1,070
Views
3
CrossRef citations to date
0
Altmetric
Review Article

A review on the progress and development of thermoelectric air conditioning system

, , &
Pages 283-299 | Received 29 Aug 2022, Accepted 09 Feb 2023, Published online: 31 Mar 2023

References

  • Abdul-Wahab, S. A., A. Elkamel, A. M. Al-Damkhi, I. A. Al-Habsi, H. S. Al-Rubai’ey’, A. K. Al-Battashi …, and M. U. Chutani, K. H. Al-Mamari, M. U. Chutani. 2009. Design and experimental investigation of portable solar thermoelectric refrigerator. Renewable Energy 34(1):30–34. Accessed 22 November 2021 from. doi:10.1016/J.RENENE.2008.04.026.
  • Afshar, O., R. Saidur, M. Hasanuzzaman, and M. Jameel. 2012. A review of thermodynamics and heat transfer in solar refrigeration system. Renewable and Sustainable Energy Reviews 16(8):5639–48. Accessed 20 October 2021 from. doi:10.1016/J.RSER.2012.05.016.
  • Ahamat, M. A., and M. J. Tierney. 2011. Timewise temperature control with heat metering using a thermoelectric module. Applied Thermal Engineering 31(8–9):1421–26. Accessed 20 November 2021 from. doi:10.1016/J.APPLTHERMALENG.2011.01.002.
  • Al-Damook, A., and F. S. Alkasmoul. 2018. Heat transfer and airflow characteristics enhancement of compact plate-pin fins heat sinks – a review. Propulsion and Power Research 7(2):138–46. Accessed 22 November 2021 from. doi:10.1016/J.JPPR.2018.05.003.
  • Astrain, D., J. G. Vián, and J. Albizua. 2005. Computational model for refrigerators based on peltier effect application. Applied Thermal Engineering 25(17–18):3149–62. Accessed 22 November 2021 from. doi:10.1016/J.APPLTHERMALENG.2005.04.003.
  • Attar, A., and H. S. Lee. 2016. Designing and testing the optimum design of automotive air-to-air Thermoelectric Air Conditioner (TEAC) system. Energy Conversion and Management 112:328–36. Accessed 25 August 2022. from. doi:10.1016/J.ENCONMAN.2016.01.029.
  • Attar, A., H. Lee, and S. Weera. 2014. Optimal design of automotive Thermoelectric Air Conditioner (TEAC). Journal of Electronic Materials, 43 (6):2179–87. Accessed from. doi:10.1007/s11664-014-3001-0.
  • Baby, R., and C. Balaji. 2013. Thermal optimization of PCM based pin fin heat sinks: An experimental study. Applied Thermal Engineering 54(1):65–77. Accessed 22 November 2021 from. doi:10.1016/J.APPLTHERMALENG.2012.10.056.
  • Bentrcia, M., M. Alshitawi, and H. Omar. 2018. Developmens of alternative systems for automotive air conditioning - a review. Journal of Mechanical Science and Technology, 32 (4):1857–67. Accessed from. doi:10.1007/s12206-018-0342-2.
  • Beretta, D., N. Neophytou, J. M. Hodges, M. G. Kanatzidis, D. Narducci, M. Martin-Gonzalez …, M. Caironi, B. Balke, G. Cerretti, W. Tremel, A. Zevalkink. 2019. Thermoelectrics: From history, a window to the future. Materials Science and Engineering: R: Reports 138:100501. Accessed 11 January 2022. from. doi:10.1016/J.MSER.2018.09.001.
  • Cai, Y., Y. Wang, D. Liu, and F. Y. Zhao. 2019. Thermoelectric cooling technology applied in the field of electronic devices: Updated review on the parametric investigations and model developments. Applied Thermal Engineering 148:238–55. Accessed 21 October 2021. from. doi:10.1016/J.APPLTHERMALENG.2018.11.014.
  • Castelan, A., B. Cougo, S. Dutour, and T. Meynard. 2019. 3D analytical modelling of plate fin heat sink on forced convection. Mathematics and Computers in Simulation 158 Accessed from:296–307. doi:10.1016/j.matcom.2018.09.011.
  • Chang, Y. W., C. C. Chang, M. T. Ke, and S. L. Chen. 2009. Thermoelectric air-cooling module for electronic devices. Applied Thermal Engineering 29 (13):2731–37. Accessed 21 October 2021. from. doi:10.1016/J.APPLTHERMALENG.2009.01.004.
  • Chein, R., and Y. Chen. 2005. Performances of thermoelectric cooler integrated with microchannel heat sinks. International Journal of Refrigeration 28(6):828–39. Accessed 22 November 2021 from. doi:10.1016/J.IJREFRIG.2005.02.001.
  • Chen, W. H., Y. X. Lin, Y. Chiou, Y. L. Lin, and X. D. Wang. 2020. A computational fluid dynamics (CFD) approach of thermoelectric generator (TEG) for power generation. Applied Thermal Engineering 173:115203. Accessed 22 November 2021. from. doi:10.1016/J.APPLTHERMALENG.2020.115203.
  • Chen, C., L. Mao, T. Lin, T. Tu, L. Zhu, and C. Wang. 2020. Performance testing and optimization of a thermoelectric elevator car air conditioner. Case Studies in Thermal Engineering 19:100616. Accessed 26 August 2022. from. doi:10.1016/J.CSITE.2020.100616.
  • Chen, A., P. Wright, M. Yasawong, A. Lapidus, S. Lucas, S. Deshpande, I. Pagani, R. Tapia, J. -F. Cheng, L. A. Goodwin, et al. 2012. Medical applications of thermoelectrics. Standards in Genomic Sciences, 6 (1):21–26. Accessed from. doi:10.1201/b11892-30.
  • Cherkez, R. 2012. Theoretical studies on the efficiency of air conditioner based on permeable thermoelectric converter. Applied Thermal Engineering 38:7–13. Accessed 22 November 2021. from. doi:10.1016/J.APPLTHERMALENG.2012.01.012.
  • Chingulpitak, S., N. Chimres, K. Nilpueng, and S. Wongwises. 2016. Experimental and numerical investigations of heat transfer and flow characteristics of cross-cut heat sinks. International Journal of Heat and Mass Transfer 102:142–53. Accessed 22 November 2021. from. doi:10.1016/J.IJHEATMASSTRANSFER.2016.05.098.
  • Chingulpitak, S., and S. Wongwises. 2015. A review of the effect of flow directions and behaviors on the thermal performance of conventional heat sinks. International Journal of Heat and Mass Transfer 81:10–18. Accessed 22 November 2021. from. doi:10.1016/J.IJHEATMASSTRANSFER.2014.09.081.
  • Chu, W. X., M. K. Tsai, S. Y. Jan, H. H. Huang, and C. C. Wang. 2020. CFD analysis and experimental verification on a new type of air-cooled heat sink for reducing maximum junction temperature. International Journal of Heat and Mass Transfer 148:119094. Accessed 22 November 2021. from. doi:10.1016/J.IJHEATMASSTRANSFER.2019.119094.
  • Cosnier, M., G. Fraisse, and L. Luo. 2008. An experimental and numerical study of a thermoelectric air-cooling and air-heating system. International Journal of Refrigeration 31(6):1051–62. Accessed 19 November 2021 from. doi:10.1016/J.IJREFRIG.2007.12.009.
  • DiSalvo, F. J. 1999. Thermoelectric cooling and power generation. Science, 285 (5428):703–06. Accessed from. doi:10.1126/science.285.5428.703.
  • Du, C. Y., and C. D. Wen. 2011. Experimental investigation and numerical analysis for one-stage thermoelectric cooler considering Thomson effect. International Journal of Heat and Mass Transfer 54 (23–24):4875–84. Accessed 17 November 2021. from. doi:10.1016/J.IJHEATMASSTRANSFER.2011.06.043.
  • Elsayed, M. L., O. Mesalhy, J. P. Kizito, Q. H. Leland, and L. C. Chow. 2020. Performance of a guided plate heat sink at high altitude. International Journal of Heat and Mass Transfer 147:118926. Accessed 22 November 2021. from. doi:10.1016/J.IJHEATMASSTRANSFER.2019.118926.
  • El-Sayed, S. A., S. M. Mohamed, A. A. Abdel-Latif, and A. H. E. Abouda. 2004. Experimental study of heat transfer and fluid flow in longitudinal rectangular-fin array located in different orientations in fluid flow. Experimental Thermal and Fluid Science 29 (1):113–28. Accessed 22 November 2021. from. doi:10.1016/J.EXPTHERMFLUSCI.2004.02.006.
  • Enescu, D., and E. O. Virjoghe. 2014. A review on thermoelectric cooling parameters and performance. Renewable and Sustainable Energy Reviews 38:903–16. Accessed 22 November 2021. from. doi:10.1016/J.RSER.2014.07.045.
  • Esfahani, J. A., N. Rahbar, and M. Lavvaf. 2011. Utilization of thermoelectric cooling in a portable active solar still — an experimental study on winter days. Desalination 269(1–3):198–205. Accessed 17 November 2021 from. doi:10.1016/J.DESAL.2010.10.062.
  • Gillott, M., L. Jiang, and S. Riffat. 2009. An investigation of thermoelectric cooling devices for small-scale space conditioning applications in building. International Journal of Energy Research, 34 (9):776–86. Accessed from. doi:https://doi.org/10.1002/er.1591.
  • Hamid Elsheikh, M., D. A. Shnawah, M. F. M. Sabri, S. B. M. Said, M. Haji Hassan, M. B. Ali Bashir, and M. Mohamad. 2014. A review on thermoelectric renewable energy: Principle parameters that affect their performance. Renewable and Sustainable Energy Reviews 30:337–55. Accessed 21 October 2021. from. doi:10.1016/J.RSER.2013.10.027.
  • Hasani, M., I. Baniasad Askari, and A. Shahsavar. 2022. Two-phase mixture simulation of the performance of a grooved helical microchannel heat sink filled with biologically prepared water-silver nanofluid: Hydrothermal characteristics and irreversibility behavior. Applied Thermal Engineering 202:117848. Accessed 21 June 2022. from. doi:10.1016/J.APPLTHERMALENG.2021.117848.
  • Hong, S. H., and B. J. Chung. 2016. Variations of the optimal fin spacing according to prandtl number in natural convection. International Journal of Thermal Sciences 101:1–8. Accessed 22 November 2021. from. doi:10.1016/J.IJTHERMALSCI.2015.10.026.
  • Huang, B. J., C. J. Chin, and C. L. Duang. 2000. A design method of thermoelectric cooler. International Journal of Refrigeration 23(3):208–18. Accessed 16 November 2021 from. doi:10.1016/S0140-7007(99)00046-8.
  • Huang, H. S., Y. C. Weng, Y. W. Chang, S. L. Chen, and M. T. Ke. 2010. Thermoelectric water-cooling device applied to electronic equipment. International Communications in Heat and Mass Transfer 37 (2):140–46. Accessed 22 November 2021. from. doi:10.1016/J.ICHEATMASSTRANSFER.2009.08.012.
  • Hussain, A. A., B. Freegah, B. S. Khalaf, and H. Towsyfyan. 2019. Numerical investigation of heat transfer enhancement in plate-fin heat sinks: Effect of flow direction and fillet profile. Case Studies in Thermal Engineering 13:100388. Accessed 22 November 2021. from. doi:10.1016/J.CSITE.2018.100388.
  • Japar, W. M. A. A., N. A. C. Sidik, and S. Mat. 2018. A comprehensive study on heat transfer enhancement in microchannel heat sink with secondary channel. International Communications in Heat and Mass Transfer 99:62–81. Accessed 13 January 2022. from. doi:10.1016/J.ICHEATMASSTRANSFER.2018.10.005.
  • Jeong, J. -H., S. Hah, D. Kim, J. H. Lee, and S. -M. Kim. 2020. Thermal analysis of cylindrical heat sinks filled with phase change material for high-power transient cooling. International Journal of Heat and Mass Transfer 154 Accessed from:119725. doi:10.1016/j.ijheatmasstransfer.2020.119725.
  • Kalkan, N., E. A. Young, and A. Celiktas. 2012. Solar thermal air conditioning technology reducing the footprint of solar thermal air conditioning. Renewable and Sustainable Energy Reviews 16(8):6352–83. Accessed 20 October 2021 from. doi:10.1016/J.RSER.2012.07.014.
  • Kharangate, C. R., W. Libeer, J. Palko, H. Lee, J. Shi, M. Asheghi, and K. E. Goodson. 2020. Investigation of 3D manifold architecture heat sinks in air-cooled condensers. Applied Thermal Engineering 167:114700. Accessed 22 November 2021. from. doi:10.1016/J.APPLTHERMALENG.2019.114700.
  • Kim, T. Y., and S. J. Kim. 2009. Fluid flow and heat transfer characteristics of cross-cut heat sinks. International Journal of Heat and Mass Transfer 52(23–24):5358–70. Accessed 15 June 2022 from. doi:10.1016/J.IJHEATMASSTRANSFER.2009.07.008.
  • Kose, H. A., A. Yildizeli, and S. Cadirci. 2022. Parametric study and optimization of microchannel heat sinks with various shapes. Applied Thermal Engineering 211:118368. Accessed 21 June 2022. from. doi:10.1016/J.APPLTHERMALENG.2022.118368.
  • Lee, H. S. 2013. The Thomson effect and the ideal equation on thermoelectric coolers. Energy 56:61–69. Accessed 22 November 2021. from. doi:10.1016/J.ENERGY.2013.04.049.
  • Lee, K. H., and O. J. Kim. 2007. Analysis on the cooling performance of the thermoelectric micro-cooler. International Journal of Heat and Mass Transfer 50(9–10):1982–92. Accessed 22 November 2021 from. doi:10.1016/J.IJHEATMASSTRANSFER.2006.09.037.
  • Lenz, E. 1838. Einige Versuche im Gebiete des Galvanismus. Annalen Der Physik, 120 (6):342–49. Accessed from. doi:10.1002/andp.18381200612.
  • Li, H. Y., and S. M. Chao. 2009. Measurement of performance of plate-fin heat sinks with cross flow cooling. International Journal of Heat and Mass Transfer 52 (13–14):2949–55. Accessed 22 November 2021. from. doi:10.1016/J.IJHEATMASSTRANSFER.2009.02.025.
  • Lundgaard, C., and O. Sigmund. 2019. Design of segmented thermoelectric peltier coolers by topology optimization. Applied Energy 239:1003–13. Accessed 21 October 2021. from. doi:10.1016/J.APENERGY.2019.01.247.
  • Luo, T., S. Wang, H. Li, and X. Tang. 2013. Low temperature thermoelectric properties of melt spun Bi85Sb15 alloys. Intermetallics 32:96–102. Accessed from. doi:10.1016/j.intermet.2012.08.007.
  • Ma, X. 2004. Investigation of novel thermoelectric refrigeration systems. University of Nottingham. http://eprints.nottingham.ac.uk/12377/1/408593.pdf.
  • Mahmoud, S., R. Al-Dadah, D. K. Aspinwall, S. L. Soo, and H. Hemida. 2011. Effect of micro fin geometry on natural convection heat transfer of horizontal microstructures. Applied Thermal Engineering 31(5):627–33. Accessed 22 November 2021 from. doi:10.1016/J.APPLTHERMALENG.2010.09.017.
  • Mahmoud, S., A. Tang, C. Toh, R. AL-Dadah, and S. L. Soo. 2013. Experimental investigation of inserts configurations and PCM type on the thermal performance of PCM based heat sinks. Applied Energy 112:1349–56. Accessed 22 November 2021. from. doi:10.1016/J.APENERGY.2013.04.059.
  • Maneewan, S., W. Tipsaenprom, and C. Lertsatitthanakorn. 2010. Thermal comfort study of a compact thermoelectric air conditioner. Journal of Electronic Materials, 39 (9):1659–64. Accessed from. doi:https://doi.org/10.1007/s11664-010-1239-8.
  • Micheli, L., K. S. Reddy, and T. K. Mallick. 2015. General correlations among geometry, orientation and thermal performance of natural convective micro-finned heat sinks. International Journal of Heat and Mass Transfer 91:711–24. Accessed 22 November 2021. from. doi:10.1016/J.IJHEATMASSTRANSFER.2015.08.015.
  • Milani, D., A. Abbas, A. Vassallo, M. Chiesa, and D. A. Bakri. 2011. Evaluation of using thermoelectric coolers in a dehumidification system to generate freshwater from ambient air. Chemical Engineering Science 66 (12):2491–501. Accessed 17 November 2021. from. doi:10.1016/J.CES.2011.02.018.
  • Min, G., and D. M. Rowe. 2006. Experimental evaluation of prototype thermoelectric domestic-refrigerators. Applied Energy 83(2):133–52. Accessed 19 November 2021 from. doi:10.1016/J.APENERGY.2005.01.002.
  • Nguyen, N. T. 1997. Micromachined flow sensors—a review. Flow Measurement and Instrumentation 8(1):7–16. Accessed 22 November 2021 from. doi:10.1016/S0955-5986(97)00019-8.
  • Omer, A. M. 2008. Focus on low carbon technologies: The positive solution. Renewable and Sustainable Energy Reviews 12(9):2331–57. Accessed 20 October 2021 from. doi:10.1016/J.RSER.2007.04.015.
  • Pandey, J., A. Husain, M. Zahid Ansari, and N. Al-Azri. 2021. Performance analysis of cold plate heat sink with parallel channel and pin-fin. Materials Today: Proceedings 44:3144–49. Accessed 26 January 2023. from. doi:10.1016/J.MATPR.2021.02.819.
  • Pérez-Aparicio, J. L., R. Palma, and R. L. Taylor. 2012. Finite element analysis and material sensitivity of peltier thermoelectric cells coolers. International Journal of Heat and Mass Transfer 55 (4):1363–74. Accessed 22 November 2021. from. doi:10.1016/J.IJHEATMASSTRANSFER.2011.08.031.
  • Putra, N., F. N. Iskandar, and F. N. Iskandar. 2011. Application of nanofluids to a heat pipe liquid-block and the thermoelectric cooling of electronic equipment. Experimental Thermal and Fluid Science 35(7):1274–81. Accessed 22 November 2021 from. doi:10.1016/J.EXPTHERMFLUSCI.2011.04.015.
  • Rahbar, N., and J. A. Esfahani. 2012. Experimental study of a novel portable solar still by utilizing the heatpipe and thermoelectric module. Desalination 284:55–61. Accessed 17 November 2021. from. doi:10.1016/J.DESAL.2011.08.036.
  • Raut, M. S., and D. V. Walke. 2012. Thermoelectric air cooling for cars. IJEST 4 (5):2381–94. Accessed from. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84873192195&partnerID=40&md5=6b01384659b1a02992ad15c449c93f47.
  • Riffat, S. B., and X. Ma. 2003. Thermoelectrics: A review of present and potential applications. Applied Thermal Engineering 23(8):913–35. Accessed 21 October 2021 from. doi:10.1016/S1359-4311(03)00012-7.
  • Sahiti, N., F. Durst, W. Arlt, and A. Dewan (2006). Thermal and fluid dynamic performance of pin fin heat transfer surfaces. PQDT - Global. Ann Arbor. Accessed from http://ezproxy.um.edu.my:2048/login?url=https://www.proquest.com/dissertations-theses/thermal-fluid-dynamic-performance-pin-fin-heat/docview/2563685564/se-2?accountid=28930
  • Sahoo, S. K., M. K. Das, and P. Rath. 2016. Application of TCE-PCM based heat sinks for cooling of electronic components: A review. Renewable and Sustainable Energy Reviews 59:550–82. Accessed 22 November 2021. from. doi:10.1016/J.RSER.2015.12.238.
  • Saidur, R., M. Rezaei, W. K. Muzammil, M. H. Hassan, S. Paria, and M. Hasanuzzaman. 2012. Technologies to recover exhaust heat from internal combustion engines. Renewable and Sustainable Energy Reviews 16(8):5649–59. Accessed 22 November 2021 from. doi:10.1016/J.RSER.2012.05.018.
  • Sajid, M., I. Hassan, and A. Rahman. 2017. An overview of cooling of thermoelectric devices. Renewable and Sustainable Energy Reviews 78:15–22. Accessed 22 November 2021. from. doi:10.1016/J.RSER.2017.04.098.
  • Salah, W., and M. Abuhelwa. 2020. Review of thermoelectric cooling devices recent applications. Journal of Engineering Science and Technology 15:455–76.
  • Saravanakumar, T., and D. Senthil Kumar. 2019. Performance analysis on heat transfer characteristics of heat SINK with baffles attachment. International Journal of Thermal Sciences 142:14–19. Accessed 22 November 2021. from. doi:10.1016/J.IJTHERMALSCI.2019.04.002.
  • Shen, L., F. Xiao, H. Chen, and S. Wang. 2013. Investigation of a novel thermoelectric radiant air-conditioning system. Energy and Buildings 59:123–32. Accessed 17 November 2021. from. doi:10.1016/J.ENBUILD.2012.12.041.
  • Stachowiak, H., S. Lassue, A. Dubernard, and E. Gaviot. 1998. A thermoelectric sensor for fluid flow measurement. principles, calibration and solution for self temperature compensation. Flow Measurement and Instrumentation 9(3):135–41. Accessed 22 November 2021 from. doi:10.1016/S0955-5986(98)00025-9.
  • Tari, I., and M. Mehrtash. 2013. Natural convection heat transfer from inclined plate-fin heat sinks. International Journal of Heat and Mass Transfer 56 (1):574–93. Accessed from. doi:10.1016/j.ijheatmasstransfer.2012.08.050.
  • Thirugnanasambandam, M., S. Iniyan, and R. Goic. 2010. A review of solar thermal technologies. Renewable and Sustainable Energy Reviews 14(1):312–22. Accessed 20 October 2021 from. doi:10.1016/J.RSER.2009.07.014.
  • Tsubota, T., T. Ohno, N. Shiraishi, and Y. Miyazaki. 2008. Thermoelectric properties of Sn1−x−yTiySbxO2 ceramics. Journal of Alloys and Compounds 463(1–2):288–93. Accessed 21 October 2021 from. doi:10.1016/J.JALLCOM.2007.09.001.
  • Twaha, S., J. Zhu, Y. Yan, and B. Li. 2016. A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement. Renewable and Sustainable Energy Reviews 65:698–726. Accessed 21 October 2021. from. doi:10.1016/J.RSER.2016.07.034.
  • Vaghela, J. K. 2017. Comparative evaluation of an automobile air - conditioning system using R134a and its alternative refrigerants. Energy Procedia 109:153–60. Accessed 25 August 2022. from. doi:10.1016/J.EGYPRO.2017.03.083.
  • van Dessel, S., and B. Foubert. 2010. Active thermal insulators: Finite elements modeling and parametric study of thermoelectric modules integrated into a double pane glazing system. Energy and Buildings 42(7):1156–64. Accessed 19 November 2021 from. doi:10.1016/J.ENBUILD.2010.02.007.
  • Vashisht, S., and D. Rakshit. 2021. Recent advances and sustainable solutions in automobile air conditioning systems. Journal of Cleaner Production 329:129754. Accessed 6 February 2023. from. doi:10.1016/J.JCLEPRO.2021.129754.
  • Vián, J. G., and D. Astrain. 2008. Development of a heat exchanger for the cold side of a thermoelectric module. Applied Thermal Engineering 28(11–12):1514–21. Accessed 17 November 2021 from. doi:10.1016/J.APPLTHERMALENG.2007.08.014.
  • Vián, J. G., and D. Astrain. 2009. Development of a thermoelectric refrigerator with two-phase thermosyphons and capillary lift. Applied Thermal Engineering 29(10):1935–40. Accessed 17 November 2021 from. doi:10.1016/J.APPLTHERMALENG.2008.09.018.
  • Wang, C. C., C. I. Hung, and W. H. Chen. 2012. Design of heat sink for improving the performance of thermoelectric generator using two-stage optimization. Energy 39 (1):236–45. Accessed 22 November 2021. from. doi:10.1016/J.ENERGY.2012.01.025.
  • Wang, X., J. Yu, and M. Ma. 2013. Optimization of heat sink configuration for thermoelectric cooling system based on entropy generation analysis. International Journal of Heat and Mass Transfer 63:361–65. Accessed 20 November 2021. from. doi:10.1016/J.IJHEATMASSTRANSFER.2013.03.078.
  • Wiriyasart, S., and P. Naphon. 2019. Liquid impingement cooling of cold plate heat sink with different fin configurations: High heat flux applications. International Journal of Heat and Mass Transfer 140:281–92. Accessed 22 November 2021. from. doi:10.1016/J.IJHEATMASSTRANSFER.2019.06.020.
  • Wu, H. H., Y. Y. Hsiao, H. S. Huang, P. H. Tang, and S. L. Chen. 2011. A practical plate-fin heat sink model. Applied Thermal Engineering 31 (5):984–92. Accessed 22 November 2021. from. doi:10.1016/J.APPLTHERMALENG.2010.10.014.
  • Xi, H., L. Luo, and G. Fraisse. 2007. Development and applications of solar-based thermoelectric technologies. Renewable and Sustainable Energy Reviews 11(5):923–36. Accessed 20 October 2021 from. doi:10.1016/J.RSER.2005.06.008.
  • Xu, X., S. Dessel, and A. Messac. 2007. Study of the performance of thermoelectric modules for use in active building envelopes. Building and Environment 42(3):1489–502. Accessed 17 November 2021 from. doi:10.1016/J.BUILDENV.2005.12.021.
  • Xu, D., Y. Wang, B. Xiong, and T. Li. 2017. MEMS-based thermoelectric infrared sensors: A review. Frontiers of Mechanical Engineering, 12 (4):557–66. Accessed from. doi:10.1007/s11465-017-0441-2.
  • Yoo, S. -Y., and D. -W. Lee. 2009. Experimental study on performance of automotive air conditioning system using R-152a refrigerant. International Journal of Automotive Technology 10 (3):313–20. Accessed from. doi:10.1007/s12239-009-0036-y.
  • Zhang, H. Y. 2010. A general approach in evaluating and optimizing thermoelectric coolers. International Journal of Refrigeration 33(6):1187–96. Accessed 21 October 2021 from. doi:10.1016/J.IJREFRIG.2010.04.007.
  • Zhang, H. Y., Y. C. Mui, and M. Tarin. 2010. Analysis of thermoelectric cooler performance for high power electronic packages. Applied Thermal Engineering 30(6–7):561–68. Accessed 22 November 2021 from. doi:10.1016/J.APPLTHERMALENG.2009.10.020.
  • Zhao, D., and G. Tan. 2014. A review of thermoelectric cooling: materials, modeling and applications. Applied Thermal Engineering 66(1–2):15–24. Accessed 22 November 2021 from. doi:10.1016/J.APPLTHERMALENG.2014.01.074.
  • Zheng, X. F., C. X. Liu, Y. Y. Yan, and Q. Wang. 2014. A review of thermoelectrics research – recent developments and potentials for sustainable and renewable energy applications. Renewable and Sustainable Energy Reviews 32:486–503. Accessed 21 October 2021. from. doi:10.1016/J.RSER.2013.12.053.
  • Zhou, Y., and J. Yu. 2012. Design optimization of thermoelectric cooling systems for applications in electronic devices. International Journal of Refrigeration 35(4):1139–44. Accessed 22 November 2021 from. doi:10.1016/J.IJREFRIG.2011.12.003.
  • Zhu, W., Y. Deng, Y. Wang, and A. Wang. 2013. Finite element analysis of miniature thermoelectric coolers with high cooling performance and short response time. Microelectronics Journal 44(9):860–68. Accessed 22 November 2021 from. doi:10.1016/J.MEJO.2013.06.013.
  • Zhu, L., H. Tan, and J. Yu. 2013. Analysis on optimal heat exchanger size of thermoelectric cooler for electronic cooling applications. Energy Conversion and Management 76:685–90. Accessed 21 October 2021. from. doi:10.1016/J.ENCONMAN.2013.08.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.