176
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Novel synthesis of cauliflower-like nanostructured ZnFe2O4 high-performance electrode for supercapattery applications

, , , &
Pages 919-928 | Received 25 Oct 2022, Accepted 26 May 2023, Published online: 16 Jun 2023

References

  • Ali, N. U. H. L., S. Manoharan, P. Pazhamalai, and S. J. Kim. 2022. CuMoO4 nanostructures: A novel bifunctional material for supercapacitor and sensor applications. Journal of Energy Storage 52:104784. doi:10.1016/J.EST.2022.104784.
  • Arunkumar, M., and A. Paul. 2017. Importance of electrode preparation methodologies in supercapacitor applications, ACS omega. ACS Omega 2 (11):8039–50. doi:10.1021/acsomega.7b01275.
  • Bandgar, S. B., M. M. Vadiyar, C. L. Jambhale, Z. Ye, J. H. Kim, and S. S. Kolekar. 2021. Construction of dual metal ferrite-based core-shell nanostructures as low-cost multimetal electrode for boosting energy density of flexible asymmetric supercapattery. Journal of Energy Storage 36:102379. doi:10.1016/j.est.2021.102379.
  • Bandgar, S. B., M. M. Vadiyar, Y. C. Ling, J. Y. Chang, S. H. Han, A. V. Ghule, and S. S. Kolekar. 2018. Metal Precursor Dependent Synthesis of NiFe2O4 Thin Films for High-Performance Flexible Symmetric Supercapacitor. ACS Applied Energy Materials 1 (2):638–48. doi:10.1021/acsaem.7b00163.
  • Bijani, S., R. Schrebler, E. A. Dalchiele, M. Gabás, L. Martínez, and J. R. Ramos-Barrado. 2011. Study of the nucleation and growth mechanisms in the electrodeposition of micro- and nanostructured Cu2O thin films. The Journal of Physical Chemistry C 115 (43):21373–82. doi:10.1021/jp208535e.
  • Chen, T. W., U. Rajaji, S. M. Chen, M. M. Al Mogren, M. Hochlaf, S. D. A. Al Harbi, and R. J. Ramalingam. 2019. A novel nanocomposite with superior electrocatalytic activity: A magnetic property based ZnFe2O4 nanocubes embellished with reduced graphene oxide by facile ultrasonic approach, Ultrason. Ultrasonics Sonochemistry 57:116–24. doi:10.1016/j.ultsonch.2019.05.007.
  • Choi, K., I. K. Moon, and J. Oh. 2019. An efficient amplification strategy for N-doped NiCo 2 O 4 with oxygen vacancies and partial Ni/Co-nitrides as a dual-function electrode for both supercapatteries and hydrogen electrocatalysis. Journal of Materials Chemistry A 7 (4):1468–78. doi:10.1039/c8ta07210h.
  • Cui, X., H. Li, X. Zhang, X. Liu, Y. Liu, and Y. Luo. 2016. Effect of scan rate on electrochemical behaviors of Cu2O nanocrystals for nonenzymatic glucose sensing. Electrochimica acta 222:534–41. doi:10.3390/s19122824.
  • Fan, P., H. Wu, M. Zhong, H. Zhang, B. Bai, and G. Jin. 2016. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion. Nanoscale 8 (30):14617–24. doi:10.1039/c6nr03662g.
  • Grujicic, D., and B. Pesic. 2002. Electrodeposition of copper: The nucleation mechanisms. Electrochimica acta 47 (18):2901–12. doi:10.1016/S0013-4686(02)00161-5.
  • Gupta, S. P., V. B. Patil, N. L. Tarwal, S. D. Bhame, S. W. Gosavi, I. S. Mulla, D. J. Late, S. S. Suryavanshi, and P. S. Walke. 2019. Enhanced energy density and stability of self-assembled cauliflower of Pd doped monoclinic WO3 nanostructure supercapacitor. Materials Chemistry and Physics 225:192–99. doi:10.1016/j.matchemphys.2018.12.077.
  • Haider, S. S., M. Z. Iqbal, S. Zakar, A. M. Afzal, K. Yaqoob, and S. Aftab. 2021. Superior performance of electrodeposited CoMnS as novel electrode material for supercapattery devices. Journal of Energy Storage 39:102608. doi:10.1016/j.est.2021.102608.
  • Huang, G., X. Guo, X. Cao, Q. Tian, and H. Sun. 2017. Formation of graphene-like 2D spinel MnCo2O4 and its lithium storage properties. Journal of Alloys and Compounds 695:2937–44. doi:10.1016/j.jallcom.2016.11.379.
  • Iqbal, M. Z., and J. Khan. 2021. Optimization of cobalt-manganese binary sulfide for high performance supercapattery devices. Electrochimica acta 368:137529. doi:10.1016/j.electacta.2020.137529.
  • Iro, Z. S. 2016. A brief review on electrode materials for supercapacitor. International Journal of Electrochemical Science 11:10628–43. doi:10.20964/2016.12.50.
  • Joshi, B., E. Samuel, C. Park, Y. Kim, H. S. Lee, and S. S. Yoon. 2021. Bimetallic ZnFe2O4 nanosheets prepared via electrodeposition as binder-free high-performance supercapacitor electrodes. Applied Surface Science 559:149951. doi:10.1016/j.apsusc.2021.149951.
  • Junais, P. M., M. Athika, G. Govindaraj, and P. Elumalai. 2020. Supercapattery performances of nanostructured cerium oxide synthesized using polymer soft-template. Journal of Energy Storage 28:101241. doi:10.1016/j.est.2020.101241.
  • Kadam, S. L., R. S. Ingole, U. T. Nakate, N. G. Tiwari, S. M. Mane, J. C. Shin, and S. B. Kulkarni. 2021. Effect of solution concentration and electrolytes on the electrochemical performance of hydrothermally synthesized reduced graphene oxide, mater. Materials Letters 299: doi:10.1016/j.matlet.2021.130116.
  • Khalid, S., C. Cao, L. Wang, and Y. Zhu. 2016. Microwave assisted synthesis of porous nico2o4 microspheres: Application as high performance asymmetric and symmetric supercapacitors with large areal capacitance. Scientific Reports 6 (1):1–13. doi:10.1038/srep22699.
  • Khalid, S., C. Cao, L. Wang, Y. Zhu, and Y. Wu. 2016. A high performance solid state asymmetric supercapacitor device based upon NiCo2O4 nanosheets//MnO2 microspheres. RSC Advances 6 (74):70292–302. doi:10.1039/c6ra15420d.
  • Kong, D., W. Ren, C. Cheng, Y. Wang, Z. Huang, and H. Y. Yang. 2015. Three-dimensional NiCo2O4@Polypyrrole coaxial nanowire arrays on carbon textiles for high-performance flexible asymmetric solid-state supercapacitor. ACS Applied Materials and Interfaces 7 (38):21334–46. doi:10.1021/acsami.5b05908.
  • Koyyada, G., N. S. Kumar, I. H. Ibrahim, M. Boumaza, J. H. Kim, and K. Mallikarjuna. 2021. In situmicrowave-assisted solvothermal synthesis via morphological transformation of ZnCo2O43D nanoflowers and nanopetals to 1D nanowires for hybrid supercapacitors. RSC Advances 11 (11):5928–37. doi:10.1039/d0ra09507a.
  • Laheäär, A., P. Przygocki, Q. Abbas, and F. Béguin. 2015. Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors. Electrochemistry Communications 60:21–25. doi:10.1016/j.elecom.2015.07.022.
  • Liang, R., Y. Du, P. Xiao, J. Cheng, S. Yuan, Y. Chen, J. Yuan, and J. Chen. 2021. Transition metal oxide electrode materials for supercapacitors: A review of recent developments. Nanomaterials 11 (5):1248. doi:10.3390/nano11051248.
  • Liu, X., T. Lin, X. Wu, L. Wu, and Q. Chen. 2019. Facile preparation of ZnFe2O4@ carbon cloth composite electrode with enhanced electrochemical performance. Electrochimica acta 324:134848. doi:10.1016/j.electacta.2011.05.090.
  • Liu, D., Y. Liu, X. Liu, C. Xu, J. Zhu, and H. Chen. 2022. Growth of uniform CuCo2O4 porous nanosheets and nanowires for high-performance hybrid supercapacitors. Journal of Energy Storage 52:105048. doi:10.1016/J.EST.2022.105048.
  • Manoharan, S., D. Kesavan, P. Pazhamalai, K. Krishnamoorthy, and S. J. Kim. 2021. Ultrasound irradiation mediated preparation of antimony sulfoiodide (SbSI) nanorods as a high-capacity electrode for electrochemical supercapacitors. Materials Chemistry Frontiers 5 (5):2303–12. doi:10.1039/d0qm00863j.
  • Raut, S. S., B. R. Sankapal, M. S. A. Hossain, S. Pradhan, R. R. Salunkhe, and Y. Yamauchi. 2018. Zinc ferrite anchored multiwalled carbon nanotubes for high-performance supercapacitor applications. European Journal of Inorganic Chemistry 2018 (2):137–42. doi:10.1002/ejic.201700836.
  • Saba, A. E., E. M. Elsayed, M. M. Moharam, M. M. Rashad, and R. M. Abou-Shahba. 2011. Structure and magnetic properties of Ni x Zn1−x Fe2O4 thin films prepared through electrodeposition method. Journal of Materials Science 46 (10):3574–82. doi:10.1007/s10853-011-5271-8.
  • Serhan, M., M. Long, D. Jackemeyer, M. Sprowls, I. D. Perez, W. Maret, E. Tao, N. Forzani, and E. Forzani. 2019. Total iron measurement in human serum with a smartphone, AIChE Annu. Meeting Conference Proceedings 2019-Novem 8:1–9. doi:10.1039/x0xx00000x.
  • Singh, A., S. K. Ojha, M. Singh, and A. K. Ojha. 2020. Controlled synthesis of NiCo2S4@NiCo2O4 core@Shell nanostructured arrays decorated over the rGO sheets for high-performance asymmetric supercapacitor. Electrochimica acta 349:136349. doi:10.1016/j.electacta.2020.136349.
  • Uma Shankar, V., D. Govindarajan, R. Gopalakrishnan, T. Maiyalagan, and M. Joseph Salethraj. 2021. Rgo-encapsulated sn-doped V2O5 nanorods for high-performance supercapacitors, mater. Materials Today Communications 27:102357. doi:10.1016/j.mtcomm.2021.102357.
  • Wang, Y., J. Li, J. Gao, and J. Liu. 2016. Fabrication and enhanced hydrogen sensing properties of hierarchical ZnO-Ni foam composites. Sensors and Actuators B: Chemical 222:702–09. doi:10.3390/2Fnano8110902.
  • Wang, X., L. Ma, and J. Sun. 2019. Vanadium pentoxide nanosheets in-situ spaced with acetylene black as cathodes for high-performance zinc-ion batteries. ACS Applied Materials and Interfaces 11 (44):41297–303. doi:10.1021/acsami.9b13103.
  • Wang, X., L. Ma, P. Zhang, H. Wang, S. Li, S. Ji, Z. Wen, and J. Sun. 2020. Vanadium pentoxide nanosheets as cathodes for aqueous zinc-ion batteries with high rate capability and long durability. Applied Surface Science 502:144207. doi:10.1016/j.apsusc.2019.144207.
  • Wang, L., X. Wang, X. Xiao, F. Xu, Y. Sun, and Z. Li. 2013. Reduced graphene oxide/nickel cobaltite nanoflake composites for high specific capacitance supercapacitors. Electrochimica acta 111:937–45. doi:10.1016/j.electacta.2013.08.094.
  • Wan, C., L. Yuan, and H. Shen. 2014. Effects of electrode mass-loading on the electrochemical properties of porous mno2 for electrochemical supercapacitor. International Journal of Electrochemical Science 9:4024–38.
  • Winter, M., and R. J. Brodd. 2004. What are batteries, fuel cells, and supercapacitors? Chemical Reviews 104 (10):4245–70. doi:10.1021/cr020730k.
  • Wu, Y., and C. Cao. 2018. The way to improve the energy density of supercapacitors: Progress and perspective. Science of China Mater 61:1517–26. doi:10.1007/s40843-018-9290-y.
  • Yan, J., S. Li, B. Lan, Y. Wu, and P. S. Lee. 2020. Rational design of nanostructured electrode materials toward multifunctional supercapacitors. Advanced Functional Materials 30:1–35. doi:10.1002/adfm.201902564.
  • Younas, W., M. Naveed, C. Cao, Y. Zhu, C. Du, X. Ma, N. Mushtaq, M. Tahir, and M. Naeem. 2022. Facile one-step microwave-assisted method to synthesize nickel selenide nanosheets for high-performance hybrid supercapacitor. Journal of Colloid and Interface Science 608:1005–14. doi:10.1016/J.JCIS.2021.09.153.
  • Yu, L., and G. Z. Chen. 2020. Supercapatteries as high-performance electrochemical energy storage devices. Electrochemical Energy Reviews 3 (2):271–85. doi:10.1007/s41918-020-00063-6.
  • Zayani, W., S. Azizi, K. S. El-Nasser, I. Othman Ali, M. Molière, N. Fenineche, H. Mathlouthi, and J. Lamloumi. 2021. Electrochemical behavior of a spinel zinc ferrite alloy obtained by a simple sol-gel route for Ni-MH battery applications. International Journal of Energy Research 45 (4):5235–47. doi:10.1002/er.6140.
  • Zhang, J., X. Wang, G. Zhang, J. Du, and Y. Liu. 2016. Facile synthesis of ZnFe2O4/graphene oxide nanocomposites for high-performance supercapacitors. Journal of Alloys and Compounds 682:289–95. doi:10.3390/nano13061034.
  • Zhao, X., L. Mao, Q. Cheng, J. Li, F. Liao, G. Yang, L. Xie, C. Zhao, and L. Chen. 2020. Two-dimensional spinel structured co-based materials for high performance supercapacitors. Chemical Engineering Journal 387:124081. doi:10.1016/j.cej.2020.124081.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.