351
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Techno-economic analysis of In-stream technology: A review

&
Pages 328-358 | Received 07 Nov 2022, Accepted 05 Mar 2023, Published online: 02 Apr 2023

References

  • Abdelaziz, K. R., M. A. A. Nawar, A. Ramadan, Y. A. Attai, and M. H. Mohamed. 2022. Performance improvement of a savonius turbine by using auXiliary blades. Energy 244:122575. doi:10.1016/j.energy.2021.122575.
  • Abraham, J. P., G. S. Mowry, B. P Plourde, E. M. Sparrow, and W. J. Minkowycz. 2011. Numerical simulation of fluid flow around a vertical-axis turbine. Journal of Renewable and Sustainable Energy 3 (3):033109. doi:10.1063/1.3588037.
  • Abutunis, A., and V. Gireesh Menta. 2022. Comprehensive parametric study of blockage effect on the performance of horizontal axis hydrokinetic turbines. Energies 15 (7):2585. doi:10.3390/en15072585.
  • Adeogun, A. G., H. Oladimeji Ganiyu, L. Laniran Ladokun, and B. Adeoye Ibitoye. 2019. Evaluation of hydrokinetic energy potentials of selected rivers in Kwara State, Nigeria. Environmental Engineering Research 25 (3):267–73. doi:10.4491/eer.2018.028.
  • Afungchui, D., B. Kamoun, A. Helali, and A. Ben Djemaa. 2010. The unsteady pressure field and the aerodynamic performances of a savonius rotor based on the discrete vortex method. Renewable Energy, 35 (1):307–13. Elsevier Ltd. doi:10.1016/j.renene.2009.04.034.
  • Alban, K., N. António, P. A. Sordo-Ward, M. D. Bejarano, and L. Garrote. 2021. Ecological impacts of run-of-river hydropower plants—current status and future prospects on the brink of energy transition. Renewable and Sustainable Energy Reviews 142:142. doi:10.1016/j.rser.2021.110833.
  • Alban, K., N. António, P. A. Sordo-Ward, and L. Garrote. 2019a. Flow regime aspects in determining environmental flows and maximising energy production at run-of-river hydropower plants. Applied Energy 256 Elsevier:113980. doi:10.1016/j.apenergy.2019.113980.
  • Alban, K., N. António, P. A. Sordo-Ward, and L. Garrote. 2019b. Influence of hydrologically based environmental flow methods on flow alteration and energy production in a run-of-river hydropower plant. Journal of Cleaner Production 232:1028–42. doi:10.1016/j.jclepro.2019.05.358.
  • Alban, K., N. António, P. A. Sordo-Ward, and L. Garrote. 2020. Water-energy-ecosystem nexus: Balancing competing interests at a run-of-river hydropower plant coupling a hydrologic–ecohydraulic approach. Energy Conversion and Management 223:223. doi:10.1016/j.enconman.2020.113267.
  • AL-Dabbagh, M. A., and M. Ishak Yuce. 2018. Simulation and comparison of helical and straight-bladed hydrokinetic turbines. International Journal of Renewable Energy Research 8 (v8i1):504–13. doi:10.20508/ijrer.v8i1.6697.g7345.
  • Alexander, A. J., and B. P. Holownia. 1978. Wind tunnel tests on a savonius rotor. Journal of Wind Engineering and Industrial Aerodynamics 3 (4):343–51. doi:10.1016/0167-6105(78)90037-5.
  • Ali, M. B., Z. Ahmad, S. Alshahrani, M. Rizwan Younis, I. Talib, and M. Imran. 2022. A case study: Layout optimization of three gorges wind farm Pakistan, using genetic algorithm. Sustainability (Switzerland) 14 (24):16960. doi:10.3390/su142416960.
  • Ali, F., C. Srisuwan, K. Techato, A. Bennui, T. Suepa, and D. Niammuad. 2020. Theoretical hydrokinetic power potential assessment of the U-Tapao river basin using GIS. Energies 13 (7). doi: 10.3390/en13071749.
  • Alizadeh, H., M. Hossein Jahangir, and R. Ghasempour. 2020, April. CFD-Based improvement of savonius type hydrokinetic turbine using optimized barrier at the low-speed flows. ( Elsevier Ltd) Ocean Engineering 202:107178. doi: 10.1016/j.oceaneng.2020.107178.
  • Anyi, M., and B. Kirke. 2010. Evaluation of small axial flow hydrokinetic turbines for remote communities. Energy for Sustainable Development, 14 (2):110–16. Elsevier Inc. doi:10.1016/j.esd.2010.02.003.
  • Ashwill, T. D. 1992. “Measured data for the sandia 34-meter vertical axis wind turbine.” www.prod.sandia.gov/cgi-bin/techlib/access-control.pl/1991/912228.
  • Awandu, W., R. Ruff, J. Uwe Wiesemann, and B. Lehmann. 2022. Status of micro-hydrokinetic river technology turbines application for rural electrification in Africa. Energies 15 (23):1–13. doi:10.3390/en15239004.
  • Bagre, N., A. D. Parekh, and V. K. Patel. 2023. A three-dimensional cfd investigation of nozzle effect on the vortex tube performance. In Recent Advances in Fluid Dynamics. Lecture Notes in Mechanical Engineering, J. Banerjee, R. D. Shah, R. K. Agarwal, and S. Mitra. ed., 105–17. SingaporeSingapore: Springer. doi:10.1007/978-981-19-3379-0_10.
  • Bahaj, A. S., and L. E. Myers. 2013. Shaping array design of marine current energy converters through scaled experimental analysis. Energy 59:83–94. Elsevier Ltd. doi:10.1016/j.energy.2013.07.023.
  • Barbarić, M., I. Batistić, and Z. Guzović. 2022. Numerical study of the flow field around hydrokinetic turbines with winglets on the blades. Renewable Energy 192:692–704. doi:10.1016/j.renene.2022.04.157.
  • Basumatary, M., A. Biswas, and R. Dev Misra. 2021, April. Experimental verification of improved performance of savonius turbine with a combined lift and drag based blade profile for ultra-low head river application. ( Elsevier Ltd) Sustainable Energy Technologies and Assessments 44:100999. doi: 10.1016/j.seta.2021.100999.
  • Bellis, M. 2023. “The history of the water wheel.” ThoughtCo. Accessed January 24. https://www.thoughtco.com/history-of-waterwheel-4077881.
  • Benjamin, S., B. Polagye, and S. L. Brunton. 2022. Near-Wake dynamics of a vertical-axis turbine. Journal of Fluid Mechanics 935:1–27. doi:10.1017/jfm.2021.1123.
  • Berga, L. 2016. The role of hydropower in climate change mitigation and adaptation: A Review. Engineering 2 (3):313–18. doi:10.1016/J.ENG.2016.03.004.
  • Bing, C., S. Shaoshuai, I. Maria Viola, and C. A. Greated. 2018, May. Numerical Investigation of vertical-axis tidal turbines with sinusoidal pitching blades. ( Elsevier Ltd) Ocean Engineering 155:75–87. doi: 10.1016/j.oceaneng.2018.02.038.
  • Borhanazad, H., S. Mekhilef, R. Saidur, and G. Boroumandjazi. 2013. Potential application of renewable energy for rural electrification in Malaysia. Renewable Energy 59:210–19. Elsevier Ltd. doi:10.1016/j.renene.2013.03.039.
  • Boudreau, M., and G. Dumas. 2017. Comparison of the wake recovery of the axial-flow and cross-flow turbine concepts. Journal of Wind Engineering and Industrial Aerodynamics 165:137–52. doi:10.1016/j.jweia.2017.03.010.
  • Bridgewater, P., L. Guangchun, and L. Cai. 2012. From Stockholm to Rio II: The Natural and Institutional Landscapes through Which Rivers Flow. River Conservation and Management 295–311. 10.1002/9781119961819.ch24.
  • Brownstein, I. D., M. Kinzel, and J. O. Dabiri. 2016. Performance enhancement of downstream vertical-axis wind turbines. Journal of Renewable and Sustainable Energy 8 (5):5. doi:10.1063/1.4964311.
  • Bull, D., C. Smith, D. Scott Jenne, P. Jacob, A. Copping, S. Willits, A. Fontaine, Brefort, D., Copeland, G., Gordon, M., and Jepsen, R. 2014. Reference Model 6 (RM6): Oscillating Wave Energy Converter SAND2014-18311. Albuquerque, NM, and Livermore, CA (United States), Sandia National Laboratories.
  • Cacciali, L., L. Battisti, S. Dell’anna, and G. Soraperra. 2021, August. Case study of a cross-flow hydrokinetic turbine in a narrow prismatic canal. ( Elsevier Ltd) Ocean Engineering 234:109281. doi:10.1016/j.oceaneng.2021.109281.
  • Centre, C. H., CanmetENERGY , (Canada) National Research Council of Canada, and Canada. Natural Resources Canada. 2010. Assessment of Canada’s Hydrokinetic Power Potential: Phase I Report – Methodology and Data Review. Natural Resources Canada. https://books.google.co.in/books?id=jBqSnQAACAAJ.
  • Chow, V. T. 1959 Open Channels and Their Properties Open-Channel Hydraulics (McGraw-Hill) 680
  • Consul, C. A., R. H. J. Willden, and S. C. McIntosh. 2013. Blockage Effects on the hydrodynamic performance of a marine cross-flow turbine. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371 (1985):20120299. doi:10.1098/rsta.2012.0299.
  • da Costa Oliveira, H., M. D. L. C. B. Carlos, D. Alves Castelo Branco, R. Soria, and P. Cesar Colonna Rosman. 2021. Evaluation of the hydraulic potential with hydrokinetic turbines for isolated systems in locations of the Amazon Region. Sustainable Energy Technologies and Assessments 45 Elsevier Ltd:101079. doi:10.1016/j.seta.2021.101079.
  • Damak, A., Z. Driss, and M. S. Abid. 2013. Experimental Investigation of Helical Savonius Rotor with a Twist of 180°. Renewable Energy 52:136–42. Elsevier Ltd. doi:10.1016/j.renene.2012.10.043.
  • Doan, M. N., and S. Obi. 2021. Numerical study of the dynamic stall effect on a pair of cross-flow hydrokinetic turbines and associated torque enhancement due to flow blockage. Journal of Marine Science and Engineering 9 (8):829. doi:10.3390/jmse9080829.
  • Duerr, A. E. S., and M. R. Dhanak. 2010. “Hydrokinetic power resource assessment of the Florida Current.” MTS/IEEE Seattle, OCEANS 2010. IEEE. doi:10.1109/OCEANS.2010.5664377.
  • Duvoy, P., and H. Toniolo. 2012. HYDROKAL: A module for in-stream hydrokinetic resource assessment. Computers & Geosciences 39:171–81. Elsevier. doi:10.1016/j.cageo.2011.06.016.
  • El-Askary, W. A., A. S. Saad, A. M. AbdelSalam, and I. M. Sakr. 2018. Investigating the Performance of a Twisted Modified Savonius Rotor. Journal of Wind Engineering and Industrial Aerodynamics 182 Elsevier Ltd:344–55. doi:10.1016/j.jweia.2018.10.009.
  • Elbatran, A. H., M. A. Yasser, and S. S. Ahmed. 2017. Performance study of ducted nozzle savonius water turbine, comparison with conventional savonius turbine. Energy 134 Elsevier Ltd:566–84. doi:10.1016/j.energy.2017.06.041.
  • Fingersh, L., M. Hand, and A. Laxson. 2006. Wind turbine design cost and scaling model. In Nrel, Vol. 29. Golden, CO. doi:10.2172/897434
  • Fujisawa, N. 1992. On the torque mechanism of savonius rotors. Journal of Wind Engineering and Industrial Aerodynamics 40 (3):277–92. doi:10.1016/0167-6105(92)90380-S.
  • Gaurav, S., A. Kumar, and R. P. Saini. 2020. “Assessment of hydrokinetic energy - a case study of Eastern Yamuna Canal.” Materials Today: Proceedings 46. Elsevier Ltd: 5223–27. doi:10.1016/j.matpr.2020.08.595.
  • Gauvin-Tremblay, O., and G. Dumas. 2022. Hydrokinetic turbine array analysis and optimization integrating blockage effects and turbine-wake interactions. Renewable Energy 181:851–69. Elsevier Ltd. doi:10.1016/j.renene.2021.09.003.
  • Ghatage, S. V., and J. B. Joshi. 2012. Optimisation of vertical axis wind turbine: cfd simulations and experimental measurements. The Canadian Journal of Chemical Engineering 90 (5):1186–201. doi:10.1002/cjce.20617.
  • Golecha, K., T. I. Eldho, and S. V. Prabhu. 2011. Influence of the deflector plate on the performance of modified savonius water turbine. Applied Energy, 88 (9):3207–17. Elsevier Ltd. doi:10.1016/j.apenergy.2011.03.025.
  • Golecha, K., T. I. Eldho, and S. V. Prabhu. 2012. Study on the Interaction between two hydrokinetic savonius turbines. International Journal of Rotating Machinery 2012. doi:10.1155/2012/581658.
  • Graniel, J. F. B., J. V. H. Fontes, H. F. Gomez Garcia, and R. Silva. 2021. Assessing hydrokinetic energy in the mexican caribbean: a case study in the cozumel channel. Energies 14 (15):4411–33. doi:10.3390/en14154411.
  • Guney, M. S. 2011. Evaluation and measures to increase performance coefficient of hydrokinetic turbines. Renewable and Sustainable Energy Reviews 15 (8):3669–75. Elsevier Ltd. doi:10.1016/j.rser.2011.07.009.
  • Guo, F., B. Song, Z. Mao, and W. Tian. 2020. Experimental and numerical validation of the influence on savonius turbine caused by rear deflector. Energy 196:196. doi:10.1016/j.energy.2020.117132.
  • Gupta, R., A. Biswas, and K. K. Sharma. 2008. Comparative study of a three-bucket Savonius rotor with a combined three-bucket Savonius–three-bladed Darrieus rotor. Renewable Energy 33 (9):1974–81. doi:10.1016/j.renene.2007.12.008.
  • Hashem, I., and B. Zhu. 2021. Metamodeling-based parametric optimization of a bio-inspired savonius-type hydrokinetic turbine. renewable Energy 180:560–76. Elsevier Ltd. doi:10.1016/j.renene.2021.08.087.
  • Hunt, A., C. Stringer, and B. Polagye. 2020. Effect of aspect ratio on cross-flow turbine performance. Journal of Renewable and Sustainable Energy 12 (5):1–20. doi:10.1063/5.0016753.
  • Hwang, I. S., Y. Han Lee, and S. Jo Kim. 2009. Optimization of cycloidal water turbine and the performance improvement by individual blade control. Applied Energy 86 (9):1532–40. Elsevier Ltd. doi:10.1016/j.apenergy.2008.11.009.
  • Ibrahim, W. I., M. R. Mohamed, R. M. T. R. Ismail, P. K. Leung, W. W. Xing, and A. A. Shah. 2021. “Hydrokinetic energy harnessing technologies: a review.” Energy Reports 7. Elsevier Ltd: 2021–42. doi:10.1016/j.egyr.2021.04.003.
  • Isabel, S., B. Strom, S. L. Brunton, and B. L. Polagye. 2020. Geometric and Control Optimization of a Two Cross-Flow Turbine Array. In Journal of Renewable and Sustainable Energy, Vol. 12, 6. AIP Publishing LLC. doi:10.1063/5.0022428.
  • Jacob, R., C. Daskiran, W. C. S. Joseph Jonas, A. Oztekin, and A. Oztekin. 2016. Hydrokinetic turbine array characteristics for river applications and spatially restricted flows. Renewable Energy 97:274–83. Elsevier Ltd. doi:10.1016/j.renene.2016.05.081.
  • Jacobson, P. 2012. “Assessment and mapping of the riverine hydrokinetic resource in the continental United States.” http://www.osti.gov/servlets/purl/1219876/.
  • Jakimavičius, D., B. Gailiušis, D. Šarauskienė, A. Jurgelėnaitė, and D. Meilutytė-Lukauskienė. 2014. assessment of the riverine hydrokinetic energy resources in Lithuania. Baltica 27 (2):141–50. doi:10.5200/baltica.2014.27.23.
  • Jenne, D. S., Y. H. Yu, and V. Neary. 2015. “Levelized cost of energy analysis of marine and hydrokinetic reference models.” In 3rd Marine Energy Technology Symposium. Washington, D.C. https://www.osti.gov/servlets/purl/1215196.
  • Jeon, K. S., J. Ik Jeong, J. Kyung Pan, and K. Wahn Ryu. 2015. Effects of end plates with various shapes and sizes on helical savonius wind turbines. Renewable Energy 79 (1):167–76. Elsevier Ltd. doi:10.1016/j.renene.2014.11.035.
  • Kamal, M. M., and R. P. Saini. 2022a. A numerical investigation on the influence of savonius blade helicity on the performance characteristics of hybrid cross-flow hydrokinetic turbine. Renewable Energy 190 Elsevier Ltd:788–804. doi:10.1016/j.renene.2022.03.155.
  • Kamal, M. M., and R. P. Saini. 2022b, June. A review on modifications and performance assessment techniques in cross-flow hydrokinetic system. ( Elsevier Ltd) Sustainable Energy Technologies and Assessments 51:101933. doi: 10.1016/j.seta.2021.101933.
  • Kamoji, M. A., S. B. Kedare, and S. V. Prabhu. 2009. Performance tests on helical savonius rotors. Renewable Energy, 34 (3):521–29. Elsevier Ltd. doi:10.1016/j.renene.2008.06.002.
  • Kan, K., M. Binama, H. Chen, Y. Zheng, D. Zhou, S. Wentao, and A. Muhirwa. 2022. Pump as turbine cavitation performance for both conventional and reverse operating modes: a review. Renewable and Sustainable Energy Reviews 168 Elsevier Ltd:112786. doi:10.1016/j.rser.2022.112786.
  • Kan, K., Q. Zhang, X. Zhe, Y. Zheng, Q. Gao, and L. Shen. 2022. Energy loss mechanism due to tip leakage flow of axial flow pump as turbine under various operating conditions. Energy 255 Elsevier Ltd:124532. doi:10.1016/j.energy.2022.124532.
  • Kasman, R. Hantoro, and Eptanto, I. L. 2019. Study potency of hydrokinetic energy in discharge balambano hydro electric power plant. InAip Conference Proceedings.
  • Kerikous, E., and D. Thévenin. 2019. Optimal shape and position of a thick deflector plate in front of a hydraulic savonius turbine. Energy 189. doi:10.1016/j.energy.2019.116157.
  • Khaliq, M. N., and J. Cousineau. 2020. “Assessment of Canada ’ s hydrokinetic resources: a review of hydrologic considerations.” https://publications.gc.ca/site/archivee-archived.html?url=https://publications.gc.ca/collections/collection_2021/cnrc-nrc/NR16-325-2020-eng.pdf.
  • Khan, M. J., G. Bhuyan, M. T. Iqbal, and J. E. Quaicoe. 2009. Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review. Applied Energy, 86 (10):1823–35. Elsevier Ltd. doi:10.1016/j.apenergy.2009.02.017.
  • Kilcher, L., M. Fogarty, and M. Lawson. 2013. “Marine energy in the United States: an overview of opportunities.” www.nrel.gov/publications.
  • Kinsey, T., and G. Dumas. 2017. Impact of channel blockage on the performance of axial and cross-flow hydrokinetic turbines. Renewable Energy 103:239–54. Elsevier Ltd. doi:10.1016/j.renene.2016.11.021.
  • Kirby, K., S. Ferguson, C. Rennie, I. Nistor, and J. Cousineau. 2022. Assessments of available riverine hydrokinetic energy: a review. Canadian Journal of Civil Engineering 49 (6):839–54. doi:10.1139/cjce-2021-0178.
  • Kirke, B. K. 2011. Tests on ducted and bare helical and straight blade darrieus hydrokinetic turbines. Renewable Energy, 36 (11):3013–22. Elsevier Ltd. doi:10.1016/j.renene.2011.03.036.
  • Kirke, B. 2016. Tests on two small variable pitch cross flow hydrokinetic turbines. Energy for Sustainable Development 31:185–93. doi:10.1016/j.esd.2016.02.001.
  • Kirke, B. 2020. Hydrokinetic turbines for moderate sized rivers. Energy for Sustainable Development 58:182–95. doi:10.1016/j.esd.2020.08.003.
  • Koko, S. P., K. Kusakana, and H. J. Vermaak. 2014. Techno-economic analysis of an off-grid micro- hydrokinetic river system as a remote rural electrification option.
  • Kolekar, N., and A. Banerjee. 2015. Performance characterization and placement of a marine hydrokinetic turbine in a tidal channel under boundary proximity and blockage effects. Applied Energy 148:121–33. Elsevier Ltd. doi:10.1016/j.apenergy.2015.03.052.
  • Kumar, A., and R. P. Saini. 2017. Techno-economic analysis of hydrokinetic turbines. Preprints. doi:10.20944/preprints201704.0072.v1.
  • Kumar, D., and S. Sarkar. 2016a. Numerical investigation of hydraulic load and stress induced in savonius hydrokinetic turbine with the effects of augmentation techniques through fluid-structure interaction analysis. Energy 116:609–18. Elsevier Ltd. doi:10.1016/j.energy.2016.10.012.
  • Kumar, D., and S. Sarkar. 2016b. A review on the technology, performance, design optimization, reliability, techno-economics and environmental impacts of hydrokinetic energy conversion systems. Renewable and Sustainable Energy Reviews 58:796–813. Elsevier. doi:10.1016/j.rser.2015.12.247.
  • Kumar, R., and S. Sarkar. 2022. Effect of design parameters on the performance of helical darrieus hydrokinetic turbines. Renewable and Sustainable Energy Reviews 162:112431. Elsevier Ltd. doi:10.1016/j.rser.2022.112431.
  • Kumar, A., T. Schei, A. Ahenkorah, R. Caceres Rodriguez, J.M. Devernay, M. Freitas, and D. Hall. 2011. Hydropower. In Renewable Energy Sources and Climate Change Mitigation, ed. U. Aswathanarayana, T. Harikrishnan, and T. S. Kadher-Mohien, et al., 437–96. Cambridge University Press. doi:10.1017/CBO9781139151153.009.
  • Kuriqi, A., and J. Jurasz. 2022. Small hydropower plants proliferation and fluvial ecosystem conservation Nexus. In Complementarity of Variable Renewable Energy Sources, 503–27. Elsevier. doi:10.1016/B978-0-323-85527-3.00027-3.
  • Kyozuka, Y. 2008. An experimental study on the darrieus-savonius turbine for the tidal current power generation. Journal of Fluid Science and Technology 3 (3):439–49. doi:10.1299/jfst.3.439.
  • Ladokun, L. L., B. F. Sule, K. R. Ajao, and A. G. Adeogun. 2018. Resource assessment and feasibility study for the generation of hydrokinetic power in the tailwaters of selected hydropower stations in Nigeria. Water Science 32 (2):338–54. doi:10.1016/j.wsj.2018.05.003.
  • Laws, N. D., and B. P. Epps. 2016. Hydrokinetic energy conversion: technology, research, and outlook. Renewable and Sustainable Energy Reviews 57 Elsevier:1245–59. doi:10.1016/j.rser.2015.12.189.
  • Lee, J. H., Y. Tae Lee, and H. Chang Lim. 2016. Effect of twist angle on the performance of savonius wind turbine. Renewable Energy 89 Elsevier Ltd:231–44. doi:10.1016/j.renene.2015.12.012.
  • Liu, D., H. Liu, X. Wang, and E. Kremere. 2019. “World small hydropower development report 2019.” United Nations Industrial Development Organization; International Center on Small Hydro Power. www.smallhydroworld.org.
  • Liu, K., M. Yu, and W. Zhu. 2021. Performance analysis of vertical axis water turbines under single-phase water and two-phase open channel flow conditions. Ocean Engineering 238 Elsevier Ltd:109769. doi:10.1016/j.oceaneng.2021.109769.
  • Mahmoud, N. H., A. A. El-Haroun, E. Wahba, and M. H. Nasef. 2012. An experimental study on improvement of savonius rotor performance. In: Alexandria Engineering JournalVol. 51. 1. Faculty of Engineering. Alexandria University: 19–25. doi:10.1016/j.aej.2012.07.003.
  • Maldar, N. R., N. Cheng Yee, M. Shihab Patel, and E. Oguz. 2022. Potential and prospects of hydrokinetic energy in Malaysia: A review. Sustainable Energy Technologies and Assessments 52 Elsevier Ltd:102265. doi:10.1016/j.seta.2022.102265.
  • Malka, L., A. Daci, A. Kuriqi, P. Bartocci, and E. Rrapaj. 2022. Energy storage benefits assessment using multiple-choice criteria: the case of drini River Cascade, Albania. Energies 15 (11). doi: 10.3390/en15114032.
  • Man, Y., I. Nistor, and C. D. Rennie. 2021. “Implementing effective performance turbine model into TELEMAC-3D.” In 2020 TELEMAC-MASCARET (2021) User Conference, 11–18. https://hdl.handle.net/20.500.11970/108304.
  • Mohamed, M. H. 2012. Performance investigation of h-rotor darrieus turbine with new airfoil shapes. Energy, 47 (1):522–30. Elsevier Ltd. doi:10.1016/j.energy.2012.08.044.
  • Mosbahi, M., A. Ayadi, Y. Chouaibi, Z. Driss, and T. Tucciarelli. 2019. Performance study of a helical savonius hydrokinetic turbine with a new deflector system design. Energy Conversion and Management 194:55–74. Elsevier. doi:10.1016/j.enconman.2019.04.080.
  • Mosbahi, M., S. Elgasri, M. Lajnef, B. Mosbahi, and Z. Driss. 2020. Performance enhancement of a twisted savonius hydrokinetic turbine with an upstream deflector. International Journal of Green Energy 18 (1):51–65. doi:10.1080/15435075.2020.1825444.
  • Mosbahi, M., M. Lajnef, M. Derbel, B. Mosbahi, Z. Driss, C. Aricò, and T. Tucciarelli. 2021. Performance improvement of a savonius water rotor with novel blade shapes. Ocean Engineering 237:109611. doi:10.1016/j.oceaneng.2021.109611.
  • Nago, V. G., I. F. S. dos Santos, M. Jourdain Gbedjinou, J. Herlich Roslee Mensah, G. Lucio Tiago Filho, R. Gustavo Ramirez Camacho, and R. Mambeli Barros. 2022. A literature review on wake dissipation length of hydrokinetic turbines as a guide for turbine array configuration. Ocean Engineering 259 Elsevier Ltd:111863. doi:10.1016/j.oceaneng.2022.111863.
  • Nag, A. K., and S. Sarkar. 2021a. Performance analysis of helical savonius hydrokinetic turbines arranged in array. Ocean Engineering 241 Elsevier Ltd:110020. doi:10.1016/j.oceaneng.2021.110020.
  • Nag, A. K., and S. Sarkar. 2021b. Techno-economic analysis of a micro-hydropower plant consists of hydrokinetic turbines arranged in different array formations for rural power supply. Renewable Energy 179 Elsevier Ltd:475–87. doi:10.1016/j.renene.2021.07.067.
  • Neary, V. S., and B. Gunawan. 2011. “Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual. GOV Technical Report. United States.”. doi:10.2172/1034380.
  • Neary, V. S., M. Previsic, R. A. Jepsen, M. J. Lawson, Y. Yi-Hsiang, A. E. Copping, A. A. Fontaine, K. C. Hallett, and D. K. Murray. 2014. Methodology for design and economic analysis of Marine Energy Conversion (MEC) technologies. SAND2014-9040, Sandia National Laboratories, Albuquerque, New Mexico.
  • Nhabetse, T., N. Mungoi, B. Cuamba, and S. Kucel. 2017. “Assessment of hydrokinetic potential in the Umbeluzi Basin, Mozambique.” In Proceedings of SWC2017/SHC2017, 1–12. Freiburg, Germany: International Solar Energy Society. doi:10.18086/swc.2017.23.04.
  • Niebuhr, C. M., S. Schmidt, M. van Dijk, L. Smith, and V. S. Neary. 2022. A review of commercial numerical modelling approaches for axial hydrokinetic turbine wake analysis in channel flow. Renewable and Sustainable Energy Reviews 158:112151. Elsevier Ltd. doi:10.1016/j.rser.2022.112151.
  • Niebuhr, C., M. van Dijk, and J. Bhagwan. 2018. Technical and practical valuation of hydrokinetic turbine integration into existing canal infrastructure in South Africa: A Case Study. Proceedings 2 (11):595. doi:10.3390/proceedings2110595.
  • Niebuhr, C. M., M. van Dijk, V. S. Neary, and J. N. Bhagwan. 2019. A review of hydrokinetic turbines and enhancement techniques for canal installations: technology, applicability and potential. Renewable and Sustainable Energy Reviews 113:1–32. doi:10.1016/j.rser.2019.06.047.
  • Ning, L., Y. Liu, L. Li, H. Meng, Y. Xin, S. Han, and J. Yan. 2022. A novel entrainment wind farm flow model for power prediction. International Journal of Green Energy 20 (3):309–24. doi:10.1080/15435075.2022.2039669.
  • Nunes, M. M., A. C. P. Brasil Junior, and T. F. Oliveira. 2020, November. Systematic review of diffuser-augmented horizontal-axis turbines. ( Elsevier Ltd) Renewable and Sustainable Energy Reviews 133:110075. doi: 10.1016/j.rser.2020.110075.
  • Parker, C. M., D. B. Araya, and M. C. Leftwich. 2017. Effect of Chord-to-diameter ratio on vertical-axis wind turbine wake development. Experiments in Fluids 58 (12):168. doi:10.1007/s00348-017-2451-6.
  • Patel, V., T. I. Eldho, and S. V. Prabhu. 2017. Experimental investigations on darrieus straight blade turbine for tidal current application and parametric optimization for hydro farm arrangement. International Journal of Marine Energy 17:110–35. Elsevier Ltd. doi:10.1016/j.ijome.2017.01.007.
  • Patel, V., T. I. Eldho, and S. V. Prabhu. 2019a. Performance Enhancement of a darrieus hydrokinetic turbine with the blocking of a specific flow region for optimum use of hydropower. Renewable Energy 135:1144–56. Elsevier Ltd. doi:10.1016/j.renene.2018.12.074.
  • Patel, V., T. I. Eldho, and S. V. Prabhu. 2019b. Velocity and Performance correction methodology for hydrokinetic turbines experimented with different geometry of the channel. Renewable Energy 131:1300–17. Elsevier Ltd. doi:10.1016/j.renene.2018.08.027.
  • Patel, V., and R. Patel. 2021a. “Free energy-extraction using savonius hydrokinetic rotor with dual splitters.” Materials Today: Proceedings 45. Elsevier Ltd.: 5354–61. doi:10.1016/j.matpr.2021.01.928.
  • Patel, V., and R. Patel. 2021b. “Energy extraction using modified savonius rotor from free-flowing water.” Materials Today: Proceedings 45. Elsevier Ltd.: 5190–96. doi:10.1016/j.matpr.2021.01.703.
  • Patel, V., and C. Patel. 2022. “Performance investigation of twisted blade inline savonius turbine at variable load condition using numerical method.” Materials Today: Proceedings 49. Elsevier Ltd: 250–56. doi:10.1016/j.matpr.2021.01.868.
  • Patel, V. K., and R. S. Patel. 2022. Optimization of an angle between the deflector plates and its orientation to enhance the energy efficiency of savonius hydrokinetic turbine for dual rotor configuration. In: International Journal of Green EnergyVol. 19. 5. Taylor &. Francis: 476–89. doi:10.1080/15435075.2021.1947821.
  • Patel, V., V. Rathod, and C. Patel. 2022. Experimental Investigations on an inline low head axial flow turbine with hydrofoil shaped vanes. In Energy Sources, Part A: Recovery, Utilization, and Environmental Effects Vol. 44 (4): 10214–29. Taylor & Francis. doi:10.1080/15567036.2022.2143963
  • Payambarpour, S., A. Abdolkarim, and F. Najafi. 2020. Investigation of deflector geometry and turbine aspect ratio effect on 3D modified in-pipe hydro savonius turbine: parametric study. Renewable Energy 148:44–59. doi:10.1016/j.renene.2019.12.002.
  • Pongduang, S., C. Kayankannavee, and Y. Tiaple. 2015. Experimental investigation of helical tidal turbine characteristics with different twists. Energy Procedia 79:409–14. doi:10.1016/j.egypro.2015.11.511.
  • Punys, P., I. Adamonyte, A. Kvaraciejus, E. Martinaitis, G. Vyciene, and E. Kasiulis. 2015. Riverine hydrokinetic resource assessment. a case study of a lowland river in lithuania. Renewable and Sustainable Energy Reviews 50:643–52. Elsevier. doi:10.1016/j.rser.2015.04.155.
  • Qing’an, L., T. Maeda, Y. Kamada, K. Shimizu, T. Ogasawara, A. Nakai, and T. Kasuya. 2017. Effect of rotor aspect ratio and solidity on a straight-bladed vertical axis wind turbine in three-dimensional analysis by the panel method. Energy 121:121–91–9. Elsevier Ltd. doi:10.1016/j.energy.2016.12.112.
  • Ramadan, A., M. Hemida, W. A. Abdel-Fadeel, W. A. Aissa, and M. H. Mohamed. 2021, May. Comprehensive experimental and numerical assessment of a drag turbine for river hydrokinetic energy conversion. ( Elsevier Ltd) Ocean Engineering 227:108587. doi:10.1016/j.oceaneng.2021.108587.
  • Ramadan, A., A. A. N. Mohamed, and M. H. Mohamed. 2020, January. Performance evaluation of a drag hydro kinetic turbine for rivers current energy extraction - a case study. ( Elsevier Ltd) Ocean Engineering 195:106699. doi: 10.1016/j.oceaneng.2019.106699.
  • Ramírez Rubén, D., M. F. I. Cuervo, and C. Antonio Monsalve Rico. 2016. Technical and financial valuation of hydrokinetic power in the discharge channels of large hydropower plants in colombia: a case study. Renewable Energy 99:136–47. doi:10.1016/j.renene.2016.06.047.
  • Ramirez, D., A. Rubio-Clemente, and E. Chica. 2019. Design and numerical analysis of an efficient h-darrieus vertical-axis hydrokinetic turbine. Journal of Mechanical Engineering and Sciences 13 (4):6036–58. doi:10.15282/jmes.13.4.2019.21.0477.
  • Reddy, K., A. Bheemalingeswara, and C. Bhosale. 2022. Performance parameters of lift-based vertical axis hydrokinetic turbines - a review. Ocean Engineering, 266 (4):113089. Elsevier Ltd. doi:10.1016/j.oceaneng.2022.113089.
  • Rengma, T. S. A., and P. M. V. B. Subbarao. 2022. Water flow velocity driven modified savonius hydrokinetic turbine. International Journal of Mechanical Engineering and Robotics Research 11 (5):296–303. doi:10.18178/ijmerr.11.5.296-303.
  • Ross, H., and B. Polagye. 2020. An experimental assessment of analytical blockage corrections for turbines. Renewable Energy 152:1328–41. Elsevier Ltd. doi:10.1016/j.renene.2020.01.135.
  • Roy, S., and U. K. Saha. 2013. Review of experimental investigations into the design, performance and optimization of the savonius rotor. Jornal of Power and Energy 227 (4):528–42. doi:10.1177/0957650913480992.
  • Saha, U. K., S. Thotla, and D. Maity. 2008. Optimum design configuration of savonius rotor through wind tunnel experiments. Journal of Wind Engineering and Industrial Aerodynamics 96 (8–9):1359–75. doi:10.1016/j.jweia.2008.03.005.
  • Sahim, K., K. Ihtisan, D. Santoso, and R. Sipahutar. 2014. Experimental study of darrieus-savonius water turbine with deflector: effect of deflector on the performance. International Journal of Rotating Machinery 2014. doi:10.1155/2014/203108.
  • Sahim, K., D. Santoso, and A. Radentan. 2013. Performance of combined water turbine with semielliptic section of the savonius rotor. International Journal of Rotating Machinery 2013:1–5. doi:10.1155/2013/985943.
  • Saini, R. P. 2022. In stream (hydrokinetic) power. In Comprehensive Renewable Energy. 2nd ed., 186–201. Elsevier Ltd. doi:10.1016/B978-0-12-819727-1.00060-1.
  • Saini, G., and R. P. Saini. 2018a. A numerical analysis to study the effect of radius ratio and attachment angle on hybrid hydrokinetic turbine performance. Energy for Sustainable Development 47:94–106. doi:10.1016/j.esd.2018.09.005.
  • Saini, G., and R. P. Saini. 2018b. Numerical investigations on hybrid hydrokinetic turbine for electrification in remote area. All India Seminar on Renewable Energy for Sustainable Development, Ghaziabad, India, October.
  • Saini, G., and R. P. Saini. 2019. A Review on technology, configurations, and performance of cross-flow hydrokinetic turbines. International Journal of Energy Research 43 (13):6639–79. doi:10.1002/er.4625.
  • Saini, G., and R. P. Saini. 2020a. A computational investigation to analyze the effects of different rotor parameters on hybrid hydrokinetic turbine performance. Ocean Engineering 199:107019. Elsevier Ltd. doi:10.1016/j.oceaneng.2020.107019.
  • Saini, G., and R. P. Saini. 2020b. “Study of installations of hydrokinetic turbines and their environmental effects.” In AIP Conference Proceedings. Vol. 2273. doi:10.1063/5.0024338.
  • Saini, G., and R. P. Saini. 2021. Performance study of cross flow hybrid hydrokinetic turbine. In Hydrological Extremes, 249–57. Springer International Publishing. doi:10.1007/978-3-030-59148-9_17.
  • Salameh, Z. 2014. Factors promoting renewable energy applications. In Renewable Energy System Design, 1–32. Elsevier. doi:10.1016/B978-0-12-374991-8.00001-5.
  • Salau, W., and I. Ifabiyi Paul. 2019. Hydro-geomorphic factors and the potential of hydrokinetic power production upstream of Ikere Gorge Dam, Nigeria. Geosfera Indonesia 4 (1):25–41. doi:10.19184/geosi.v4i1.9511.
  • Salleh, M. B., N. M. Kamaruddin, and Z. Mohamed-Kassim. 2020, December. The effects of deflector longitudinal position and height on the power performance of a conventional savonius turbine. ( Elsevier Ltd) Energy Conversion and Management 226:113584. doi: 10.1016/j.enconman.2020.113584.
  • Salleh, M. B., N. M. Kamaruddin, and Z. Mohamed Kassim. 2021. The Effects of a deflector on the self-starting speed and power performance of 2-bladed and 3-bladed savonius rotors for hydrokinetic application. Energy for Sustainable Development 61:168–80. doi:10.1016/j.esd.2021.02.005.
  • Salleh, M. B., N. M. Kamaruddin, and Z. Mohamed-Kassim. 2022. Experimental investigation on the effects of deflector angles on the power performance of a savonius turbine for hydrokinetic applications in small rivers. Energy 247 Elsevier Ltd:123432. doi:10.1016/j.energy.2022.123432.
  • Salleh, M. B., N. M. Kamaruddin, Z. Mohamed-Kassim, and E. Abu Bakar. 2021, May. Experimental investigation on the characterization of self-starting capability of a 3-bladed savonius hydrokinetic turbine using deflector plates. ( Elsevier Ltd) Ocean Engineering 228:108950. doi: 10.1016/j.oceaneng.2021.108950.
  • Santos, I. F. S. D., R. Gustavo Ramirez Camacho, G. Lúcio Tiago Filho, A. Carlos Barkett Botan, and B. Amoeiro Vinent. 2019. Energy potential and economic analysis of hydrokinetic turbines implementation in rivers: an approach using numerical predictions (CFD) and experimental data. Renewable Energy 143 Elsevier Ltd:648–62. doi:10.1016/j.renene.2019.05.018.
  • Sarma, N. K., A. Biswas, and R. D. Misra. 2014. Experimental and computational evaluation of savonius hydrokinetic turbine for low velocity condition with comparison to savonius wind turbine at the same input power. Energy Conversion and Management 83:88–98. Elsevier Ltd. doi:10.1016/j.enconman.2014.03.070.
  • Shashikumar, C. M., V. Hindasageri, and V. Madav. 2021. “CFD investigation of unsteady three-dimensional savonius hydrokinetic turbine in irrigation channel with varying positions for hydro power application.” AIP Conference Proceedings 2316. doi:10.1063/5.0036472.
  • Shashikumar, C. M., R. Honnasiddaiah, V. Hindasageri, and V. Madav. 2020. Studies on application of vertical axis hydro turbine for sustainable power generation in irrigation channels with different bed slopes. Renewable Energy 163 Elsevier Ltd:845–57. doi:10.1016/j.renene.2020.09.015.
  • Shashikumar, C. M., R. Honnasiddaiah, V. Hindasageri, and V. Madav. 2021. Experimental and numerical investigation of novel v-shaped rotor for hydropower utilization. Ocean Engineering 224 Elsevier Ltd:108689. doi:10.1016/j.oceaneng.2021.108689.
  • Shashikumar, C. M., and V. Madav. 2021. Numerical and experimental investigation of modified v-shaped turbine blades for hydrokinetic energy generation. Renewable Energy 177 Elsevier Ltd:1170–97. doi:10.1016/j.renene.2021.05.086.
  • Shashikumar, C. M., and V. Madav. 2022, August. Performance analysis of novel v-shaped turbine blade profile by three-dimensional numerical investigations with varying overlap ratios for hydropower application. ( Elsevier Ltd) Ocean Engineering 265:112498. doi:10.1016/j.oceaneng.2022.112498.
  • Shashikumar, C. M., H. Vijaykumar, and M. Vasudeva. 2021. Numerical investigation of conventional and tapered savonius hydrokinetic turbines for low-velocity hydropower application in an irrigation channel. Sustainable Energy Technologies and Assessments 43:100871. Elsevier Ltd. doi:10.1016/j.seta.2020.100871.
  • Silva, P. A. S. F., T. F. De Oliveira, A. C. P. Brasil Junior, and J. R. P. Vaz. 2016. Numerical study of wake characteristics in a horizontal-axis hydrokinetic turbine. Anais da Academia Brasileira de Ciências 88 (4):2441–56. doi:10.1590/0001-3765201620150652.
  • Singh, S. V., and P. Kumar. 2022. Study of flow characteristics of a savonius turbine inside nozzle diffuser duct. Journal of Engineering Research. doi:10.36909/jer.15977.
  • Smith, N. 1980. The origins of the water turbine. Scientific American 242 (1):138–49. https://www.jstor.org/stable/10.2307/24966239.
  • Sood, M., and S. K. Singal. 2018. Hydro kinetic potential assessment. IASH Journal-International Association for Small Hydro 7 (1):24–29. http://www.indianjournals.com/ijor.aspx?target=ijor:iash&volume=7&issue=1&article=004.
  • Sood, M., and S. K. Singal. 2019. Development of hydrokinetic energy technology: a review. International Journal of Energy Research 43 (11):5552–71. doi:10.1002/er.4529.
  • Sood, M., and S. K. Singal. 2020. A numerical study to analyze the lateral distance between hydrokinetic turbines in a Canal: A Case Study. Roorkee Water Conclave 2020, Indian Institute of Technology Roorkee, Roorkee India, February 26-28.
  • Sood, M., and S. K. Singal. 2021. A numerical analysis to determine wake recovery distance for the longitudinal arrangement of hydrokinetic turbine in the channel system. In Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–22. Taylor & Francis. doi:10.1080/15567036.2021.1979695.
  • Sood, M., and S. K. Singal. 2022. Development of statistical relationship for the potential assessment of hydrokinetic energy. Ocean Engineering 266 (P3):112140. Elsevier Ltd. doi:10.1016/j.oceaneng.2022.112140.
  • Stansby, P., and T. Stallard. 2016. Fast optimisation of tidal stream turbine positions for power generation in small arrays with low blockage based on superposition of self-similar far-wake velocity deficit profiles. Renewable Energy 92:366–75. Elsevier Ltd. doi:10.1016/j.renene.2016.02.019.
  • Suntoro, A., R. Hantoro, and L. Syabania Nuari. 2019. “Larona hydropower inlet canal flow analysis as potential hydrokinetic energy generation.” AIP Conference Proceedings 2088. doi:10.1063/1.5095309.
  • Sun, K., Y. Yang, J. Zhang, J. Zhang, S. Sajjad Haider Zaidi, and S. Sun. 2022, January. Influence of blade numbers on start-up performance of vertical axis tidal current turbines. ( Elsevier Ltd) Ocean Engineering 243:110314. doi: 10.1016/j.oceaneng.2021.110314.
  • Suwal, N., X. Huang, A. Kuriqi, Y. Chen, K. Prasad Pandey, and K. Prasad Bhattarai. 2020. Optimisation of Cascade reservoir operation considering environmental flows for different environmental management classes. Renewable Energy 158 Elsevier Ltd:453–64. doi:10.1016/j.renene.2020.05.161.
  • Talukdar, P. K., A. Sardar, V. Kulkarni, and U. K. Saha. 2018. Parametric analysis of model savonius hydrokinetic turbines through experimental and computational investigations. Energy Conversion and Management 158 Elsevier:36–49. doi:10.1016/j.enconman.2017.12.011.
  • Thiyagaraj, J., I. Rahamathullah, G. Anbuchezhiyan, R. Barathiraja, and A. Ponshanmugakumar. 2021. “Influence ofblade numbers, overlap ratio and modified blades on performance characteristics of the savonius hydro-kinetic turbine.” Materials Today: Proceedings 46. Elsevier Ltd: 4047–53. doi:10.1016/j.matpr.2021.02.568.
  • Thiyagaraj, J., I. Rahamathullah, R. Bharathiraja, G. Anbuchezhiyan, and A. Ponshanmugakumar. 2021. “Influence of various augmentation devices on the performance characteristics of modified four bladed fixed flip type savonius hydrokinetic turbine.” Materials Today: Proceedings 46. Elsevier Ltd.: 3665–69. doi:10.1016/j.matpr.2021.01.822.
  • Tian, W., H. Tie, K. Shitang, J. Wan, X. Zhao, Y. Zhao, L. Zhang, and S. Wang. 2022. Numerical investigation of the influence of the wake of wind turbines with different scales based on OpenFOAM. Applied Sciences (Switzerland) 12 (19):9624. doi:10.3390/app12199624.
  • Vimal, P., T. I. E. Ganapathi Bhat, S. V. Prabhu, and S. V. Prabhu. 2017. Influence of overlap ratio and aspect ratio on the performance of savonius hydrokinetic turbine. International Journal of Energy Research 41 (6):829–44. doi:10.1002/er.3670.
  • Wade, B., R. Pereira, and C. Wade. 2019. “Investigation of offshore wind farm layouts regarding wake effects and cable topology.” Journal of Physics: Conference Series 1222 (1). doi:10.1088/1742-6596/1222/1/012007.
  • Wenlong, T., S. Baowei, and M. Zhaoyong. 2013. Conceptual design and numerical simulations of a vertical axis water turbine used for underwater mooring Platforms. International Journal of Naval Architecture and Ocean Engineering 5 (4):625–34. doi:10.2478/IJNAOE-2013-0158.
  • Wilson, R. E., and P. B. S. Lissaman. 1974. Introduction. Applied aerodynamics of wind power machines, 109. Oregon State University.
  • Yagmur, S., and F. Kose. 2021. Numerical Evolution of unsteady wake characteristics of h-type darrieus hydrokinetic turbine for a hydro farm arrangement. Applied Ocean Research 110:110–102582. Elsevier Ltd. doi:10.1016/j.apor.2021.102582.
  • Yanfang, L., L. Sun, M. M. Bernitsas, and H. Sun. 2021. A comprehensive review of nonlinear oscillators in hydrokinetic energy harnessing using flow-induced vibrations. Renewable and Sustainable Energy Reviews 150 Elsevier Ltd:111388. doi:10.1016/j.rser.2021.111388.
  • Yang, B., and C. Lawn. 2011. Fluid dynamic performance of a vertical axis turbine for tidal currents. Renewable Energy, 36 (12):3355–66. Elsevier Ltd. doi:10.1016/j.renene.2011.05.014.
  • Yosry, G., A.F.J. Ahmed, E. Álvarez-Álvarez, and E. Blanco Marigorta. 2021. Design and characterization of a vertical-axis micro tidal turbine for low velocity scenarios. Energy Conversion and Management 237 (June):114144. doi:10.1016/j.enconman.2021.114144.
  • Yosry, A. G., E. Álvarez Álvarez, R. Espina Valdés, A. Pandal, and E. Blanco Marigorta. 2023, February. Experimental and multiphase modeling of small vertical-axis hydrokinetic turbine with free-surface variations. ( Elsevier Ltd) Renewable Energy 203:788–801. doi: 10.1016/j.renene.2022.12.114.
  • Yuce, M. I., and A. Muratoglu. 2015. Hydrokinetic energy conversion systems: a technology status review. Renewable and Sustainable Energy Reviews, 43 (March):72–82. Elsevier. doi:10.1016/j.rser.2014.10.037.
  • Yu, Y. H., D. Scott Jenne, R. Thresher, S. G. Andrea Copping, and L. A. Hanna. 2015. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter NREL Report. Golden: CO (United States). doi:10.2172/1169778.
  • Zhao, H., C. Kang, K. Ding, Y. Zhang, and L. Bing. 2020, August. Transient startup characteristics of a drag-type hydrokinetic turbine rotor. ( Elsevier Ltd) Energy Conversion and Management 223:113287. doi: 10.1016/j.enconman.2020.113287.
  • Zhao, G, R. Sheng Yang, Y. Liu, and P. Fei Zhao. 2013. Hydrodynamic Performance of a Vertical-Axis Tidal-Current Turbine with Different Preset Angles of Attack. Journal of HydrodynamicsPublishing House for Journal of HydrodynamicsJournal of HydrodynamicsPublishing House for Journal of Hydrodynamics, 25(2): 280–87. doi: 10.1016/S1001-6058(13)60364-9
  • Zhou, D., H. Chen, Y. Zheng, K. Kan, A. Yu, and M. Binama. 2019. Development and numerical performance analysis of a pump directly driven by a hydrokinetic turbine. Energies 12 (22). doi: 10.3390/en12224264.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.