137
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Characteristics of changes in hazardous elements and heavy metals during pyrolysis treatment of oily sludge

, , , , , , , & show all
Pages 816-826 | Received 27 Dec 2022, Accepted 26 May 2023, Published online: 31 May 2023

References

  • Akpoveta, O. V., and S. A. Osakwe. 2014. Determination of heavy metal contents in refined petroleum products. IOSR Journal of Applied Chemistry 7 (6):1–2.
  • Benson, S. W. 1978. Thermochemistry and kinetics of sulfur-containing molecules and radicals. Chemical Reviews 78 (1):23–35. doi:10.1021/cr60311a003.
  • Cheng, S., H. Zhang, F. Chang, F. Zhang, K. Wang, Y. Qin, and T. Huang. 2019. Combustion behavior and thermochemical treatment scheme analysis of oil sludges and oil sludge semicokes. Energy 167:575–87. doi:10.1016/j.energy.2018.10.125.
  • Chen, G., J. Li, K. Li, F. Lin, W. Tian, L. Che, B. Yan, W. Ma, and Y. Song. 2020. Nitrogen, sulfur, chlorine containing pollutants releasing characteristics during pyrolysis and combustion of oily sludge. Fuel 273:117772. doi:10.1016/j.fuel.2020.117772.
  • Cui, Z., G. Xu, B. Ormeci, H. Liu, and Z. Zhang. 2022. Transformation and stabilization of heavy metals during pyrolysis of organic and inorganic-dominated sewage sludges and their mechanisms. Waste Management 150:57–65.
  • Deng, S., Y. Shu, S. Li, G. Tian, J. Huang, and F. Zhang. 2016. Chemical forms of the fluorine, chlorine, oxygen and carbon in coal fly ash and their correlations with mercury retention. Journal of Hazardous Materials 301:400–06. doi:10.1016/j.jhazmat.2015.09.032.
  • Dhaliwal, S. S., J. Singh, P. K. Taneja,& Mandal, A. Remediation techniques for removal of heavy metals from the soil contaminated through different sources: A review. Environmental Science and Pollution Research, 2020, 27(2): 1319–33.
  • Dias, J., A. L. Fiquene de Brito, and A. C. Silva Muniz. 2022. Propositure of maximum permissible limits for environmental assessment and classification of materials stabilized by solidification incorporated with oil waste. Environmental Technology 43 (11):1745–59.
  • Duan, Y., N. Gao, A. T. Sipra, K. Tong, and C. Quan. 2022. Characterization of heavy metals and oil components in the products of oily sludge after hydrothermal treatment. Journal of Hazardous Materials 424:127293. doi:10.1016/j.jhazmat.2021.127293.
  • Egazar’yants, S. V., V. A. Vinokurov, A. V. Vutolkina, M. Y. Talanova, V. I. Frolov, and E. A. Karakhanov. 2015. Oil sludge treatment processes. Chemistry and Technology of Fuels and Oils 51 (5):506–15. doi:10.1007/s10553-015-0632-7.
  • Gao, N., J. Li, C. Quan, and H. Tan. 2020. Product property and environmental risk assessment of heavy metals during pyrolysis of oily sludge with fly ash additive. Fuel 266:117090. doi:10.1016/j.fuel.2020.117090.
  • Gong, Z., A. Du, Z. Wang, P. Fang, and X. Li. 2017. Experimental study on pyrolysis characteristics of oil sludge with a tube furnace reactor. Energy & Fuels 31 (8):8102–08. doi:10.1021/acs.energyfuels.7b01363.
  • Gong, Z., C. Liu, M. Wang, Z. Wang, and X. Li. 2020. Experimental study on catalytic pyrolysis of oil sludge under mild temperature. The Science of the Total Environment 708:135039. doi:10.1016/j.scitotenv.2019.135039.
  • Gong, Z., Z. Wang, Z. Wang, Fang, P., & Meng, F. 2019. Study on the migration characteristics of nitrogen and sulfur during co-combustion of oil sludge char and microalgae residue. Fuel 238:1–9.
  • Hakanson, L. 1980. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research 14 (8):975–1001.
  • Hansson, K. M., J. Samuelsson, C. Tullin,& Amand, L. E. 2004. Formation of HNCO, HCN, and NH3 from the pyrolysis of bark and nitrogen-containing model compounds. Combustion and Flame 137 (3):265–77.
  • Hu, H., Y. Fang, H. Liu, R. Yu, G. Luo, W. Liu, A. Li, and H. Yao. 2014. The fate of sulfur during rapid pyrolysis of scrap tires. Chemosphere 97:102–07. doi:10.1016/j.chemosphere.2013.10.037.
  • Hui, K., J. Tang, H. Lu, Xi, B., Qu, C, & Li, J. 2020. Status and prospect of oil recovery from oily sludge: A review. Arabian journal of chemistry 13 (8):6523–43.
  • Hu, G., J. Li, and G. Zeng. 2013. Recent development in the treatment of oily sludge from petroleum industry: A review. Journal of Hazardous Materials 261:470–90. doi:10.1016/j.jhazmat.2013.07.069.
  • Jin, X., D. Teng, J. Fang, Liu, Y., Jiang, Z, Song, Y. & Li, X. 2021. Petroleum oil and products recovery from oily sludge: Characterization and analysis of pyrolysis products. Environmental Research 202:111675.
  • L F, R.-A., I. Jiménez-Serra, V. M. Rivilla, Martín-Pintado, J., Zeng, S., Tercero, B.& Requena-Torres, M. A. 2021. Thiols in the interstellar medium: First detection of HC(O)SH and confirmation of C2H5SH. The Astrophysical Journal Letters 912 (1):L11.
  • Li, J., F. Lin, L. Xiang, Zheng, F., Che, L., Tian, W. & Chen, G. 2021. Hazardous elements flow during pyrolysis of oily sludge. Journal of Hazardous Materials 409:124986.
  • Lin, B., Q. Huang, and Y. Chi. 2018. Co-pyrolysis of oily sludge and rice husk for improving pyrolysis oil quality. Fuel Processing Technology 177:275–82.
  • Lin, B., A. Mallah M M, Q. Huang. 2017. Effects of temperature and potassium compounds on the transformation behavior of sulfur during pyrolysis of oily sludge. Energy & Fuels 31 (7):7004–14.
  • Lin, F., L. Xiang, B. Sun, J. Li, B. Yan, X. He, G. Liu, and G. Chen. 2021. Migration of chlorinated compounds on products quality and dioxins releasing during pyrolysis of oily sludge with high chlorine content. Fuel 306:121744. doi:10.1016/j.fuel.2021.121744.
  • Lin, H., P. Zhang, L. Zeng. 2021. Preparation of glass-ceramics via cosintering and solidification of hazardous waste incineration residue and chromium-containing sludge. ACS Omega 6 (37):23723–30.
  • Liu, W. J., Z. G. Shao, and Y. Xu. 2021. Emission characteristics of nitrogen and sulfur containing pollutants during the pyrolysis of oily sludge with and without catalysis. Journal of Hazardous Materials 401:123820. doi:10.1016/j.jhazmat.2020.123820.
  • Liu, J., W. Song, and Y. Nie. 2008. Effects of temperature on pyrolysis products of oil sludge. Frontiers of Environmental Science & Engineering in China 2 (1):8–14.
  • Liu, Y., Y. Song, T. Zhang, Z. Jiang, A. A. Siyal, J. Dai, J. Fu, C. Zhou, L. Wang, X. Li, 2021. Microwave-assisted pyrolysis of oily sludge from offshore oilfield for recovery of high-quality products. Journal of Hazardous Materials 420:126578. doi:10.1016/j.jhazmat.2021.126578.
  • Liu, Y., H. Yu, Z. Jiang, Y. Song, T. Zhang, A. A. Siyal, J. Dai, X. Bi, J. Fu, W. Ao, et al. 2021. Microwave pyrolysis of oily sludge under different control modes. Journal of Hazardous Materials 416:125887. doi:10.1016/j.jhazmat.2021.125887.
  • Li, X., F. Zhang, B. Guan, et al. Review on oily sludge treatment technology. IOP Conference Series Earth and Environmental Science, 2020, 467:012173.
  • Mo, W., Z. Wu, X. He. 2021. Functional group characteristics and pyrolysis/combustion performance of fly ashes from Karamay oily sludge based on FT-IR and TG-DTG analyses. Fuel 296 (5):120669.
  • Panek, P., B. Kostura, I. Cepelakova, I. Koutník, and T. Tomšej. 2014. Pyrolysis of oil sludge with calcium-containing additive. Journal of Analytical and Applied Pyrolysis 108:274–83. doi:10.1016/j.jaap.2014.04.005.
  • Peng, X., X. Ma, Y. Lin, Guo, Z., Hu, S, Ning, X., & Zhang, Y. 2015. Co-pyrolysis between microalgae and textile dyeing sludge by TG-FTIR: Kinetics and products. Energy Conversion & Management 100:391–402.
  • Perin, G., L. Craboledda, M. Lucchese, Cirillo, R., Dotta, L, & Zanette, M. L. 1985. Heavy metal speciation in the sediments of northern Adriatic Sea. A new approach for environmental toxicity determination. Heavy Metals in the Environment 2 (1):454–56.
  • Qin, L., J. Han, X. He, Zhan, Y, & Yu, F. 2015. Recovery of energy and iron from oily sludge pyrolysis in a fluidized bed reactor. Journal of Environmental Management 154:177–82.
  • Shi, W., C. Liu, D. Ding. 2013. Immobilization of heavy metals in sewage sludge by using subcritical water technology. Bioresource Technology 137:18–24.
  • Shi, W., C. Liu, Y. Shu, Feng, C, Lei, Z. and Zhang, Z. 2013. Synergistic effect of rice husk addition on hydrothermal treatment of sewage sludge: Fate and environmental risk of heavy metals. Bioresource Technology 149:496–502.
  • Tian, Y., J. Li, X. Yan, T. Whitcombe, and R. Thring. 2019. Co-pyrolysis of metal contaminated oily waste for oil recovery and heavy metal immobilization. Journal of Hazardous Materials 373:1–10. doi:10.1016/j.jhazmat.2019.03.061.
  • Wan, G., L. Bei, J. Yu. 2022. Products distribution and hazardous elements migration during pyrolysis of oily sludge from the oil refining process. Chemosphere 288:132524.
  • Wang, Y., B. Dong, Y. Fan, et al. 2019. Nitrogen transformation during pyrolysis of oilfield sludge with high polymer content. Chemosphere 219:383–89.
  • Wang, Z., Z. Gong, Z. Wang, Fang, P & Han, D. 2018. A TG-MS study on the coupled pyrolysis and combustion of oil sludge. Thermochimica acta 663:137–44.
  • Wang, Z., Z. Gong, Z. Wang, X. Li, and Z. Chu. 2020. Application and development of pyrolysis technology in petroleum oily sludge treatment. Environmental Engineering Research 26 (1):190460. doi:10.4491/eer.2019.460.
  • Wang, S., Y. K. Kalkhajeh, Z. Qin, and W. Jiao. 2020. Spatial distribution and assessment of the human health risks of heavy metals in a retired petrochemical industrial area, south China. Environmental Research 188:109661. doi:10.1016/j.envres.2020.109661.
  • Wang, L., Y. Xu, Z. Zhao, D. Zhang, X. Lin, B. Ma, and H. Zhang. 2022. Analysis of Pyrolysis Characteristics of Oily Sludge in Different Regions and Environmental Risk Assessment of Heavy Metals in Pyrolysis Residue. ACS Omega 7 (30):26265–74. doi:10.1021/acsomega.2c01994.
  • Xue, Y., Y. Zhou, J. Liu, Y. Xiao, and T. Wang. 2021. Comparative analysis for pyrolysis of sewage sludge in tube reactor heated by electromagnetic induction and electrical resistance furnace. Waste Management 120:513–21. doi:10.1016/j.wasman.2020.10.015.
  • Xu, T., X. Wang, T. Li, T. Li, and X. Zhan. 2018. Heavy metal pollution of oil-based drill cuttings at a shale gas drilling field in Chongqing, China: A human health risk assessment for the workers. Ecotoxicology & Environmental Safety 165:160–63. doi:10.1016/j.ecoenv.2018.08.104.
  • Yan, J., J. Yang, and Z. Liu. 2005. SH radical: The key intermediate in sulfur transformation during thermal processing of coal. Environment Science and Technology 39 (13):5043–51.
  • Yu, H., J. Li, F. Lin, Zeng, M, Li, R, Yan, B., & Chen, G. 2023. Pyrolysis/Combustion potential and heavy metal risk of oily sludge and derived products in industrial scale. Fuel 344:128044.
  • Zaker, A., Z. Chen, X. Wang, & Zhang, Q. 2019. Microwave-assisted pyrolysis of sewage sludge: A review. Fuel Processing Technology 187:84–104.
  • Zhang, H., Z. Gao, Y. Liu, C. Ran, X. Mao, Q. Kang, W. Ao, J. Fu, J. Li, G. Liu, et al. 2018. Microwave-assisted pyrolysis of textile dyeing sludge, and migration and distribution of heavy metals. Journal of Hazardous Materials 355:128–35. doi:10.1016/j.jhazmat.2018.04.080.
  • Zhang, L., Z. Li, Y. Yang, Zhou, Y., Li, J., Si, L., & Kong, B. 2016. Research on the composition and distribution of organic sulfur in coal. Molecules 21 (5):630.
  • Zhang, Y., J. Zhang, C. Sheng, Chen, J., Liu, Y., Zhao, L. and Xie, F. 2011. X-ray photoelectron spectroscopy (XPS) investigation of nitrogen functionalities during coal char combustion in O2/CO2 and O2/Ar atmospheres. Energy & Fuels 25 (1):240–45.
  • Zhou, Q., Y. Zhang, J. Zhang, and D. Ding. 2018. Evolution behaviors of nitrogen functionalities during fast CO2-rich pyrolysis of coal. Fuel 229:135–43. doi:10.1016/j.fuel.2018.05.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.