619
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effective Heat Dissipation for Prismatic Lithium-ion Battery by Fluorinated Liquid Immersion Cooling Approach

, , , , , & show all
Pages 244-255 | Received 19 Dec 2021, Accepted 12 Feb 2023, Published online: 29 Mar 2023

References

  • Al-Zareer, M., I. Dincer, and M. A. Rosen. 2017a. Electrochemical modeling and performance evaluation of a new ammonia-based battery thermal management system for electric and hybrid electric vehicles. Electrochimica acta 247:171–82. doi:10.1016/j.electacta.2017.06.162.
  • Al-Zareer, M., I. Dincer, and M. A. Rosen. 2017b. Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles. Journal of Power Sources 363:291–303. doi:10.1016/j.jpowsour.2017.07.067.
  • Al-Zareer, M., I. Dincer, and M. A. Rosen. 2018. Heat and mass transfer modeling and assessment of a new battery cooling system. International Journal of Heat and Mass Transfer 126:765–78. doi:10.1016/j.ijheatmasstransfer.2018.04.157.
  • Aneke, M., and M. H. Wang. 2016. Energy storage technologies and real life applications – a state of the art review. Applied Energy 179:350–77. doi:10.1016/j.apenergy.2016.06.097.
  • Cen, J. W., Z. B. Li, and F. M. Jiang. 2018. Experimental investigation on using the electric vehicle air conditioning system for lithium-ion battery thermal management. Energy for Sustainable Development 45:88–95. doi:10.1016/j.esd.2018.05.005.
  • Chen, D. F., J. C. Jiang, G. H. Kim, C. B. Yang, and A. Pesaran. 2016. Comparison of different cooling methods for lithium ion battery cells. Applied Thermal Engineering 94:846–54. doi:10.1016/j.applthermaleng.2015.10.015.
  • Chen, K., M. X. Song, W. Wei, and S. F. Wang. 2019. Design of the structure of battery pack in parallel air-cooled battery thermal management system for cooling efficiency improvement. International Journal of Heat and Mass Transfer 132:309–21. doi:10.1016/j.ijheatmasstransfer.2018.12.024.
  • Deng, Y. W., C. L. Feng, J. Q. E, H. Zhu, J. W. Chen, M. Wen, and H. C. Yin. 2018. Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: A review. Applied Thermal Engineering 142:10–29. doi:10.1016/j.applthermaleng.2018.06.043.
  • E, J. Q., M. Yue, J. W. Chen, H. Zhu, Y. W. Deng, Y. Zhu, F. Zhang, M. Wen, B. Zhang, and S. Y. Kang. 2018. Effects of the different air cooling strategies on cooling performance of a lithium-ion battery module with baffle. Applied Thermal Engineering 144:231–41. doi:10.1016/j.applthermaleng.2018.08.064.
  • Fan, Y. Q., Y. Bao, C. Ling, Y. Y. Chu, X. J. Tan, and S. T. Yang. 2019. Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries. Applied Thermal Engineering 155:96–109. doi:10.1016/j.applthermaleng.2019.03.157.
  • Feng, X. N., M. G. Ouyang, X. Liu, L. G. Lu, Y. Xia, and X. M. He. 2018. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Materials 10:246–67. doi:10.1016/j.ensm.2017.05.013.
  • Giuliano, M. R., A. K. Prasad, and S. G. Advani. 2012. Experimental study of an air-cooled thermal management system for high capacity lithium-titanate batteries. Journal of Power Sources 216:345–52. doi:10.1016/j.jpowsour.2012.05.074.
  • Jaguemont, J., and J. Van Mierlo. 2020. A comprehensive review of future thermal management systems for battery-electrified vehicles. Journal of Energy Storage 31:101551. doi:10.1016/j.est.2020.101551.
  • Kim, J., J. Oh, and H. Lee. 2019. Review on battery thermal management system for electric vehicles. Applied Thermal Engineering 149:192–212. doi:10.1016/j.applthermaleng.2018.12.020.
  • Lazrak, A., J. F. Fourmigue, and J. F. Robin. 2018. An innovative practical battery thermal management system based on phase change materials: Numerical and experimental investigations. Applied Thermal Engineering 128:20–32. doi:10.1016/j.applthermaleng.2017.08.172.
  • Li, K., J. J. Yan, H. D. Chen, and Q. S. Wang. 2018. Water cooling based strategy for lithium ion battery pack dynamic cycling for thermal management system. Applied Thermal Engineering 132:575–85. doi:10.1016/j.applthermaleng.2017.12.131.
  • Li, W. Q., Z. G. Qu, Y. L. He, and Y. B. Tao. 2014. Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials. Journal of Power Sources 255:9–15. doi:10.1016/j.jpowsour.2014.01.006.
  • Li, Y., M. L. Bai, Z. F. Zhou, J. Z. Lv, C. Z. Hu, L. S. Gao, C. Y. Peng, Y. L. Li, Y. B. Li, and Y. C. Song. 2023. Experimental study of liquid immersion cooling for different cylindrical lithium-ion batteries under rapid charging conditions. Thermal Science and Engineering Progress 37:101569. doi:10.1016/j.tsep.2022.101569.
  • Li, Y., K. L. Liu, A. M. Foley, A. Zulke, M. Berecibar, E. Nanini-Maury, J. Van Mierlo, and H. E. Hoster. 2019. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review. Renewable & Sustainable Energy Reviews 113:109254. doi:10.1016/j.rser.2019.109254.
  • Li, Y., Z. F. Zhou, L. M. Hu, M. L. Bai, L. S. Gao, Y. L. Li, X. Y. Liu, Y. B. Li, and Y. C. Song. 2022. Experimental studies of liquid immersion cooling for 18650 lithium-ion battery under different discharging conditions. Case Studies in Thermal Engineering 34:102034. doi:10.1016/j.csite.2022.102034.
  • Liao, Z. H., S. Zhang, K. Li, G. Q. Zhang, and T. G. Habetler. 2019. A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries. Journal of Power Sources 436:226879. doi:10.1016/j.jpowsour.2019.226879.
  • Liu, F. F., F. C. Lan, and J. Q. Chen. 2016. Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle battery cooling. Journal of Power Sources 321:57–70. doi:10.1016/j.jpowsour.2016.04.108.
  • Liu, Y. Z., and J. Zhang. 2019. Design a J-type air-based battery thermal management system through surrogate-based optimization. Applied Energy 252:113426. doi:10.1016/j.apenergy.2019.113426.
  • Menale, C., F. D’annibale, B. Mazzarotta, and R. Bubbico. 2019. Thermal management of lithium-ion batteries: An experimental investigation. Energy 182:57–71. doi:10.1016/j.energy.2019.06.017.
  • Mohammadian, S. K., Y. L. He, and Y. W. Zhang. 2015. Internal cooling of a lithium-ion battery using electrolyte as coolant through microchannels embedded inside the electrodes. Journal of Power Sources 293:458–66. doi:10.1016/j.jpowsour.2015.05.055.
  • Ouyang, M. G., Z. Y. Chu, L. G. Lu, J. Q. Li, X. B. Han, X. N. Feng, and G. M. Liu. 2015. Low temperature aging mechanism identification and lithium deposition in a large format lithium iron phosphate battery for different charge profiles. Journal of Power Sources 286:309–20. doi:10.1016/j.jpowsour.2015.03.178.
  • Ping, P., R. Q. Peng, D. P. Kong, G. M. Chen, and J. Wen. 2018. Investigation on thermal management performance of PCM-fin structure for Li-ion battery module in high-temperature environment. Energy Conversion and Management 176:131–46. doi:10.1016/j.enconman.2018.09.025.
  • Putra, N., B. Ariantara, and R. A. Pamungkas. 2016. Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application. Applied Thermal Engineering 99:784–89. doi:10.1016/j.applthermaleng.2016.01.123.
  • Ramadass, P., B. Haran, R. White, and B. N. Popov. 2002. Capacity fade of Sony 18650 cells cycled at elevated temperatures Part II. Capacity fade analysis. Journal of Power Sources 112 (2):614–20. doi:10.1016/S0378-7753(02)00473-1.
  • Safdari, M., R. Ahmadi, and S. Sadeghzadeh. 2020. Numerical investigation on PCM encapsulation shape used in the passive-active battery thermal management. Energy 193:1026–34. doi:10.1016/j.energy.2019.116840.
  • Tran, T. H., S. Harmand, B. Desmet, and S. Filangi. 2014. Experimental investigation on the feasibility of heat pipe cooling for HEV/EV lithium-ion battery. Applied Thermal Engineering 63 (2):551–58. doi:10.1016/j.applthermaleng.2013.11.048.
  • van Gils, R. W., D. Danilov, P. H. L. Notten, M. F. M. Speetjens, and H. Nijmeijer. 2014. Battery thermal management by boiling heat-transfer. Energy Conversion and Management 79:9–17. doi:10.1016/j.enconman.2013.12.006.
  • Wang, Y. F., and J. T. Wu. 2020. Thermal performance predictions for an HFE-7000 direct flow boiling cooled battery thermal management system for electric vehicles. Energy Conversion and Management 207:112569. doi:10.1016/j.enconman.2020.112569.
  • Worwood, D., Q. Kellner, M. Wojtala, W. D. Widanage, R. McGlen, D. Greenwood, and J. Marco. 2017. A new approach to the internal thermal management of cylindrical battery cells for automotive applications. Journal of Power Sources 346:151–66. doi:10.1016/j.jpowsour.2017.02.023.
  • Wu, M. S., K. H. Liu, Y. Y. Wang, and C. C. Wan. 2002. Heat dissipation design for lithium-ion batteries. Journal of Power Sources 109 (1):160–66. doi:10.1016/S0378-7753(02)00048-4.
  • Wu, N., X. L. Ye, J. X. Yao, X. Zhang, X. L. Zhou, and B. Yu. 2021. Efficient thermal management of the large-format pouch lithium-ion cell via the boiling-cooling system operated with intermittent flow. International Journal of Heat and Mass Transfer 170:121018. doi:10.1016/j.ijheatmasstransfer.2021.121018.
  • Wu, W. X., X. Q. Yang, G. Q. Zhang, K. Chen, and S. F. Wang. 2017. Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system. Energy Conversion and Management 138:486–92. doi:10.1016/j.enconman.2017.02.022.
  • Zhang, J. Y., X. X. Li, G. Q. Zhang, H. W. Wu, Z. H. Rao, J. W. Guo, and D. Q. Zhou. 2020. Experimental investigation of the flame retardant and form-stable composite phase change materials for a power battery thermal management system. Journal of Power Sources 480:229116. doi:10.1016/j.jpowsour.2020.229116.
  • Zhao, J. T., P. Z. Lv, and Z. H. Rao. 2017. Experimental study on the thermal management performance of phase change material coupled with heat pipe for cylindrical power battery pack. Experimental Thermal and Fluid Science 82:182–88. doi:10.1016/j.expthermflusci.2016.11.017.
  • Zhao, J. T., C. H. Wu, and Z. H. Rao. 2020. Investigation on the cooling and temperature uniformity of power battery pack based on gradient phase change materials embedded thin heat sinks. Applied Thermal Engineering 174:115304. doi:10.1016/j.applthermaleng.2020.115304.
  • Zhao, R., J. J. Gu, and J. Liu. 2015. An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries. Journal of Power Sources 273:1089–97. doi:10.1016/j.jpowsour.2014.10.007.
  • Zhao, R., J. Liu, J. J. Gu, L. Zhai, and F. Ma. 2020. Experimental study of a direct evaporative cooling approach for Li-ion battery thermal management. International Journal of Energy Research 44 (8):6660–73. doi:10.1002/er.5402.
  • Zhou, H. K., C. H. Dai, Y. Liu, X. T. Fu, and Y. Du. 2020. Experimental investigation of battery thermal management and safety with heat pipe and immersion phase change liquid. Journal of Power Sources 473:228545. doi:10.1016/j.jpowsour.2020.228545.
  • Zhou, Z. Z., X. D. Zhou, Y. Peng, L. Li, J. D. Cao, L. Z. Yang, and B. Cao. 2021. Quantitative study on the thermal failure features of lithium iron phosphate batteries under varied heating powers. Applied Thermal Engineering 185:116346. doi:10.1016/j.applthermaleng.2020.116346.
  • Zhu, G. L., K. C. Wen, W. Q. Lv, X. Z. Zhou, Y. C. Liang, F. Yang, Z. L. Chen, M. D. Zou, J. C. Li, Y. Q. Zhang, et al. 2015. Materials insights into low-temperature performances of lithium-ion batteries. Journal of Power Sources 300:29–40. doi:10.1016/j.jpowsour.2015.09.056.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.