258
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Wind farm site suitability assessment & validation using geospatially explicit multi-criteria approach: A case study of South Sikkim, India

, &
Pages 300-327 | Received 30 Nov 2022, Accepted 21 Mar 2023, Published online: 03 Apr 2023

References

  • Al Garni, H. Z., and A. Awasthi. 2017. Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia. Applied Energy 206 :1225 1240. doi:10.1016/j.apenergy.2017.10.024. ISSN 0306-2619.
  • Al-Yahyai, S., Y. Charabi, A. Gastli, and A. Al-Badi. 2012. Wind farm land suitability indexing using multi-criteria analysis. Renew Energy 44:80–87. doi:10.1016/j.renene.2012.01.004.
  • Annual Report of Central Electricity Authority (CEA), India, available online https://cea.nic.in/annual-report/?lang=en
  • Asadi, M., K. Pourhossein, and B. Mohammadi-Ivatloo. 2023. GIS-assisted modeling of wind farm site selection based on support vector regression. Journal of Cleaner Production 390:135993. doi:10.1016/j.jclepro.2023.135993. ISSN 0959-6526.
  • Baban, S. M., and T. Parry. 2001. Developing and applying a GIS-assisted approach to locating wind farms in the UK. Renewable Energy 24 (1):59–74. doi:10.1016/S0960-1481(00)00169-5.
  • Baseer, M. A., S. Rehman, J. P. Meyer, and M. M. Alam. 2017. GIS-based site suitability analysis for wind farm development in Saudi Arabia. Energy 141:1166–76. doi:10.1016/j.energy.2017.10.016.
  • Bennui, A., P. Rattanamanee, U. Puetpaiboon, P. Phukpattaranont, K. Chetpattananondh, “Site selection for large wind turbine using GIS, In: Proceedings of the PSU-UNS international conference on engineering and environment (ICEE 2007), May 10–11, 2007, Phuket, Thailand; 2007.
  • Caceoğlu, E., E. HaticeKübrayildiz, J. M. G. NejanHuvaj, N. Huvaj, and J. M. Guerrero. 2022. Offshore wind power plant site selection using analytical hierarchy process for Northwest Turkey. Ocean Engineering 252:111178. doi:10.1016/j.oceaneng.2022.111178. ISSN 0029-8018.
  • Chang, N. -B., G. Parvathinathan, and J. B. Breeden. Mar 2007. Combining GIS with fuzzy multi criteria decision-making for landfill sitting in a fast-growing urban region. Environmental Management 87 (1):1–15. doi: 10.1016/j.jenvman.2007.01.011.
  • Chen, X., and W. Lee. 2010. Wind generation development in the US and China. North American Power Symp (NAPS) 1–7. doi:10.1109/NAPS.2010.5618943.
  • Chettri, M. 2020. From Shangri-La to de-facto SEZ: Land grabs from ‘below’ in Sikkim, India. Geoforum 109:57–66. doi:10.1016/j.geoforum.2019.12.016. ISSN 0016-7185.
  • Cunden, T. S. M., J. Doorga, M. R. Lollchund, and S. D. D. V. Rughooputh. 2020. Multi-level constraints wind farms siting for a complex terrain in a tropical region using MCDM approach coupled with GIS. Energy 211 :118533. doi:10.1016/j.energy.2020.118533. ISSN 0360-5442.
  • Davide Allori Gianni Bartoli Claudio Borri, H. March 2018. Wind characteristics in wind farms situated on a hilly terrain. Journal of Wind Engineering and Industrial Aerodynamics 174:404–10. doi: 10.1016/j.jweia.2018.01.008.
  • Dewan, S., I. Chettri, K. Sharma, and B. Acharya. 2019. Kitam bird sanctuary, the only low elevation protected area of Sikkim: A conservation hotspot for butterflies in theEastern Himalaya. Journal of Asia-Pacific Entomology 22 (2):575–83. doi:10.1016/j.aspen.2019.04.002.
  • Dhiman, G., J. Bhattacharya, and S. Roy. 2023. Soil textures and nutrients estimation using remote sensing data in north india - Punjab region. Procedia computer science 218 :2041–48. doi:10.1016/j.procs.2023.01.180. ISSN 1877-0509.
  • Dipanjan, G., U. S. NaskarSreejita, R. Amit, and A. K. Roy. March 2019. An open source software: Q-GIS based analysis for solar potential of Sikkim (India). International Journal of Open Source Software and Processes 10 (1):49–68. doi: 10.4018/IJOSSP.2019010104.
  • District Re-organization Gazetee, Government of Sikkim, available online (http://www.sikkimlrdm.gov.in/Notifications/District%20Reorganisation%20Notification.pdf)
  • Doorga, J. R. S., S. D. D. V. Rughooputh, and R. Boojhawon. 2019. Multi-criteria GIS-based modelling technique for identifying potential solar farm sites: A case study in mauritius. Renewable Energy 133:1201–19. doi:10.1016/j.renene.2018.08.105. ISSN 0960-1481.
  • Elboshy, B., M. Alwetaishi, R. M. H. Aly, and A. S. Zalhaf. 2022. A suitability mapping for the PV solar farms in Egypt based on GIS-AHP to optimize multi-criteria feasibility. Ain Shams Engineering Journal 13 (3):101618. doi:10.1016/j.asej.2021.10.013.
  • Elum, Z. A., and A. S. Momodu. 2017. Climate change mitigation and renewable energy for sustainable development in Nigeria: A discourse approach. Renewable and Sustainable Energy Reviews 76:72–80. doi:10.1016/j.rser.2017.03.040.
  • Engineering & Environmental Solution, Catalogue, Weather station, https://www.enggenv.in/
  • Feng, J., L. Feng, J. Wang, and C. W. King. 2020. Evaluation of the onshore wind energy potential in mainland China—Based on GIS modeling and EROI analysis. ResourConservrecycl 152:104484. doi:10.1016/j.resconrec.2019.104484.
  • GalihPambudi, N., and N. Nananukul. 2019. A hierarchical fuzzy data envelopment analysis for wind turbine site selection in Indonesia. Energy Reports 5:1041–47. doi:10.1016/j.egyr.2019.08.002. ISSN 2352-4847.
  • GarlapatiNagababu, H. P., and M. P. K. Kocherlakota Pritam. 2022. Two-stage GIS-MCDM based algorithm to identify plausible regions at micro level to install wind farms: A case study of India. Energy 248 :123594. doi:10.1016/j.energy.2022.123594. ISSN 0360-5442.
  • GENÇ, M. S. and F. Karipoğlu, “Wind-Solar Site Selection using a GIS-MCDM-based Approach with an Application in Kayseri Province/Turkey,” 7th Iran Wind Energy Conference (IWEC2021), Shahrood, Iran, 2021, pp. 1–4, doi: 10.1109/IWEC52400.2021.9467003.
  • Ghose, D., S. Naskar, M. S. Shabbiruddin, M. E. H. Assad, N. Nabipour, and N. Nabipour. 2020. Siting high solar potential areas using Q-GIS in West Bengal, India. Sustainable Energy Technologies and Assessments 42:100864. doi:10.1016/j.seta.2020.100864. ISSN 2213-1388.
  • Gil-García, I. C., A. Ramos-Escudero, M. S. García-Cascales, H. Dagher, and A. Molina-García. 2022. Fuzzy GIS-based MCDM solution for the optimal offshore wind site selection: The gulf of maine case. Renewable Energy 183 :130–47. doi:10.1016/j.renene.2021.10.058. ISSN 0960-1481.
  • Global wind atlas online application website owned by the technical university of denmark [online]. Available https://globalwindatlas.info
  • Gorsevski, P. V., S. C. Cathcart, G. Mirzaei, M. M. Jamali, X. Ye, and E. Gomezdelcampo. 2013. A group-based spatial decision support system for wind farm site selection in Northwest Ohio. Energy Policy 55:374–85. doi:10.1016/j.enpol.2012.12.013.
  • Griffiths, J. C., and W. T. Dushenko. 2011. Effectiveness of GIS suitability mapping in predicting ecological impacts of proposed wind farm development on Aristazabal Island, BC. Environmental Development Sustain 13 (6):957–91. doi:10.1007/s10668-011-9300-1.
  • Höfer, T., Y. Sunak, H. Siddique, and R. Madlener. 2016. Wind farm siting using a spatial analytic hierarchy process approach: A case study of the städteregion aachen. Applied Energy 163:222–43. doi:10.1016/j.apenergy.2015.10.138. ISSN 0306-2619.
  • Hsu, T., and E. W. Ryherd. Dec 2012. Noise pollution in hospitals: Impact on patients. JCOM 19:301–09.
  • Islam, M. R., M. Rakibul Islam, and H. M. Imran. 2022. Assessing wind farm site suitability in Bangladesh: A GIS-AHP approach. Sustainability 14 (22):14819. doi:10.3390/su142214819.
  • Karipoğlu, F., M. Genç, and B. Akarsu. 2022. GIS-based optimal site selection for the solar-powered hydrogen fuel charge stations. Fuel 324:124626. doi:10.1016/j.fuel.2022.124626.
  • Karipoğlu, F., M. Serdar Genç, and K. Koca. 2021. Determination of the most appropriate site selection of wind power plants based geographic information system and multi-criteria decision-making approach in Develi, Turkey. International Journal of Sustainable Energy Planning and Management 30:97–114.
  • Latinopoulos, D., and K. Kechagia. 2015. A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece. Renewable Energy 78:550–60. doi:10.1016/j.renene.2015.01.041. ISSN 0960-1481.
  • Leda-IoannaTegou, H. P., Polatidis, D. A. Haralambopoulos, H. Dias, and D. A. Haralambopoulos. 2010. Haralambopoulos, environmental management framework for wind farm siting: Methodology and case study. Journal of Environmental Management 91 (11):2134–47. doi:10.1016/j.jenvman.2010.05.010. ISSN 0301-4797.
  • Liou, W. T. S., and M. J. 1992. “Ranking Fuzzy numbers with integral value. Fuzzy Sets and Systems” 50 (3):247–55. doi:10.1016/0165-0114(92)90223-Q.
  • Lyappan, L., and P. Kasinatha Pandian. 2016. Geoprocessing model for identifying potential wind farm locations. IET Renewable Power Generation 10 (9):1287–97. doi:10.1049/iet-rpg.2015.0187. ISSN 1752-1416.
  • McDuie-Ra, D., and M. Chettri. Nov 2018. Himalayan boom town: Rural-urban transformations in Namchi, Sikkim: rural-urban transformations in a Himalayan boom town. Development and Change 49 (6):1471–94. doi: 10.1111/dech.12450.
  • Moradi, S., H. Yousefi, Y. Noorollahi, and D. Rosso. 2020. Multi-criteria decision support system for wind farm site selection and sensitivity analysis: Case study of Alborz province, Iran. Energy Strategy Reviews 29 (100478):100478. doi:10.1016/j.esr.2020.100478. ISSN 2211-467X.
  • Nazir, M. S., N. Ali, M. Bilal, and H. M. Iqbal. 2020. Potential environmental impacts of wind energy development: A global perspective. CurrOpin Environ Sci Health 13:85–90. doi:10.1016/j.coesh.2020.01.002.
  • Ozturk, S., and F. Karipoglu. 2022. Investigation of the best possible methods for wind turbine blade waste management by using GIS and FAHP: Turkey case. Environmental Science and Pollution Research 30 (6):1–14. doi:10.1007/s11356-022-23256-6.
  • Pakere, I., M. Kacare, A. Grāvelsiņš, R. Freimanis, and A. Blumberga. 2022. Spatial analyses of smart energy system implementation through system dynamics and GIS modelling. wind power case study in Latvia. Smart Energy 7 :100081. doi:10.1016/j.segy.2022.100081. ISSN 2666-9552.
  • Pellegrini, M., A. Guzzini, and C. Saccani. 2021. Experimental measurements of the performance of a micro-wind turbine located in an urban area. Energy Reports 7:3922–34. doi:10.1016/j.egyr.2021.05.081. ISSN 2352-4847.
  • Prieto-Amparán, J., A. Pinedo, C. Morales-Nieto, M. Valles-Aragón, A. Alvarez-Holguin, and F. Villarreal-Guerrero. 2021. A regional GIS-Assisted multi-criteria evaluation of site-suitability for the development of solar farms. Land 10 (217). doi: 10.3390/land10020217.
  • Rediske, G., H. Burin, P. Rigo, C. Rosa, L. Michels, and J. Siluk. 2021. Wind power plant site selection: A systematic review. Renewable and Sustainable Energy Reviews 148:111293. doi:10.1016/j.rser.2021.111293.
  • Report by Airport authorities of India https://www.aai.aero/en/airports/pakyong
  • Report on Mapping India’s Energy Policy 2022, available online (https://www.iisd.org/system/files/2022-05/mapping-india-energy-policy-2022.pdf)
  • Report on World Energy Outlook, available online (https://iea.blob.core.windows.net/assets/7e42db90-d8ea-459d-be1e-1256acd11330/WorldEnergyOutlook2022.pdf)
  • Report on World Energy Outlook 2022, International Energy Agency, available online (https://iea.blob.core.windows.net/assets/830fe099-5530-48f2-a7c1-11f35d510983/WorldEnergyOutlook2022.pdf)
  • Report- Renewable 2022 A Global Status Report available online (https://www.ren21.net/wp-content/uploads/2019/05/GSR2022_Full_Report.pdf)
  • Roy, S., and S. Mitra. Dec 2016. Infrastructural status of railway transport system in Northeast India: A geographical analysis. Asian Journal of Spatial Science 4:89–100.
  • Roy, M. K., A. Roy, and B. B. Pradhan. 2014. Non-traditional machining process selection using integrated Fuzzy AHP and QFD techniques: A customer perspective. Production and Manufacturing Research 2 (1):530–499. doi:10.1080/21693277.2014.938276.
  • Saaty, T. L. 1980. Analytic hierarchy process. New York: McGraw-Hill.
  • Saaty, T. L. 1990. How to make a decision: The analytic hierarchy process. European Journal of Operational Research 48:9–26. doi:10.1016/0377-2217(90)90057-I.
  • Salameh, Z. M., and I. Safari. Dec 1992. Optimum windmill-site matching. IEEE Transactions on Energy Conversion 7 (4):669–76. doi: 10.1109/60.182649.
  • Sapkota, K., S. Karma Sonam Sherpa, and K. S. Sherpa. Jul 2021. Quantum Geographic Information System (Q-GIS) based study on emerging energy scenario in hilly terrain. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1556–7036. doi:10.1080/15567036.2021.1941437.
  • Saraswat, S. K., A. K. Digalwar, S. S. Yadav, and G. Kumar. 2021. MCDM and GIS based modelling technique for assessment of solar and wind farm locations in India. Renewable Energy 169 :865–84. doi:10.1016/j.renene.2021.01.056. ISSN 0960-1481.
  • Shabbiruddin, A. R., K. Sonam Sherpa, and S. Chakravorty. 2014. Selection of sub-station site for greater NOIDA India by Analytical Hierarchy Process (AHP). Elixir Electronic Enginer 66:20482–86.
  • Tl, S. 1977. A scaling method for priorities in hierarchical structures. Journal of Math Psychol 15 (3):234e81. doi:10.1016/0022-2496(77)90033-5.
  • User training manual Q-GIS 3.20, available online (https://docs.qgis.org/3.4/pdf/)
  • USGS Geological survey, web based application https://earthexplorer.usgs.gov/
  • Watson, J. J., and M. D. Hudson. 2015. Regional scale wind farm and solar farm suitability assessment using GIS-assisted multi-criteria evaluation. Landscape Urban Plann 138:20–31. doi:10.1016/j.landurbplan.2015.02.001.
  • Wind Energy Association, E. 2009. ‘wind energy – the facts: A guide to the technology, economics and future of wind power’. London: Earthscan.
  • Wu, X., W. Hu, Q. Huang, C. Chen, M. Z. Jacobson, and Z. Chen. 2020. Optimizing the layout of onshore wind farms to minimize noise. Applied Energy 267:114896. doi:10.1016/j.apenergy.2020.114896.
  • Zadeh, L. A. 1965. Fuzzy sets, inf. Control 8 (3):338–53. doi:10.1016/S0019-9958(65)90241-X.
  • Zalhaf, A. S., B. Elboshy, K. M. Kotb, Y. Han, A. H. Almaliki, R. M. H. Aly, and M. R. Elkadeem. 2022. A high-resolution wind farms suitability mapping using GIS and fuzzy AHP approach: A national-level case study in sudan. Sustainability 14 (1):358. doi:10.3390/su14010358.
  • Zalhaf, A. S., D. E. A. Mansour, Y. Han, P. Yang, and M. M. F. Darwish. 2022. Numerical and experimental analysis of the transient behavior of wind turbines when two blades are simultaneously struck by lightning. IEEE Transactions on Instrumentation and Measurement 71 :1–12. doi:10.1109/TIM.2021.3132076. Art no. 9001612.
  • Zhang, C., H. Qihou, S. Wenjing, C. Xing, and C. Liu. 2023. Satellite spectroscopy reveals the atmospheric consequences of the 2022 Russia-Ukraine war. The Science of the Total Environment 869 :161759. doi:10.1016/j.scitotenv.2023.161759. ISSN 0048-9697.
  • Zhou, X.Y., L. Gang, X. Zhicheng, X. Yan, S.T. Khu, J. Yang, and J. Zhao. 2023. Influence of Russia-Ukraine war on the global energy and food security. Resources Conservation and Recycling 188 (106657). ISSN 0921-3449. doi:10.1016/j.resconrec.2022.106657.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.