112
Views
0
CrossRef citations to date
0
Altmetric
Research Article

ASSESSMENT of CI ENGINE VIBRATION at VARIOUS INJECTION TIMING and injection pressure with CEIBA PENTANDRA BIODIESEL

, &
Pages 719-731 | Received 03 Mar 2023, Accepted 29 Apr 2023, Published online: 15 May 2023

References

  • Agarwal, A. K., S. Park, A. Dhar, C. S. Lee, S. Park, T. Gupta, and N. K. Gupta. 2018. Review of Experimental and Computational Studies on Spray, Combustion, Performance, and Emission Characteristics of Biodiesel Fueled Engines. Journal of Energy Resources Technology 140(12). Dec. doi:10.1115/1.4040584.
  • Ağbulut, Ü., M. Karagöz, S. Sarıdemir, and A. Öztürk. 2020. Impact of various metal-oxide based nanoparticles and biodiesel blends on the combustion, performance, emission, vibration and noise characteristics of a CI engine. Fuel 270:117521. Jun. doi: 10.1016/j.fuel.2020.117521.
  • Al, A., M. A. Fayad, A. M. Al Jubori, A. A. Jaber, L. A. Alsadawi, H. A. Dhahad, M. T. Chaichan, and T. Yusaf. 2022. Influence of fuel injection pressure and RME on combustion, NOx emissions and soot nanoparticles characteristics in common-rail HSDI diesel engine. International Journal of Thermofluids 15 (x):100173. doi:10.1016/j.ijft.2022.100173.
  • Ashok, A., S. K. Gugulothu, R. Venkat, and B. BurraInfluence of 1-pentanol as the renewable fuel blended with jatropha oil on the reactivity controlled compression ignition engine characteristics and trade-off study with variable fuel injection pressureSustain Energy Technology Assessments52PC102215202210.1016/j.seta.2022.102215
  • Ashok, B., A. K. Jeevanantham, R. Vignesh, K. R. Bhat Hire, K. Prabhu, R. A. Raaj Kumar, N. Shivshankar, and P. Edwin Sudhagar. 2021. Calibration of engine parameters and fuel blend for vibration and noise characteristics in CRDI engine fuelled with low viscous biofuel. Fuel 288:119659. Mar. doi: 10.1016/j.fuel.2020.119659.
  • Asokan, M. A., S. Senthur Prabu, S. Kamesh, and W. Khan. 2018. Performance, combustion and emission characteristics of diesel engine fuelled with papaya and watermelon seed oil bio-diesel/diesel blends. Energy 145:238–45. Feb. doi: 10.1016/j.energy.2017.12.140.
  • Atmanli, A., and N. Yilmaz. 2021. Comparative assessment of different diesel engines fueled with 1‐pentanol and diesel blends. Environmental Progress & Sustainable Energy 40(5). Sep. doi:10.1002/ep.13663.
  • Ayodhya, A. S., V. T. Lamani, M. Thirumoorthy, and G. N. Kumar. Apr 2019. Nox reduction studies on a diesel engine operating on waste plastic oil blend using selective catalytic reduction technique. Journal of the Energy Institute 92(2):341–50. doi: 10.1016/j.joei.2018.01.002.
  • Bodisco, T., and R. J. Brown. 2013. Inter-cycle variability of in-cylinder pressure parameters in an ethanol fumigated common rail diesel engine. Energy 52 (Apr):55–65. doi:10.1016/j.energy.2012.12.032.
  • Boopathi, R., and E. Gopinath. 2021. Performance analysis of plastic oil blend by changing the fuel injection timing in diesel engine. Materials Today: Proceedings 46:4613–18. doi:10.1016/j.matpr.2020.09.720.
  • Böyükdipi, Ö., G. Tüccar, and H. S. Soyhan. Nov 2021. Experimental investigation and artificial neural networks (ANNs) based prediction of engine vibration of a diesel engine fueled with sunflower biodiesel – NH3 mixtures. Fuel 304(May):121462. doi: 10.1016/j.fuel.2021.121462.
  • Çakmak, A., and H. Özcan. 2022. Analysis of combustion and emissions characteristics of a DI diesel engine fuelled with diesel/biodiesel/glycerol tert-butyl ethers mixture by altering compression ratio and injection timing. Fuel 315:123200. May. doi: 10.1016/j.fuel.2022.123200.
  • Çalık, A. 2018. Determination of vibration characteristics of a compression ignition engine operated by hydrogen enriched diesel and biodiesel fuels. Fuel 230:355–58. Oct. doi: 10.1016/j.fuel.2018.05.053.
  • Çelebi, K., E. Uludamar, and M. Özcanlı. Sep 2017. Evaluation of fuel consumption and vibration characteristic of a compression ignition engine fuelled with high viscosity biodiesel and hydrogen addition. International Journal of Hydrogen Energy 42(36):23379–88. doi: 10.1016/j.ijhydene.2017.02.066.
  • Chen, Z., B. Lin, Y. Huang, Y. Liu, Y. Wu, R. Qu, and C. Tang. 2023. Pyrolysis temperature affects the physiochemical characteristics of lanthanum-modified biochar derived from orange peels: Insights into the mechanisms of tetracycline adsorption by spectroscopic analysis and theoretical calculations. The Science of the Total Environment 862:160860. Mar. doi: 10.1016/j.scitotenv.2022.160860.
  • Das, A. K., D. Hansdah, A. K. Mohapatra, and A. K. Panda. Aug 2020. Energy, exergy and emission analysis on a DI single cylinder diesel engine using pyrolytic waste plastic oil diesel blend. Journal of the Energy Institute 93(4):1624–33. doi: 10.1016/j.joei.2020.01.024.
  • Gholami, A., S. A. Jazayeri, and Q. Esmaili. 2022. A detail performance and CO2 emission analysis of a very large crude carrier propulsion system with the main engine running on dual fuel mode using hydrogen/diesel versus natural gas/diesel and conventional diesel engines. Process Safety & Environmental Protection 163:621–35. Jul. doi: 10.1016/j.psep.2022.05.069.
  • Gopalakrishnan, S., and R. Karthick. 2020. Impact of fuel injection pressure in diesel fuelled engine using biodiesel, flammable and non-flammable gas in mixed fuel mode. Materials Today: Proceedings 21:811–16. doi:10.1016/j.matpr.2019.07.250.
  • Halewadimath, S. S., N. R. Banapurmath, S. S. Jalihal, B. R. Akarsh, S. B. Rampur, V. V. Yaliwal, and V. S. Savadatti. 2022. Impact of injection timing (IT) on dual fuel engine fuelled with waste cooking oil methyl ester and producer gas. Materials Today: Proceedings 52:452–56. doi:10.1016/j.matpr.2021.09.108.
  • Hossain, F. M., M. N. Nabi, T. J. Rainey, T. Bodisco, M. M. Rahman, K. Suara, S. M. A. Rahman, T. C. Van, Z. Ristovski, and R. J. Brown. 2017. Investigation of microalgae HTL fuel effects on diesel engine performance and exhaust emissions using surrogate fuels. Energy Conversion & Management 152:186–200. Nov. doi: 10.1016/j.enconman.2017.09.016.
  • How, H. G., H. H. Masjuki, M. A. Kalam, and Y. H. Teoh. 2018. Influence of injection timing and split injection strategies on performance, emissions, and combustion characteristics of diesel engine fueled with biodiesel blended fuels. Fuel 213:106–14. Feb. doi: 10.1016/j.fuel.2017.10.102.
  • Islam, M. R., M. N. Nabi, and M. N. Islam. 2003. The Fuel Properties of Pyrolytic Oils Derived from Carbonaceous Solid Wastes in Bangladesh. Jurnal Teknologi 38(1). Jun. doi:10.11113/jt.v38.484.
  • Kałużny, J., M. Waligórski, G. M. Szymański, J. Merkisz, J. Różański, M. Nowicki, M. Al Karawi, and K. Kempa. Nov 2020. Reducing friction and engine vibrations with trace amounts of carbon nanotubes in the lubricating oil. Tribology International 151(June):106484. doi: 10.1016/j.triboint.2020.106484.
  • Kannan, G. R., and R. Anand. 2012. Effect of injection pressure and injection timing on DI diesel engine fuelled with biodiesel from waste cooking oil. Biomass & bioenergy 46:343–52. doi:10.1016/j.biombioe.2012.08.006.
  • Kanth, S., T. Ananad, S. Debbarma, and B. Das. 2021. Effect of fuel opening injection pressure and injection timing of hydrogen enriched rice bran biodiesel fuelled in CI engine. International Journal of Hydrogen Energy 46 (56):28789–800. doi:10.1016/j.ijhydene.2021.06.087.
  • Karthic, S. V., M. Senthil Kumar, G. Nataraj, and P. Pradeep. 2020. An assessment on injection pressure and timing to reduce emissions on diesel engine powered by renewable fuel. Journal of Cleaner Production 255:120186. May. doi: 10.1016/j.jclepro.2020.120186.
  • Khan, O., M. Z. Khan, B. K. Bhatt, M. T. Alam, and M. Tripathi. 2022. Multi-objective optimization of diesel engine performance, vibration and emission parameters employing blends of biodiesel, hydrogen and cerium oxide nanoparticles with the aid of response surface methodology approach. International Journal of Hydrogen Energy. doi:10.1016/j.ijhydene.2022.04.044.
  • Khan, O., M. E. Khan, A. K. Yadav, and D. Sharma. Jul 2017. The ultrasonic-assisted optimization of biodiesel production from eucalyptus oil. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 39(13):1323–31. doi: 10.1080/15567036.2017.1328001.
  • Khan, O., A. K. Yadav, M. E. Khan, and M. Parvez. Jul 2021. Characterization of bioethanol obtained from Eichhornia Crassipes plant; its emission and performance analysis on CI engine. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 43(14):1793–803. doi: 10.1080/15567036.2019.1648600.
  • Kolakoti, A., and H. Koten. 2022. Effect of supercharging in neat biodiesel fuelled naturally aspirated diesel engine combustion, vibration and emission analysis. Energy 260:125054. Dec. doi: 10.1016/j.energy.2022.125054.
  • Kolakoti, A., and G. Satish. Jan 2023. Biodiesel production from low-grade oil using heterogeneous catalyst: An optimisation and ANN modelling. Australian Journal of Mechanical Engineering 21(1):316–28. doi: 10.1080/14484846.2020.1842298.
  • Kumar, M., S. Bhowmik, and A. Paul. 2022. Effect of pilot fuel injection pressure and injection timing on combustion, performance and emission of hydrogen-biodiesel dual fuel engine. International Journal of Hydrogen Energy 47 (68):29554–67. doi:10.1016/j.ijhydene.2022.06.260.
  • Kumar, N. K., T. K. Chandrashekar, and N. R. Banapurmath. 2021. Impact of injection timing on simarouba seed oil-fueled CI engine. Materials Today: Proceedings 46:4878–83. doi:10.1016/j.matpr.2020.10.329.
  • L’Hermine, E., J. C. Hipeaux, D. Faure, T. Pariset, L. Chambard, and L. Tiquet. 2000 Jun. Rheology of Used Diesel Lubricants When Contaminated with Soot - the Brookfield Measurement Opportunity. SAE Technical Paper 1808–2000. doi:10.4271/2000-01-1808.
  • Li, H. -M., G. -X. Li, and L. Li. 2023. Comparative investigation on combustion characteristics of ADN-based liquid propellants in inert gas and oxidizing gas atmospheres with resistive ignition method. Fuel 334 (Feb):126742. doi:10.1016/j.fuel.2022.126742.
  • Li, F., Z. Liu, Z. Ni, and H. Wang. Sep 2019. Effect of biodiesel components on its lubrication performance. Journal of Materials Research and Technology 8(5):3681–87. doi: 10.1016/j.jmrt.2019.06.011.
  • Lim, T. -T., and X. Huang. Jan 2007. Evaluation of kapok (Ceiba pentandra (L.) Gaertn.) as a natural hollow hydrophobic–oleophilic fibrous sorbent for oil spill cleanup. Chemosphere 66(5):955–63. doi: 10.1016/j.chemosphere.2006.05.062.
  • Liu, L., Q. Mei, and W. Jia. 2022. A flexible diesel spray model for advanced injection strategy. Fuel 314:122784. Apr. doi: 10.1016/j.fuel.2021.122784.
  • Liu, L., Y. Peng, W. Zhang, and X. Ma. 2023. Concept of rapid and controllable combustion for high power-density diesel engines. Energy Conversion & Management 276:116529. Jan. doi: 10.1016/j.enconman.2022.116529.
  • Liu, L., Y. Tang, and D. Liu. 2022. Investigation of future low-carbon and zero-carbon fuels for marine engines from the view of thermal efficiency. Energy Reports 8:6150–60. Nov. doi: 10.1016/j.egyr.2022.04.058.
  • Li, Z., Y. Wang, H. Geng, X. Zhen, M. Liu, S. Xu, and C. Li. 2019. Effects of diesel and methanol injection timing on combustion, performance, and emissions of a diesel engine fueled with directly injected methanol and pilot diesel. Applied Thermal Engineering 163:114234. Dec. doi: 10.1016/j.applthermaleng.2019.114234.
  • Li, Z., Y. Wang, Y. Wang, Z. Yin, Z. Gao, Z. Ye, and X. Zhen. 2022. Effects of fuel injection timings and methanol split ratio in M/D/M strategy on a diesel/methanol dual-fuel direct injection engine. Fuel 325:124970. Oct. doi: 10.1016/j.fuel.2022.124970.
  • Li, R., Z. Wang, and G. Xu. 2017. Study on Carbonyl Emissions of Diesel Engine Fueled with Biodiesel. International Journal of Chemical Engineering 2017:1–12. doi:10.1155/2017/1409495.
  • Lu, Z. -Q., D. -H. Gu, H. Ding, W. Lacarbonara, and L. -Q. Chen. 2020. Nonlinear vibration isolation via a circular ring. Mechanical Systems and Signal Processing 136 (Feb):106490. doi:10.1016/j.ymssp.2019.106490.
  • Mitchell, B. J., A. Zare, T. A. Bodisco, M. N. Nabi, F. M. Hossain, Z. D. Ristovski, and R. J. Brown. 2017. Engine blow-by with oxygenated fuels: A comparative study into cold and hot start operation. Energy 140:612–24. Dec. doi: 10.1016/j.energy.2017.08.115.
  • Moosavian, A., G. Najafi, B. Ghobadian, M. Mirsalim, S. M. Jafari, and P. Sharghi. 2016. Piston scuffing fault and its identification in an IC engine by vibration analysis. Applied Acoustics 102:40–48. Jan. doi: 10.1016/j.apacoust.2015.09.002.
  • Muthiya, S. J., L. Natrayan, L. Yuvaraj, M. Subramaniam, J. A. Dhanraj, W. D. Mammo, and L. R. 2022. Development of Active CO2 Emission Control for Diesel Engine Exhaust Using Amine-Based Adsorption and Absorption Technique. Adsorption Science & Technology 2022:1–8. Feb. doi: 10.1155/2022/8803585.
  • Nag, S., P. Sharma, A. Gupta, and A. Dhar. 2019, Apr. Combustion, vibration and noise analysis of hydrogen-diesel dual fuelled engine. ( 2018) Fuel 241 (December):488–94. doi: 10.1016/j.fuel.2018.12.055.
  • Nayak, S. K., S. Nižetić, V. V. Pham, Z. Huang, A. I. Ölçer, V. G. Bui, K. Wattanavichien, and A. T. Hoang. 2022. Influence of injection timing on performance and combustion characteristics of compression ignition engine working on quaternary blends of diesel fuel, mixed biodiesel, and t-butyl peroxide. Journal of Cleaner Production 333:130160. Jan. doi: 10.1016/j.jclepro.2021.130160.
  • Park, C., Y. Kim, S. Oh, J. Oh, Y. Choi, H. Baek, S. W. Lee, and K. Lee. Jun 2022. Effect of fuel injection timing and injection pressure on performance in a hydrogen direct injection engine. International Journal of Hydrogen Energy 47(50):21552–64. doi: 10.1016/j.ijhydene.2022.04.274.
  • Patel, C., A. K. Agarwal, N. Tiwari, S. Lee, C. S. Lee, and S. Park. 2016. Combustion, noise, vibrations and spray characterization for Karanja biodiesel fuelled engine. Applied Thermal Engineering 106:506–17. Aug. doi: 10.1016/j.applthermaleng.2016.06.025.
  • Patel, C., N. Tiwari, and A. K. Agarwal. 2019. Experimental investigations of Soyabean and Rapeseed SVO and biodiesels on engine noise, vibrations, and engine characteristics. Fuel 238:86–97. Feb. doi: 10.1016/j.fuel.2018.10.068.
  • Prabu, A. Aug 2018. Engine Characteristic Studies by Application of Antioxidants and Nanoparticles as Additives in Biodiesel Diesel Blends. Journal of Energy Resources Technology 140(8):1–7. doi: 10.1115/1.4039736.
  • Prasad, K. S., S. S. Rao, and V. R. K. Raju. 2021. Effect of compression ratio and fuel injection pressure on the characteristics of a CI engine operating with butanol/diesel blends. Alexandria Engineering Journal 60 (1):1183–97. doi:10.1016/j.aej.2020.10.042.
  • Rahman, M. M., S. Stevanovic, M. A. Islam, K. Heimann, M. N. Nabi, G. Thomas, B. Feng, R. J. Brown, and Z. D. Ristovski. 2015. Particle emissions from microalgae biodiesel combustion and their relative oxidative potential. Environmental Science: Processes & Impacts 17 (9):1601–10. doi:10.1039/C5EM00125K.
  • Ramteke, S. M., H. Chelladurai, and M. Amarnath. Dec 2020. Diagnosis of Liner Scuffing Fault of a Diesel Engine via Vibration and Acoustic Emission Analysis. Journal of Vibration Engineering & Technologies 8(6):815–33. doi: 10.1007/s42417-019-00180-7.
  • Sahu, S., P. Kumar, and A. Dhar. 2022. Effect of injection timing on combustion, performance and emissions characteristics of methanol fuelled DISI engine: A numerical study. Fuel 322:124167. Aug. doi: 10.1016/j.fuel.2022.124167.
  • Saravanan, C. G., K. R. Kiran, M. Vikneswaran, P. Rajakrishnamoorthy, and S. P. Raj. 2019. Impact of fuel injection pressure on the engine characteristics of CRDI engine powered by pine oil biodiesel blend. Fuel 264 (October):116760. 2020. doi:10.1016/j.fuel.2019.116760.
  • Saravanan, B., B. Musthafa, and M. A. Asokan. 2023, Feb. A combined study of filterability and soaking strength of fuel filter and effect of injection timing on CI engine characteristics using Ceiba pentandra biodiesel. Biofuels 1–9. doi:10.1080/17597269.2023.2167270.
  • Senthil Kumar, A., L. Karthikeyan, S. A. Alharbi, and S. H. Salmen. 2023. Assessment of the Engine Vibration and Noise Characteristics of an Unmodified Direct Injection Engine Powered with Non-Feedstock Citrullus lanatus Seed Oil. Journal of Energy Resources Technology 145(1). Jan. doi:10.1115/1.4054563.
  • Shariff, S. H., S. Vadapalli, and J. Sagari. Jun 2022. Influence of FeCl3 Nanoparticle Dispersion in Cassia fistula Biodiesel Blend on the Analysis of Vibration and Noise Intensity of a Diesel Engine. Journal of Vibration Engineering & Technologies 10(4):1531–39. doi: 10.1007/s42417-022-00465-4.
  • Sharma, N., C. Patel, N. Tiwari, and A. K. Agarwal. 2019. Experimental investigations of noise and vibration characteristics of gasoline-methanol blend fuelled gasoline direct injection engine and their relationship with combustion characteristics. Applied Thermal Engineering 158:113754. Jul. doi: 10.1016/j.applthermaleng.2019.113754.
  • Shi, J., B. Zhao, T. He, L. Tu, X. Lu, and H. Xu. 2023. Tribology and dynamic characteristics of textured journal-thrust coupled bearing considering thermal and pressure coupled effects. Tribology International 180 (Feb):108292. doi:10.1016/j.triboint.2023.108292.
  • Shrivastava, P., and T. N. Verma. 2019. Effect of fuel injection pressure on the characteristics of CI engine fuelled with biodiesel from Roselle oil. Fuel 265 (December):117005. 2020. doi:10.1016/j.fuel.2019.117005.
  • Silitonga, A. S., H. H. Masjuki, T. M. I. Mahlia, H. C. Ong, and W. T. Chong. 2013. Experimental study on performance and exhaust emissions of a diesel engine fuelled with Ceiba pentandra biodiesel blends. Energy Conversion & Management 76:828–36. Dec. doi: 10.1016/j.enconman.2013.08.032.
  • Silitonga, A. S., H. C. Ong, T. M. I. Mahlia, H. H. Masjuki, and W. T. Chong. 2013. Characterization and production of Ceiba pentandra biodiesel and its blends. Fuel 108:855–58. Jun. doi: 10.1016/j.fuel.2013.02.014.
  • Singh, P., S. R. Chauhan, V. Goel, and A. K. Gupta. Jan 2020. Enhancing Diesel Engine Performance and Reducing Emissions Using Binary Biodiesel Fuel Blend. Journal of Energy Resources Technology 142(1):1–11. doi: 10.1115/1.4044058.
  • Singh, H., and S. K. Mohapatra. Feb 2018. Production of producer gas from sugarcane bagasse and carpentry waste and its sustainable use in a dual fuel CI engine: A performance, emission, and noise investigation. Journal of the Energy Institute 91(1):43–54. doi: 10.1016/j.joei.2016.11.002.
  • Singh, S. P., and D. Singh. Jan 2010. Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renewable & Sustainable Energy Reviews 14(1):200–16. doi: 10.1016/j.rser.2009.07.017.
  • Sullivan, J. L., R. E. Baker, B. A. Boyer, R. H. Hammerle, T. E. Kenney, L. Muniz, and T. J. Wallington. Jun 2004. CO 2 Emission Benefit of Diesel (versus Gasoline) Powered Vehicles. Environmental Science & Technology 38(12):3217–23. doi: 10.1021/es034928d.
  • Taghizadeh-Alisaraei, A., B. Ghobadian, T. Tavakoli-Hashjin, and S. S. Mohtasebi. Dec 2012. Vibration analysis of a diesel engine using biodiesel and petrodiesel fuel blends. Fuel 102(2012):414–22. doi: 10.1016/j.fuel.2012.06.109.
  • Taghizadeh-Alisaraei, A., and A. Mahdavian. 2019. Fault detection of injectors in diesel engines using vibration time-frequency analysis. Applied Acoustics 143:48–58. Jan. doi: 10.1016/j.apacoust.2018.09.002.
  • Takeyama, T., and K. Nomura. 1989 May. Combustion Noise of Two-Stroke Gasoline Engines and its Reduction Techniques. SAE Technical Papers 1–8. doi:10.4271/891125.
  • Tamilselvan, R., R. Thirunavukkarasub, D. Sathishc, T. Karthickmunisamyd, and M. Veeramanikandane. 2017. Biodiesel Production from Ceiba Pentandra Oil and Its Characterization. International Conference Advanced Computer Communication System, No February 81–87. [Online]. Available http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Biodiesel+production+from+jatropha+oil+and+its+characterization#1.
  • Tye, Y. Y., K. T. Lee, W. N. Wan Abdullah, and C. P. Leh. 2013. Potential of Ceiba pentandra (L.) Gaertn. (kapok) fiber as a resource for second generation bioethanol: Parametric optimization and comparative study of various pretreatments prior enzymatic saccharification for sugar production. Bioresource Technology 140:10–14. Jul. doi: 10.1016/j.biortech.2013.04.069.
  • Uludamar, E., E. Tosun, and K. Aydın. 2016. Experimental and regression analysis of noise and vibration of a compression ignition engine fuelled with various biodiesels. Fuel 177 (Aug):326–33. doi:10.1016/j.fuel.2016.03.028.
  • Venu, H., V. D. Raju, and L. Subramani. 2019. Combined effect of influence of nano additives, combustion chamber geometry and injection timing in a DI diesel engine fuelled with ternary (diesel-biodiesel-ethanol) blends. Energy 174:386–406. May. doi: 10.1016/j.energy.2019.02.163.
  • Viswanathan, K., M. I. Taipabu, and W. Wu. 2021. Novel Petit grain bitter orange waste peel oil biofuel investigation in diesel engine with modified fuel injection pressure and bowl geometry. Fuel 319 (August):123660. 2022. doi:10.1016/j.fuel.2022.123660.
  • Wang, X., Y. Zhang, C. Karthikeyan, P. Boomadevi, J. Maroušek, O. Nasif, S. A. Alharbi, and C. Xia. 2022. Role of injection pressure on fuel atomization and spray penetration on the Thevetia peruviana and Jatropha curcas biodiesel blends with nanoparticle. Fuel 324 (February):1–11. doi:10.1016/j.fuel.2022.124527.
  • Xia, C., Y. Zhu, S. Zhou, H. Peng, Y. Feng, W. Zhou, J. Shi, and J. Zhang. Apr 2023. Simulation study on transient performance of a marine engine matched with high-pressure SCR system. International Journal of Engine Research 24(4):1327–45. doi: 10.1177/14680874221084052.
  • Yadav, A. K., O. Khan, and M. E. Khan. Nov 2018. Utilization of high FFA landfill waste (leachates) as a feedstock for sustainable biodiesel production: Its characterization and engine performance evaluation. Environmental Science & Pollution Research 25(32):32312–20. doi: 10.1007/s11356-018-3199-0.
  • Yaşar, A., A. Keskin, Ş. Yıldızhan, and E. Uludamar. 2019. Emission and vibration analysis of diesel engine fuelled diesel fuel containing metallic based nanoparticles. Fuel 239:1224–30. Mar. doi: 10.1016/j.fuel.2018.11.113.
  • Yilmaz, N., A. Atmanli, M. J. Hall, and F. M. Vigil. Jul 2022. Determination of the Optimum Blend Ratio of Diesel, Waste Oil Derived Biodiesel and 1-Pentanol Using the Response Surface Method. Energies 15(14):5144. doi: 10.3390/en15145144.
  • Yilmaz, N., A. Atmanli, F. M. Vigil, and B. Donaldson. Nov 2022. Comparative Assessment of Polycyclic Aromatic Hydrocarbons and Toxicity in a Diesel Engine Powered by Diesel and Biodiesel Blends with High Concentrations of Alcohols. Energies 15(22):8523. doi: 10.3390/en15228523.
  • Yilmaz, N., and S. M. Davis. 2022a. Diesel blends with high concentrations of biodiesel and n-butanol: Effects on regulated pollutants and polycyclic aromatic hydrocarbons. Process Safety & Environmental Protection 166:430–39. Oct. doi: 10.1016/j.psep.2022.08.041.
  • Yilmaz, N., and S. M. Davis. 2022b. Formation of polycyclic aromatic hydrocarbons and regulated emissions from biodiesel and n-butanol blends containing water. Journal of Hazardous Materials 437:129360. Sep. doi: 10.1016/j.jhazmat.2022.129360.
  • Yilmaz, N., and B. Donaldson. Dec 2022. Combined effects of engine characteristics and fuel aromatic content on polycyclic aromatic hydrocarbons and toxicity. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 44(4):9156–71. doi: 10.1080/15567036.2022.2129880.
  • Yilmaz, N., and B. Morton. May 2011. Comparative characteristics of compression ignited engines operating on biodiesel produced from waste vegetable oil. Biomass & bioenergy 35(5):2194–99. doi: 10.1016/j.biombioe.2011.02.032.
  • Yilmaz, N., and M. Ukaoma. 2022 Dec. Impact of biodiesel and propanol blends on engine performance, regulated emissions and PAH formation. International Journal Energy Resource. 46 (15):23433–48. doi:10.1002/er.8640.
  • Yilmaz, N., F. Vigil, and B. Donaldson. 2022, Dec. Effect of n-Butanol Addition to Diesel Fuel on Reduction of PAH Formation and Regulated Pollutants. Polycyclic Aromatic Compounds 1–15. doi:10.1080/10406638.2022.2153881.
  • Yilmaz, N., F. Vigil, and B. Donaldson. 2023. Effect of diesel and propanol blends on regulated pollutants and polycyclic aromatic hydrocarbons under lean combustion conditions. Environmental Progress & Sustainable Energy 42(2). Mar. doi:10.1002/ep.14020.
  • Yilmaz, N., F. M. Vigil, and B. Donaldson. 2022. Fuel effects on PAH formation, toxicity and regulated pollutants: Detailed comparison of biodiesel blends with propanol, butanol and pentanol. The Science of the Total Environment 849:157839. Nov. doi: 10.1016/j.scitotenv.2022.157839.
  • Yogesh, P., B. Murali, and S. Muniamuthu. 2022. Experimental analysis of CI engine running with mango seed biodiesel at optimum fuel injection pressure. Materials Today: Proceedings 62:1889–93. doi:10.1016/j.matpr.2022.01.017.
  • Zare, A., T. A. Bodisco, M. N. Nabi, F. M. Hossain, Z. D. Ristovski, and R. J. Brown. Jul 2017. Engine Performance during Transient and Steady-State Operation with Oxygenated Fuels. Energy & Fuels 31(7):7510–22. doi: 10.1021/acs.energyfuels.7b00429.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.