131
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Multi-objective optimization of gas diffusion layer structure parameters for proton exchange membrane fuel cell

, , &
Pages 787-797 | Received 05 Jan 2023, Accepted 22 May 2023, Published online: 31 May 2023

References

  • Adithya, L., J. Zhao, and X. Li. 2022. Machine learning modeling for proton exchange membrane fuel cell performance. Energy and AI 10:100183. doi:10.1016/j.egyai.2022.100183.
  • Alessandro, A., Maximilian Haslinger, Giuseppe Corda, Johannes Höflinger, Stefano Fontanesi, and Thomas Lauer. 2021. Modelling methods and validation techniques for CFD simulations of pem fuel cells. Processes 9(4):688–688. doi:10.3390/pr9040688.
  • Asif, J., R. Sikander, I. Tanveer, Hafiza Aroosa Aslam Khan, Haris Mahmood Khan, Babar Azeem, M. Z. Mustafa, and Abdulkader S. Hanbazazah. 2022. Current status and future perspectives of proton exchange membranes for hydrogen fuel cells. Chemosphere 303(P3):135204. doi:10.1016/j.chemosphere.2022.135204.
  • Berning, T., D. M. Lu, and N. Djilali. 2002. Three-dimensional computational analysis of transport phenomena in a PEM fuel cell. Journal of Power Sources 106 (1):284–94. doi:10.1016/S0378-7753(01)01057-6.
  • Cao, T. F., H. Lin, L. Chen, Ya-Ling He, and Wen-Quan Tao. 2013. Numerical investigation of the coupled water and thermal management in PEM fuel cell. Applied Energy 112:1115–25. doi:10.1016/j.apenergy.2013.02.031.
  • Chen, H., H. Guo, F. Ye, and C. F. Ma. 2019. Modification of the two-fluid model and experimental study of proton exchange membrane fuel cells with baffled flow channels. Energy Conversion & Management 195 (C):972–88. doi:10.1016/j.enconman.2019.05.071.
  • Chen, H., B. Liu, T. Zhang, and Pucheng Pei. 2019. Influencing sensitivities of critical operating parameters on PEMFC output performance and gas distribution quality under different electrical load conditions. Applied Energy 255(C):113849. doi:10.1016/j.apenergy.2019.113849.
  • Daniel, N., M. Adrian, N. Vahid, Jens Eller, and Stuart Holmes. 2020. Two-phase flow dynamics in a gas diffusion layer gas channel microporous layer system. Journal of Power Sources 471:228427. doi:10.1016/j.jpowsour.2020.228427.
  • Ding, R., S. Zhang, Y. Chen, Z. Rui, K. Hua, Y. Wu, X. Li, X. Duan, X. Wang, J. Li, et al. 2022. Application of machine learning in optimizing proton exchange membrane fuel cells: a review. Energy and AI 9:100170. doi:10.1016/j.egyai.2022.100170.
  • Dwivedi, Y. K., L. Hughes, E. Ismagilova, G. Aarts, C. Coombs, T. Crick, Y. Duan, R. Dwivedi, J. Edwards, A. Eirug, et al. 2019. Artificial Intelligence (AI): multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management 57:101994. doi:10.1016/j.ijinfomgt.2019.08.002.
  • Ghanbarian, A., and M. J. Kermani. 2016. Enhancement of PEM fuel cell performance by flow channel indentation. Energy Conversion & Management 110:356–66. doi:10.1016/j.enconman.2015.12.036.
  • Ghasabehi, M., M. Shams, and H. Kanani. 2021. Multi-objective optimization of operating conditions of an enhanced parallel flow field proton exchange membrane fuel cell. Energy Conversion & Management 230:113798. doi:10.1016/j.enconman.2020.113798.
  • Gostick, J. T., M. A. Ioannidis, M. W. Fowler, and Mark D. Pritzker. 2007. Pore network modeling of fibrous gas diffusion layers for polymer electrolyte membrane fuel cells. Journal of Power Sources 173(1):277–90. doi:10.1016/j.jpowsour.2007.04.059.
  • Huang, T. M., and J. Huang, M. C. Feng, Dingxun Yi, Xi Chen, Changjie Ou, Jing Zhang, Yan Zhang, and Zhongmin Wan. 2022. Optimization of the thickness of catalytic layer for HT-PEMFCs based on genetic algorithm. Energy Reports 8:12905–15. doi:10.1016/j.egyr.2022.09.111.
  • Huang, G. B., Q. Y. Zhu, and C. K. Siew. 2006. Extreme learning machine: theory and applications. Neurocomputing 70 (1):489–501. doi:10.1016/j.neucom.2005.12.126.
  • Ira, Y., Y. Bakhshan, and J. Khorshidimalahmadi. 2021. Effect of wettability heterogeneity and compression on liquid water transport in gas diffusion layer coated with microporous layer of PEMFC. International Journal of Hydrogen Energy 46 (33):17397–413. doi:10.1016/j.ijhydene.2021.02.160.
  • Kanchan, B. K., P. Randive, and S. Pati. 2020. Numerical investigation of multi-layered porosity in the gas diffusion layer on the performance of a PEM fuel cell. International Journal of Hydrogen Energy 45 (41):21836–47. doi:10.1016/j.ijhydene.2020.05.218.
  • Kang, K., and H. Ju. 2009. Numerical modeling and analysis of micro–porous layer effects in polymer electrolyte fuel cells. Journal of Power Sources 194 (2):763–73. doi:10.1016/j.jpowsour.2009.05.046.
  • Khalkhali, A. 2015. Best compromising crashworthiness design of automotive S-rail using TOPSIS and modified NSGA-II. Journal of Central South University 22 (1):121–33. doi:10.1007/s11771-015-2502-1.
  • Li, J., M. S. Herdem, J. Nathwani, and John Z. Wen. 2023. Methods and applications for artificial intelligence, big data, internet of things, and blockchain in smart energy management. Energy and AI 11:100208. doi:10.1016/j.egyai.2022.100208.
  • Li, Z., R. Outbib, S. Giurgea, Daniel Hissel, Samir Jemei, Alain Giraud, and Sébastien Rosini. 2016. Online implementation of SVM based fault diagnosis strategy for PEMFC systems. Applied Energy 164:284–93. doi:10.1016/j.apenergy.2015.11.060.
  • Liu, Y., S. Wu, Y. Qin, Mengfei Zhang, Xin Liu, Junfeng Zhang, and Yan Yin. 2022. Mass transport and performance of proton exchange membrane fuel cell considering the influence of porosity distribution of gas diffusion layer. International Journal of Green Energy. 19(14):1503–11. doi:10.1080/15435075.2021.2007389.
  • Li, W., J. Zhu, Y. Xia, Maysam B. Gorji, and Tomasz Wierzbicki. 2019. Data-driven safety envelope of lithium-ion batteries for electric vehicles. Joule. 3(11):2703–15. doi:10.1016/j.joule.2019.07.026.
  • Machlev, R., L. Heistrene, M. Perl, K. Y. Levy, J. Belikov, S. Mannor, and Y. Levron. 2022. Explainable Artificial Intelligence (XAI) techniques for energy and power systems: review, challenges and opportunities. Energy and AI 9:100169. doi:10.1016/j.egyai.2022.100169.
  • Mathias, M. F., J. Roth, J. Fleming, and Werner Lehnert. 2010. Diffusion media materials and characterization. John Wiley & Sons, Ltd. 46–51. 10.1002/9780470974001.f303046.
  • Mckay, M. D., R. J. Beckman, and W. J. Conover. 1979. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21 (2):239–45. doi:10.1080/00401706.1979.10489755.
  • Meng, H. 2007. A two-phase non-isothermal mixed-domain PEM fuel cell model and its application to two-dimensional simulations. Journal of Power Sources 168 (1):218–28. doi:10.1016/j.jpowsour.2007.03.012.
  • Niu, T., W. Huang, C. Zhang, Tao Zeng, Jiawei Chen, Yu Li, and Yang Liu. 2022. Study of degradation of fuel cell stack based on the collected high-dimensional data and clustering algorithms calculations. Energy and AI 10:100184. doi:10.1016/j.egyai.2022.100184.
  • Park, H. 2014. Effect of the hydrophilic and hydrophobic characteristics of the gas diffusion medium on polymer electrolyte fuel cell performance under non-humidification condition. Energy Conversion & Management 81:220–30. doi:10.1016/j.enconman.2014.02.029.
  • Park, S., J. W. Lee, and B. N. Popov. 2012. A review of gas diffusion layer in PEM fuel cells: materials and designs. International Journal of Hydrogen Energy 37 (7):5850–65. doi:10.1016/j.ijhydene.2011.12.148.
  • Patnaikuni, V. S., and S. Jayanti. 2018. CFD simulation of flow through the reconstructed microstructure of fibrous gas diffusion layer in a polymer electrolyte membrane fuel cell. Chemical Product and Process Modeling 13 (1):08. doi:10.1515/cppm-2017-0008.
  • Raeesi, M., S. Changizian, P. Ahmadi, and Alireza Khoshnevisan. 2021. Performance analysis of a degraded PEM fuel cell stack for hydrogen passenger vehicles based on mach. Energy Conversion & Management 248:114793. doi:10.1016/j.enconman.2021.114793.
  • Ribeirinha, P., M. Abdollahzadeh, A. Pereira, Frederico Relvas, Marta Boaventura, and Adélio Mendes. 2018. High temperature PEM fuel cell integrated with a cellular membrane methanol steam reformer: experimental and modeling. Applied Energy 215:659–69. doi:10.1016/j.apenergy.2018.02.029.
  • Sharma, S., and R. S. Virk. 2014. A review towards evolutionary multiobjective optimization algorithms. Research Cell: An International Journal of Engineering Sciences 13:191–200.
  • Shripad, R., and M. Pradip. 2014. Fuel cells: Principles, design and analysis [M]. 613–32. Boca Raton: CRC Press, Taylor & Francis Group.
  • Song, J., H. Guo, F. Ye, and Chong Fang Ma. 2022. A numerical investigation of operating condition effects on unitized regenerative fuel cells with elliptically shallow channel during mode switching. International Journal of Green Energy. 19(7):719–32. doi:10.1080/15435075.2021.1960355.
  • Stein, M. 1987. Large sample properties of simulations using Latin hypercube sampling. Technometrics 29 (2):143–51. doi:10.1080/00401706.1987.10488205.
  • Tomadakis, M. M., and T. J. Robertson. 2005. Viscous permeability of random fiber structures: comparison of electrical and diffusional estimates with experimental and analytical results. Journal of Composite Materials 39 (2):163–88. doi:10.1177/0021998305046438.
  • Wang, G., Y. Yu, H. Liu, Chunli Gong, Sheng Wen, Xiaohua Wang, and Zhengkai Tu. 2018. Progress on design and development of polymer electrolyte membrane fuel cell systems for vehicle applications: A review. Fuel Processing Technology 179:203–28. doi:10.1016/j.fuproc.2018.06.013.
  • Wang, B., G. Zhang, H. Wang, Jin Xuan, and Kui Jiao. 2020. Multi-physics-resolved digital twin of proton exchange membrane fuel cells with a data-driven surrogate model. Energy and AI 1:100004. doi:10.1016/j.egyai.2020.100004.
  • Wei, H., H. Bao, and X. Ruan. 2022. Perspective: Predicting and optimizing thermal transport properties with machine learning methods. Energy and AI 8:100153. doi:10.1016/j.egyai.2022.100153.
  • Wu, F., W. L. Ce, M. J. Zhu, H. Chen, J. Zhu, K. Yu, L. Li, M. Li, Q. Chen, X. Li, et al. 2020. Towards a new generation of artificial intelligence in China. Nature Machine Intelligence. 2(6):312–16. doi:10.1038/s42256-020-0183-4.
  • Wu, H., X. Li, and P. Berg. 2009. On the modeling of water transport in polymer electrolyte membrane fuel cells. Electrochimica acta 54 (27):6913–27. doi:10.1016/j.electacta.2009.06.070.
  • Xiao, H., H. Guo, F. Ye, and Chongfang Ma. 2016. Numerical study of the dynamic response of heat and mass transfer to operation mode switching of a unitized regenerative fuel cell. Energies. 9(12):1015. doi:10.3390/en9121015.
  • Xing, L., X. Liu, T. Alaje, Ravi Kumar, Mohamed Mamlouk, and Keith Scott. 2014. A two-phase flow and non-isothermal agglomerate model for a proton exchange membrane (PEM) fuel cell. Energy 73:618–34. doi:10.1016/j.energy.2014.06.065.
  • Xu, Q., Y. Yang, Y. Liu, and Xudong Wang. 2017. An improved Latin hypercube sampling method to enhance numerical stability considering the correlation of input variables. IEEE Access 5:15197–205. doi:10.1109/ACCESS.2017.2731992.
  • Yu, R. J., H. Guo, and F. Ye. 2022. Study on transmission coefficients anisotropy of gas diffusion layer in a proton exchange membrane fuel cell. Electrochimica acta 414:140163. doi:10.1016/j.electacta.2022.140163.
  • Zamel, N., X. Li, and J. Shen. 2012. Numerical estimation of the effective electrical conductivity in carbon paper diffusion media. Applied Energy 93:39–44. doi:10.1016/j.apenergy.2011.08.037.
  • Zhang, X., X. Ma, S. Shuai, Yanzhou Qin, and Jiapei Yang. 2021. Effect of micro-porous layer on PEM fuel cells performance: considering the spatially variable properties. International Journal of Heat & Mass Transfer 178:121592. doi:10.1016/j.ijheatmasstransfer.2021.121592.
  • Zhao, Y., Y. Liu, Liu, Qichao Yang, Liansheng Li, and Zhicheng Gao. 2022. Air and hydrogen supply systems and equipment for PEM fuel cells: A review. International Journal of Green Energy. 19(4):331–48. doi:10.1080/15435075.2021.1946812.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.