115
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influences of stratified ground thermophysical properties on the performance and thermal response test of deep coaxial borehole heat exchanger

, &
Pages 268-282 | Received 06 Sep 2022, Accepted 05 Mar 2023, Published online: 30 Mar 2023

References

  • Alberti, L., A. Angelotti, M. Antelmi, and I. La Licata. 2016. Borehole heat exchangers in aquifers: Simulation of the grout material impact. Rendiconti Online Società Geologica Italiana 41:268–71. doi:10.3301/ROL.2016.145.
  • Antelmi, M., L. Alberti, S. Barbieri, and S. Panday. 2021. Simulation of thermal perturbation in groundwater caused by borehole heat exchangers using an adapted CLN package of MODFLOW-USG. Journal of Hydrology 596:126106. doi:10.1016/j.jhydrol.2021.126106.
  • Barbieri, S., M. Antelmi, S. Panday, M. Baratto, A. Angelotti, and L. Alberti. 2022. Innovative numerical procedure for simulating borehole heat exchangers operation and interpreting thermal response test through MODFLOW-USG code. Journal of Hydrology 614:128556. doi:10.1016/j.jhydrol.2022.128556.
  • Beier, R. A. 2020. Thermal response tests on deep borehole heat exchangers with geothermal gradient. Applied Thermal Engineering 178:115447. doi:10.1016/j.applthermaleng.2020.115447.
  • Beier, R. A., M. Fossa, and S. Morchio. 2021. Models of thermal response tests on deep coaxial borehole heat exchangers through multiple ground layers. Applied Thermal Engineering 184:116241. doi:10.1016/j.applthermaleng.2020.116241.
  • Bozzoli, F., G. Pagliarini, S. Rainieri, and L. Schiavi. 2011. Estimation of soil and grout thermal properties through a TSPEP (two-step parameter estimation procedure) applied to TRT (thermal response test) data. Renewable Energy 36 (2):839–46. doi:10.1016/j.energy.2010.12.031.
  • Cai, W., F. Wang, S. Chen, C. Chen, J. Liu, J. Deng, O. Kolditz, and H. Shao. 2021. Analysis of heat extraction performance and long-term sustainability for multiple deep borehole heat exchanger array: A project-based study. Applied Energy 289:116590. doi:10.1016/j.apenergy.2021.116590.
  • Cai, W., F. Wang, J. Liu, Z. Wang, and Z. Ma. 2019. Experimental and numerical investigation of heat transfer performance and sustainability of deep borehole heat exchangers coupled with ground source heat pump systems. Applied Thermal Engineering 149:975–86. doi:10.1016/j.applthermaleng.2018.12.094.
  • Cao, D., B. Shi, H. H. Zhu, G. Wei, H. Bektursen, and M. Sun. 2019. A field study on the application of distributed temperature sensing technology in thermal response tests for borehole heat exchangers. Bulletin of Engineering Geology and the Environment 78 (6):3901–15. doi:10.1007/s10064-018-1407-2.
  • Dalla Santa, G., P. Pasquier, L. Schenato, and A. Galgaro. 2022. Repeated ETRTs in a complex stratified geological setting: High-resolution thermal conductivity identification by multiple linear regression. Journal of Geotechnical and Geoenvironmental Engineering 148 (4):04022007. doi:10.1061/(ASCE)GT.1943-5606.0002724.
  • Deng, J., Q. Wei, S. He, M. Liang, and H. Zhang. 2020. Simulation analysis on the heat performance of deep borehole heat exchangers in medium-depth geothermal heat pump systems. Energies 13 (3):754. doi:10.3390/en13030754.
  • Fang, L., N. Diao, Z. Shao, K. Zhu, and Z. Fang. 2018. A computationally efficient numerical model for heat transfer simulation of deep borehole heat exchangers. Energy & Buildings 167:79–88. doi:10.1016/j.enbuild.2018.02.013.
  • Galgaro, A., G. Dalla Santa, and A. Zarrella. 2021. First Italian TRT database and significance of the geological setting evaluation in borehole heat exchanger sizing. Geothermics 94:102098. doi:10.1016/j.geothermics.2021.102098.
  • Herrera, C., G. Nellis, D. Reindl, S. Klein, J. M. Tinjum, and A. McDaniel. 2018. Use of a fiber optic distributed temperature sensing system for thermal response testing of ground-coupled heat exchangers. Geothermics 71:331–38. doi:10.1016/j.geothermics.2017.10.002.
  • Hu, X., J. Banks, Y. Guo, G. Huang, and W. V. Liu. 2021. Effects of temperature-dependent property variations on the output capacity prediction of a deep coaxial borehole heat exchanger. Renewable Energy 165:334–49. doi:10.1016/j.renene.2020.11.020.
  • Hu, X., J. Banks, L. Wu, and W. V. Liu. 2020. Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta. Renewable Energy 148:1110–23. doi:10.1016/j.renene.2019.09.141.
  • Koohi-Fayegh, S., and M. A. Rosen. 2021. Modeling of vertical ground heat exchangers. International Journal of Green Energy 18 (7):755–74. doi:10.1080/15435075.2021.1880913.
  • Lamarche, L., and B. Beauchamp. 2007. New solutions for the short-time analysis of geothermal vertical boreholes. International Journal of Heat and Mass Transfer 50 (7–8):1408–19. doi:10.1016/j.ijheatmasstransfer.2006.09.007.
  • Lee, C. K. 2011. Effects of multiple ground layers on thermal response test analysis and ground-source heat pump simulation. Applied Energy 88 (12):4405–10. doi:10.1016/j.apenergy.2011.05.023.
  • Li, M., L. Zhang, and G. Liu. 2019. Estimation of thermal properties of soil and backfilling material from thermal response tests (TRTs) for exploiting shallow geothermal energy: Sensitivity, identifiability, and uncertainty. Renewable Energy 132:1263–70. doi:10.1016/j.renene.2018.09.022.
  • Li, M., L. Zhang, and G. Liu. 2020. Step-wise algorithm for estimating multi-parameter of the ground and geothermal heat exchangers from thermal response test. Renewable Energy 150:435–42. doi:10.1016/j.renene.2019.12.140.
  • Li, Z., C. Wang, and Q. Fu. 2022. Effects of groundwater flow on thermal response test of deep borehole heat exchanger. Geothermics 106:102570. doi:10.1016/j.geothermics.2022.102570.
  • Lund, J. W., and A. N. Toth. 2021. Direct utilization of geothermal energy 2020 worldwide review. Geothermics 90:101915. doi:10.1016/j.geothermics.2020.101915.
  • Luo, J., J. Rohn, M. Bayer, A. Priess, and W. Xiang. 2014. Analysis on performance of borehole heat exchanger in a layered subsurface. Applied Energy 123:55–65. doi:10.1016/j.apenergy.2014.02.044.
  • Luo, Y., G. Xu, and N. Cheng. 2021. Proposing stratified segmented finite line source (SS-FLS) method for dynamic simulation of medium-deep coaxial borehole heat exchanger in multiple ground layers. Renewable Energy 179:604–24. doi:10.1016/j.renene.2021.07.086.
  • McDaniel, A., J. Tinjum, D. J. Hart, Y. F. Lin, A. Stumpf, and L. Thomas. 2018. Distributed thermal response test to analyze thermal properties in heterogeneous lithology. Geothermics 76:116–24. doi:10.1016/j.geothermics.2018.07.003.
  • Morchio, S., and M. Fossa. 2020. On the ground thermal conductivity estimation with coaxial borehole heat exchangers according to different undisturbed ground temperature profiles. Applied Thermal Engineering 173:115198. doi:10.1016/j.applthermaleng.2020.115198.
  • Nian, Y. L., and W. L. Cheng. 2018. Insights into geothermal utilization of abandoned oil and gas wells. Renewable and Sustainable Energy Reviews 87:44–60. doi:10.1016/j.rser.2018.02.004.
  • Nian, Y. L., X. Y. Wang, K. Xie, and W. L. Cheng. 2020. Estimation of ground thermal properties for coaxial BHE through distributed thermal response test. Renewable Energy 152:1209–19. doi:10.1016/j.renene.2020.02.006.
  • Signorelli, S., S. Bassetti, D. Pahud, and T. Kohl. 2007. Numerical evaluation of thermal response tests. Geothermics 36 (2):141–66. doi:10.1016/j.geothermics.2006.10.006.
  • Soldo, V., S. Borovic, L. Leposa, and L. Boban. 2016. Comparison of different methods for ground thermal properties determination in a clastic sedimentary environment. Geothermics 61:1–11. doi:10.1016/j.geothermics.2015.12.010.
  • Soltani, M., F. Moradi Kashkooli, A. R. Dehghani-Sanij, A. Nokhosteen, A. Ahmadi-Joughi, K. Gharali, S. B. Mahbaz, and M. B. Dusseault. 2019. A comprehensive review of geothermal energy evolution and development. International Journal of Green Energy 16 (13):971–1009. doi:10.1080/15435075.2019.1650047.
  • Spitler, J. D., and S. E. A. Gehlin. 2015. Thermal response testing for ground source heat pump systems — an historical review. Renewable and Sustainable Energy Reviews 50:1125–37. doi:10.1016/j.rser.2015.05.061.
  • Wang, C., H. Fang, J. Lu, Y. Sun, P. Zhang, and X. Wang. 2021. A two-step parameter estimation method for estimating soil thermal properties of coaxial ground heat exchangers. Geothermics 96:102229. doi:10.1016/j.geothermics.2021.102229.
  • Wang, C., Y. Lu, L. Chen, Z. Huang, and H. Fang. 2021. A semi-analytical model for heat transfer in coaxial borehole heat exchangers. Geothermics 89:101952. doi:10.1016/j.geothermics.2020.101952.
  • Wang, C., X. Wang, J. Lu, Y. Lu, Y. Sun, and P. Zhang. 2022. A semi-analytical heat transfer model for deep borehole heat exchanger considering groundwater seepage. International Journal of Thermal Sciences 175:107465. doi:10.1016/j.ijthermalsci.2022.107465.
  • Wang, Z., F. Wang, J. Liu, Z. Ma, E. Han, and M. Song. 2017. Field test and numerical investigation on the heat transfer characteristics and optimal design of the heat exchangers of a deep borehole ground source heat pump system. Energy Conversion and Management 153:603–15. doi:10.1016/j.enconman.2017.10.038.
  • Wilke, S., K. Menberg, H. Steger, and P. Blum. 2020. Advanced thermal response tests: A review. Renewable and Sustainable Energy Reviews 119:109575. doi:10.1016/j.rser.2019.109575.
  • Yang, H., P. Cui, and Z. Fang. 2010. Vertical-borehole ground-coupled heat pumps: A review of models and systems. Applied Energy 87 (1):16–27. doi:10.1016/j.apenergy.2009.04.038.
  • Zhang, C., Z. Guo, Y. Liu, X. Cong, and D. Peng. 2014. A review on thermal response test of ground-coupled heat pump systems. Renewable and Sustainable Energy Reviews 40:851–67. doi:10.1016/j.rser.2014.08.018.
  • Zhang, C., W. Song, Y. Liu, X. Kong, and Q. Wang. 2019. Effect of vertical ground temperature distribution on parameter estimation of in-situ thermal response test with unstable heat rate. Renewable Energy 136:264–74. doi:10.1016/j.renene.2018.12.112.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.