
  • Shalaby, S. M., E. El-Bialy, and A. A. El-Sebaii. 2016. An experimental Investigation of a V-Corrugated absorber single-Basin solar still using PCM. Desalination 398 (November):247–55. doi:10.1016/j.desal.2016.07.042.
  • Shalaby, S. M., A. E. Kabeel, E. El-Bialy, and M. K. Elfakharany. 2020. Investigation and improvement of thermal performance of a solar air heater using extended surfaces through the phase change material. Journal of Solar Energy Engineering 142 (1):1. doi:https://doi.org/10.1115/1.4044565.
  • Shalaby S. M., Zayed M.E. , KabeelA. E. . 2018. “Improvement of the Thermal Performance of the V-Corrugated Plate Solar Air Heater with PCM by Using Insulated Upper Cover during Night.” 2018 the 6th IEEE International Conference on Smart Energy Grid Engineering Improvement. https://ieeexplore.ieee.org/abstract/document/8499480/.
  • Sharma, A., G. Bharadwaj, and Varun. 2017. Heat transfer and friction factor correlation development for double-pass solar air heater having V-Shaped ribs as roughness elements. Experimental Heat Transfer 30 (1):77–90. doi:10.1080/08916152.2016.1161676.
  • Sharma, V. K., A. Colangelo, G. Spagna, and F. Pistocchi. 1994. Preliminary economic appraisal of solar air heating system used for drying of agricultural products. Energy Conversion and Management 35 (2):105–10. doi:10.1016/0196-8904(94)90069-8.
  • Sharma, A., V. V. Tyagi, C. R. Chen, and D. Buddhi. 2009. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews 13 (2):318–45. doi:https://doi.org/10.1016/j.rser.2007.10.005.
  • Sharol, A. F., A. Abdul Razak, Z. Azran Abdul Majid, M. Amirul Azwan Azmi, and M. Amir Syahiran Muhammad Tarminzi. 2020. Evaluation on the performance of Cross-Matrix Absorber Double-Pass Solar Air Heater (CMA-DPSAH) with and without thermal energy storage material. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 70 (2):37–49. doi:10.37934/ARFMTS.70.2.3749.
  • Singh, P. L., S. D. Deshpandey, and P. C. Jena. 2015. Thermal performance of packed bed heat storage system for solar air heaters. Energy for Sustainable Development 29 (December):112–17. doi:10.1016/J.ESD.2015.10.010.
  • Singh, S., L. Dhruw, and S. Chander. 2019, October. Experimental investigation of a double pass converging finned wire mesh packed bed solar air heater. Journal of Energy Storage 21:713–23. ( 2018), doi:10.1016/j.est.2019.01.003.
  • Singh, R., R. P. Saini, and J. S. Saini. 2006. Nusselt number and friction factor correlations for packed bed solar energy storage system having large sized elements of different shapes. Solar Energy 80 (7):760–71. doi:10.1016/j.solener.2005.07.001.
  • Singh, A. P., and Siddhartha. 2014. Heat transfer and friction factor correlations for multiple arc shape roughness elements on the absorber plate used in solar air heaters. Experimental Thermal and Fluid Science 54:117–26. doi:10.1016/j.expthermflusci.2014.02.004.
  • Sivakumar, S., K. Siva, and M. Mohanraj. 2019. Experimental thermodynamic analysis of a forced convection solar air heater using absorber plate with pin-Fins. Journal of Thermal Analysis and Calorimetry 136 (1):39–47. doi:10.1007/s10973-018-07998-5.
  • Siva Reddy, V., S. C. Kaushik, K. R. Ranjan, and S. K. Tyagi. 2013. State-of-the-Art of solar thermal power plants - a review. Renewable and Sustainable Energy Reviews 27:258–73. doi:10.1016/j.rser.2013.06.037.
  • Sodha, M. S., R. Chandra, N. P. S. Kamna Pathak, and N. K. Bansal. 1991. Techno-Economic analysis of typical dryers. Energy Conversion and Management 31 (6):509–13. doi:10.1016/0196-8904(91)90085-W.
  • Somwanshi, A., and N. Sarkar. 2020, June. Thermal performance of a dual-Purpose collector-Cum-Storage type air-water heater. Applied Thermal Engineering 171:115094. ( 2019), doi:10.1016/j.applthermaleng.2020.115094.
  • Sopian, K. B., M. Sohif, and M. Alghoul. 2009. Output air temperature prediction in a solar air heater integrated with phase change material. https://www.researchgate.net/publication/237737366.
  • Sreekumar, A. 2010. Techno-Economic analysis of a roof-integrated solar air heating system for drying fruit and vegetables. Energy Conversion and Management 51 (11):2230–38. doi:10.1016/j.enconman.2010.03.017.
  • Srivastava, R. K., and A. Kumar Rai. 2017. A review on performance enhancement of solar air heater. International Journal of Mechanical and Production Engineering Research and Development 7 (5):279–88. doi:10.24247/ijmperdoct201729.
  • Sudhakar, P., and M. Cheralathan. 2019. Encapsulated PCM based double pass solar air heater: A comparative experimental study. Chemical Engineering Communications 208 (6):1–13. doi:10.1080/00986445.2019.1641701.
  • Sukhmeet, S., S. Chander, and J. S. Saini. 2011. Heat transfer and friction factor correlations of solar air heater ducts artificially roughened with discrete V-down ribs. Energy 36 (8):5053–64. doi:10.1016/j.energy.2011.05.052.
  • Summers, E. K., M. A. Antar, and J. H. Lienhard. 2012. Design and optimization of an air heating solar collector with integrated phase change material energy storage for use in humidification–Dehumidification desalination. Solar Energy 86 (11):3417–29. doi:10.1016/J.SOLENER.2012.07.017.
  • Sunil, C., R. Chauhan, N. S. Thakur, and J. S. Saini. 2012. A review of the performance of double pass solar air heater. Renewable and Sustainable Energy Reviews 16 (1):481–92. doi:10.1016/J.RSER.2011.08.012.
  • Suyitno, B. M., E. Augupta Pane, L. Ode Mohammad Firman, A. Abuzreba, and Ismail. 2020. The geometry of solar radiation energy equilibrium distribution on double-Pass solar air heater with the addition of fin elements: Case study in Libya. Journal of Applied Engineering Science 18 (2):222–29. doi:10.5937/jaes18-21344.
  • Touati, B., N. Kerroumi, and J. Virgone. 2017. “Flat plate solar air heater with latent heat storage.” In AIP Conference Proceedings. Vol. 1814. American Institute of Physics Inc. 10.1063/1.4976235.
  • Tuncer, A. D., A. Khanlari, A. Sözen, E. Yağız Gürbüz, C. Şirin, and A. Gungor. 2020. “Energy-Exergy and Enviro-Economic Survey of Solar Air Heaters with Various Air Channel Modifications.” Renewable Energy 160 (November): 67–85. doi:10.1016/J.RENENE.2020.06.087.
  • Tyagi, V. V., A. K. Pandey, S. C. Kaushik, and S. K. Tyagi. 2012. Thermal performance evaluation of a solar air heater with and without thermal energy storage an experimental study. Journal of Thermal Analysis and Calorimetry 107 (3):1345–52. doi:10.1007/s10973-011-1617-3.
  • Tyagi, V. V., N. L. Panwar, N. A. Rahim, and R. Kothari. 2012. Review on solar air heating system with and without thermal energy storage system. Renewable and Sustainable Energy Reviews 16 (4):2289–303. doi:10.1016/j.rser.2011.12.005.
  • Tyagi, S. K., V. V. Tyagi, S. Anand, V. Chandra, and R. C. Diwedi. 2010. First and second law analyses of a typical solar air dryer system: A case study. International Journal of Sustainable Energy 29 (1):8–18. doi:10.1080/14786460903315569.
  • Ucar, A., and M. Inalli. 2008. Thermal and economic comparisons of solar heating systems with seasonal storage used in building heating. Renewable Energy 33 (12):2532–39. doi:10.1016/j.renene.2008.02.019.
  • Verma, S. K., and B. N. Prasad. 2000. Investigation for the optimal thermohydraulic performance of artificially roughened solar air heaters. Renewable Energy 20 (1):19–36. doi:10.1016/S0960-1481(99)00081-6.
  • Vijayan, S., T. V. Arjunan, A. Kumar, and M. M. Matheswaran. 2020. Experimental and thermal performance investigations on sensible storage based solar air heater. Journal of Energy Storage 31 (October):101620. doi:10.1016/j.est.2020.101620.
  • Wadhawan, A., A. S. Dhoble, and V. B. Gawande. 2018. Analysis of the effects of use of Thermal Energy Storage Device (TESD) in solar air heater. Alexandria Engineering Journal 57 (3):1173–83. doi:10.1016/J.AEJ.2017.03.016.
  • Wang, Z., Y. Diao, Y. Zhao, C. Chen, L. Liang, and T. Wang. 2020, September. Thermal performance of integrated collector storage solar air heater with evacuated tube and lap joint-Type flat micro-Heat pipe arrays. Applied Energy 261:114466. ( 2019), doi:10.1016/j.apenergy.2019.114466.
  • Wang, D., J. Liu, Y. Liu, Y. Wang, L. Bojia, and J. Liu. 2020. Evaluation of the performance of an improved solar air heater with ‘S’ shaped ribs with gap. Solar Energy 195 (13):89–101. doi:10.1016/j.solener.2019.11.034.
  • Webb, R. L., and E. R. G. Eckert. 1972. Application of rough surfaces to heat exchanger design. International Journal of Heat and Mass Transfer 15 (9):1647–58. doi:10.1016/0017-9310(72)90095-6.
  • Wijeysundera, N. E., A. Lee Lee, and L. Ek Tjioe. 1982. Thermal performance study of two-pass solar air heaters. Solar Energy 28 (5):363–70. doi:10.1016/0038-092X(82)90253-5.
  • Yadav, A. S., T. Singh Samant, and L. Varshney. 2015. A CFD Based analysis of solar air heater having V-Shaped perforated blocks on absorber plate. International Journal of Engineering & Technology 02 (02):822–29.
  • Yadav, S., S. Varun, and M. Kaushal. 2012. Heat transfer and frictional characteristics of rectangular channel air heater duct having protrusion as roughness elements. Journal of the Institution of Engineers (India): Series C 93 (4):307–12. doi:10.1007/s40032-012-0047-8.
  • Yousef, B. A. A., and N. M. Adam. 2006. Thermal performance and economic effectiveness for solar air heaters: Analysis and expert system developments. Journal of Energy & Environment 5 (May):45–56.
  • Zukowski, M. 2016. Assessing the environmental impacts of using solar air heaters. Journal of International Scientific Publications 10 (3):28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.