124
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Assessment of Bach-type internal rotor on the performance of a hybrid wind turbine: effects of attachment angle, tip speed ratio, and free-wind speed

&
Pages 842-860 | Received 25 Jul 2022, Accepted 25 May 2023, Published online: 03 Jun 2023

References

  • Alom, N., and U. K. Saha. 2019. Influence of blade profiles on Savonius rotor performance: Numerical simulation and experimental validation. Energy Conversion & Management 186:267–77. doi:10.1016/j.enconman.2019.02.058.
  • Arpino, F., M. Scungio, and G. Cortellessa. 2018. Numerical performance assessment of an innovative Darrieus-style vertical axis wind turbine with auxiliary straight blades. Energy Conversion & Management 171:769–77. doi:10.1016/j.enconman.2018.06.028.
  • Asadi, M., and R. Hassanzadeh. 2021. Effects of internal rotor parameters on the performance of a two bladed Darrieus-two bladed Savonius hybrid wind turbine. Energy Conversion & Management 238:114109. doi:10.1016/j.enconman.2021.114109.
  • Basumatary, M., A. Biswas, and R. Misra. 2018. CFD analysis of an innovative combined lift and drag (CLD) based modified Savonius water turbine. Energy Conversion & Management 174:72–87. doi:10.1016/j.enconman.2018.08.025.
  • Bhuyan, S., and A. Biswas. 2014. Investigations on self-starting and performance characteristics of simple H and hybrid H-Savonius vertical axis wind rotors. Energy Conversion & Management 87:859–67. doi:10.1016/j.enconman.2014.07.056.
  • Chan, C. M., H. Bai, and D. He. 2018. Blade shape optimization of the Savonius wind turbine using a genetic algorithm. Applied Energy 213:148–57. doi:10.1016/j.apenergy.2018.01.029.
  • Chen, J., H. Yang, M. Yang, and H. Xu. 2015. The effect of the opening ratio and location on the performance of a novel vertical axis Darrieus turbine. Energy 89:819–34. doi:10.1016/j.energy.2015.05.136.
  • Elbatran, A., Y. M. Ahmed, and A. S. Shehata. 2017. Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine. Energy 134:566–84. doi:10.1016/j.energy.2017.06.041.
  • Ghazalla, R., M. Mohamed, and A. Hafiz. 2019. Synergistic analysis of a Darrieus wind turbine using computational fluid dynamics. Energy 189:116214. doi:10.1016/j.energy.2019.116214.
  • Ghosh, A., A. Biswas, K. Sharma, and R. Gupta. 2015. Computational analysis of flow physics of a combined three bladed Darrieus Savonius wind rotor. Journal of the Energy Institute 88 (4):425–37. doi:10.1016/j.joei.2014.11.001.
  • Grönman, A., J. Backman, M. Hansen-Haug, M. Laaksonen, M. Alkki, and P. Aura. 2018. Experimental and numerical analysis of vaned wind turbine performance and flow phenomena. Energy 159:827–41. doi:10.1016/j.energy.2018.06.204.
  • Guo, F., B. Song, Z. Mao, and W. Tian. 2020. Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector. Energy 196:117132. doi:10.1016/j.energy.2020.117132.
  • Hassanzadeh, R., and M. Mohammadnejad. 2019. Effects of inward and outward overlap ratios on the two-blade Savonius type of vertical axis wind turbine performance. International Journal of Green Energy 16 (15):1485–96. doi:10.1080/15435075.2019.1671420.
  • Hassanzadeh, R., M. Mohammadnejad, and S. Mostafavi. 2020. Comparison of various blade profiles in a two-blade conventional Savonius wind turbine. Journal of Energy Resources Technology 143 (2). doi:10.1115/1.4047757.
  • Hosseini, A., and N. Goudarzi. 2019. Design and CFD study of a hybrid vertical-axis wind turbine by employing a combined Bach-type and H-Darrieus rotor systems. Energy Conversion & Management 189:49–59. doi:10.1016/j.enconman.2019.03.068.
  • Jacob, J., and D. Chatterjee. 2019. Design methodology of hybrid turbine towards better extraction of wind energy. Renewable Energy 131:625–43. doi:10.1016/j.renene.2018.07.064.
  • Jiang, Y., P. Zhao, T. Stoesser, K. Wang, and L. Zou. 2020. Experimental and numerical investigation of twin vertical axis wind turbines with a deflector. Energy Conversion & Management 209:112588. doi:10.1016/j.enconman.2020.112588.
  • Karimian, S., and A. Abdolahifar. 2020. Performance investigation of a new Darrieus Vertical Axis Wind Turbine. Energy 191:116551. doi:10.1016/j.energy.2019.116551.
  • Kerikous, E., and D. Thévenin. 2019. Optimal shape and position of a thick deflector plate in front of a hydraulic Savonius turbine. Energy 189:116157. doi:10.1016/j.energy.2019.116157.
  • Kumar, R. S., T. M. Premkumar, S. Seralathan, D. D. Xavier, E. Elumalai, V. Hariram, and S. Sabapathi. 2020. Simulation studies on influence of shape and number of blades on the performance of vertical axis wind turbine. Materials Today: Proceedings 185:124.
  • Liang, X., S. Fu, B. Ou, C. Wu, C. Y. Chao, and K. Pi. 2017. A computational study of the effects of the radius ratio and attachment angle on the performance of a Darrieus-Savonius combined wind turbine. Renewable Energy 113:329–34. doi:10.1016/j.renene.2017.04.071.
  • Liu, K., M. Yu, and W. Zhu. 2019. Enhancing wind energy harvesting performance of vertical axis wind turbines with a new hybrid design: A fluid-structure interaction study. Renewable Energy 140:912–27. doi:10.1016/j.renene.2019.03.120.
  • Li, Y., S. Zhao, K. Tagawa, and F. Feng. 2018. Starting performance effect of a truncated-cone-shaped wind gathering device on small-scale straight-bladed vertical axis wind turbine. Energy Conversion & Management 167:70–80. doi:10.1016/j.enconman.2018.04.062.
  • Mohamed, M. 2012. Performance investigation of H-rotor Darrieus turbine with new airfoil shapes. Energy 47 (1):522–30. doi:10.1016/j.energy.2012.08.044.
  • Mohamed, M. 2013. Impacts of solidity and hybrid system in small wind turbines performance. Energy 57:495–504. doi:10.1016/j.energy.2013.06.004.
  • Mohamed, M. H. 2019. Criticism study of J-Shaped darrieus wind turbine: Performance evaluation and noise generation assessment. Energy 177:367–85. doi:10.1016/j.energy.2019.04.102.
  • Mohamed, M., A. Dessoky, and F. Alqurashi. 2019. Blade shape effect on the behavior of the H-rotor Darrieus wind turbine: Performance investigation and force analysis. Energy 179:1217–34. doi:10.1016/j.energy.2019.05.069.
  • Patankar, S. 2018. Numerical heat transfer and fluid flow. Taylor & Francis. doi: 10.1201/9781482234213.
  • Qasemi, K., and L. N. Azadani. 2020. Optimization of the power output of a vertical axis wind turbine augmented with a flat plate deflector. Energy 202:117745. doi:10.1016/j.energy.2020.117745.
  • Rajad, T., O. Bouhal, T. Arid, A. Kousksou, T. Jamil, A. El Rhafiki, A. Benbassou, and A. Benbassou. 2018. CFD performance enhancement of a low cut-in speed current Vertical Tidal Turbine through the nested hybridization of Savonius and Darrieus. Energy Conversion & Management 169:266–78. doi:10.1016/j.enconman.2018.05.027.
  • Rezaeiha, A., I. Kalkman, and B. Blocken. 2017. CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment. Renewable Energy 107:373–85. doi:10.1016/j.renene.2017.02.006.
  • Rezaeiha, A., H. Montazeri, and B. Blocken. 2018. Towards accurate CFD simulations of vertical axis wind turbines at different tip speed ratios and solidities: Guidelines for azimuthal increment, domain size and convergence. Energy Conversion & Management 156:301–16. doi:10.1016/j.enconman.2017.11.026.
  • Roy, S., and A. Ducoin. 2016. Unsteady analysis on the instantaneous forces and moment arms acting on a novel Savonius-style wind turbine. Energy Conversion & Management 121:281–96. doi:10.1016/j.enconman.2016.05.044.
  • Roy, S., and U. K. Saha. 2015. Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine. Applied Energy 137:117–25. doi:10.1016/j.apenergy.2014.10.022.
  • Saini, G., and R. Saini. 2018. A numerical analysis to study the effect of radius ratio and attachment angle on hybrid hydrokinetic turbine performance. Energy for Sustainable Development 47:94–106. doi:10.1016/j.esd.2018.09.005.
  • Scungio, M., F. Arpino, V. Focanti, M. Profili, and M. Rotondi. 2016. Wind tunnel testing of scaled models of a newly developed Darrieus-style vertical axis wind turbine with auxiliary straight blades. Energy Conversion & Management 130:60–70. doi:10.1016/j.enconman.2016.10.033.
  • Sepehrianazar, F., R. Hassanzadeh, and I. Mirzaee. 2019 Turbulence and Energy Assessment of a Two Bladed H-Type Vertical Axis Wind Turbine Between Two High-Rise Buildings. International Journal Heat Technology 184:115–35.
  • Song, C., G. Wu, W. Zhu, and X. Zhang. 2020. Study on Aerodynamic Characteristics of Darrieus Vertical Axis Wind Turbines with Different Airfoil Maximum Thicknesses Through Computational Fluid Dynamics. Arabian Journal for Science & Engineering 45 (2):689–98. doi:10.1007/s13369-019-04127-8.
  • Storti, B. A., J. J. Dorella, N. D. Roman, I. Peralta, and A. E. Albanesi. 2019. Improving the efficiency of a Savonius wind turbine by designing a set of deflector plates with a metamodel-based optimization approach. Energy 186:115814. doi:10.1016/j.energy.2019.07.144.
  • Tahani, M., A. Rabbani, A. Kasaeian, M. Mehrpooya, and M. Mirhosseini. 2017. Design and numerical investigation of Savonius wind turbine with discharge flow directing capability. Energy 130:327–38. doi:10.1016/j.energy.2017.04.125.
  • Tescione, G., D. Ragni, C. He, C. S. Ferreira, and G. Van Bussel. 2014. Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry. Renewable Energy 70:47–61. doi:10.1016/j.renene.2014.02.042.
  • Wong, K. H., W. T. Chong, S. C. Poh, Y.-C. Shiah, N. L. Sukiman, and C.-T. Wang. 2018. 3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine. Renewable Energy 129:32–55. doi:10.1016/j.renene.2018.05.085.
  • Wong, K. H., W. T. Chong, N. L. Sukiman, Y.-C. Shiah, S. C. Poh, K. Sopian, and W.-C. Wang. 2018. Experimental and simulation investigation into the effects of a flat plate deflector on vertical axis wind turbine. Energy Conversion & Management 160:109–25. doi:10.1016/j.enconman.2018.01.029.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.