115
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Study on effects of multi-climatic parameters on performance of ground source heat pump through coaxial borehole heat exchanger

&
Pages 959-972 | Received 08 Dec 2022, Accepted 15 Jun 2023, Published online: 20 Jun 2023

References

  • Acuña, J., and B. Palm. 2013. Distributed thermal response tests on pipe-in-pipe borehole heat exchangers. Applied Energy 109:312–20. doi:10.1016/j.apenergy.2013.01.024.
  • Bandos, T. V., A. Campos-Celador, L. M. López-González, and J. M. Sala-Lizarraga. 2016. Finite cylinder-source model for energy pile heat exchangers: Effect of buried depth and heat load cyclic variations. Applied Thermal Engineering 96:130–36. doi:10.1016/j.applthermaleng.2015.11.073.
  • Bandos, T. V., Á. Montero, F. de Córdoba P, and J. F. Urchueguía. 2011. Improving parameter estimates obtained from thermal response tests: Effect of ambient air temperature variations. Geothermics 40 (2):136–43. doi:10.1016/j.geothermics.2011.02.003.
  • Beier, R. A., J. Acuña, P. Mogensen, and B. Palm. 2014. Transient heat transfer in a coaxial borehole heat exchanger. Geothermics 51:470–82. doi:10.1016/j.geothermics.2014.02.006.
  • Bidarmaghz, A., G. A. Narsilio, I. W. Johnston, and S. Colls. 2016. The importance of surface air temperature fluctuations on long-term performance of vertical ground heat exchangers. Geomechanics for Energy and the Environment 6:35–44. doi:10.1016/j.gete.2016.02.003.
  • Bourne-Webb, P., S. Burlon, S. Javed, S. Kürten, and F. Loveridge. 2016. Analysis and design methods for energy geostructures. Renewable & Sustainable Energy Reviews 65:402–19. doi:10.1016/j.rser.2016.06.046.
  • Carslaw, H. S., and J. C. Jaeger. 1947. Conduction of heat in solid. Oxford: Claremore Press.
  • Choi, W., and R. Ooka. 2016. Effect of disturbance on thermal response test, part 2: Numerical study of applicability and limitation of infinite line source model for interpretation under disturbance from outdoor environment. Renew Energy 85:1090–105. doi:10.1016/j.renene.2015.07.049.
  • Cui, Y., J. Zhu, S. Twaha, and S. Riffat. 2018. A comprehensive review on 2D and 3D models of vertical ground heat exchangers. Renewable & Sustainable Energy Reviews 94:84–114. doi:10.1016/j.rser.2018.05.063.
  • Deerman, J. D., and S. P. Kavanaugh. 1991. Simulation of vertical U-tube ground coupled heat pump systems using the cylindrical heat source solution. ASHRAE Transaction 97:287–95.
  • Eskilson, P. Thermal analysis of heat extraction boreholes. Ph.D. thesis. Sweden: University of Lund; 1987.
  • Florides, G., and S. Kalogirou. 2007. Ground heat exchangers—A review of systems, models and applications. Renew Energy 32 (15):2461–78. doi:10.1016/j.renene.2006.12.014.
  • Gehlin, S. E. A., and G. Hellström. 2003a. Comparison of four models for thermal response test evaluation. Building Engineering 109:131–42.
  • Gehlin, S. E. A., and G. Hellström. 2003b. Influence on thermal response test by groundwater flow in vertical fractures in hard rock. Renew Energy 28 (14):2221–38. doi:10.1016/S0960-1481(03)00128-9.
  • He, Y. J., and X. B. Bu. 2020. A novel enhanced deep borehole heat exchanger for building heating. Applied Thermal Engineering 178:115643. doi:10.1016/j.applthermaleng.2020.115643.
  • Holmberg, H., J. Acuña, E. Næss, and O. Sønju. 2016. Thermal evaluation of coaxial deep borehole heat exchangers. Renewable Energy 97:65–76. doi:10.1016/j.renene.2016.05.048.
  • Ingersoll, L. R., and H. J. Plass. 1948. Theory of the ground pipe heat source for the heat pump. ASHVE Transaction 47:339–48.
  • Jensen-Page, L., G. A. Narsilio, A. Bidarmaghz, and I. W. Johnston. 2018. Investigation of the effect of seasonal variation in ground temperature on thermal response tests. Renew Energy 125:609–19. doi:10.1016/j.renene.2017.12.095.
  • Kavanaugh, S. P. 1995. A design method for commercial ground-coupled heat pumps. ASHRAE Transaction 101:1088–94.
  • Lamarche, L., and B. Beauchamp. 2007. A new contribution to the finite line-source model for geothermal boreholes. Energy & Buildings 39 (2):188–98. doi:10.1016/j.enbuild.2006.06.003.
  • Li, M., and A. C. K. Lai. 2012. New temperature response functions (G functions) for pile and borehole ground heat exchangers based on composite-medium line-source theory. Energy 38 (1):255–63. doi:10.1016/j.energy.2011.12.004.
  • Li, M., and A. C. K. Lai. 2015. Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales. Applied Energy 151:178–91. doi:10.1016/j.apenergy.2015.04.070.
  • Lous, M., F. Larroque, A. Dupuy, and A. Moignard. 2015. Thermal performance of a deep borehole heat exchanger: Insights from a synthetic coupled heat and flow model. Geothermics 57:157–72. doi:10.1016/j.geothermics.2015.06.014.
  • Lucia, U., M. Simonetti, G. Chiesa, and G. Grisolia. 2020. Ground-source pump system for heating and cooling: Review and thermodynamic approach. Renewable & Sustainable Energy Reviews 131:110001.
  • Marcotte, D., and P. Pasquier. 2008. Fast fluid and ground temperature computation for geothermal ground-loop heat exchanger systems. Geothermics 37 (6):651–65. doi:10.1016/j.geothermics.2008.08.003.
  • Ma, Z., L. Xia, X. Gong, G. Kokogiannakis, S. Wang, and X. Zhou. 2017. Recent advances and development in optimal design and control of ground source heat pump systems. Renewable & Sustainable Energy Reviews 70:867–74. doi:10.1016/j.rser.2016.11.268.
  • Mensah, K., Y. S. Jang, and J. M. Choi. 2017. Assessment of design strategies in a ground source heat pump system. Energy & Buildings 138:301–08. doi:10.1016/j.enbuild.2016.12.055.
  • Mihalakakou, G. 2002. On estimating soil surface temperature profiles. Energy & Buildings 34 (3):251–59. doi:10.1016/S0378-7788(01)00089-5.
  • Nam, Y., R. Ooka, and S. Hwang. 2008. Development of a numerical model to predict heat exchange rates for a ground-source heat pump system. Energy & Buildings 40 (12):2133–40. doi:10.1016/j.enbuild.2008.06.004.
  • Nian, Y. L., and W. L. Cheng. 2018. I Analytical g-function for vertical geothermal boreholes with effect of borehole heat capacity. Applied Thermal Engineering 140:733–44. doi:10.1016/j.applthermaleng.2018.05.086.
  • Nian, Y. L., W. L. Cheng, X. Y. Yang, and K. Xie. 2019. Simulation of a novel deep ground source heat pump system using abandoned oil wells with coaxial BHE. International Journal of Heat & Mass Transfer 137:400–12. doi:10.1016/j.ijheatmasstransfer.2019.03.136.
  • Raymond, J., L. Lamarche, and M. Malo. 2016. Extending thermal response test assessments with inverse numerical modeling of temperature profiles measured in ground heat exchangers. Renew Energy 99:614–21. doi:10.1016/j.renene.2016.07.005.
  • Rees, S. J. 2015. An extended two-dimensional borehole heat exchanger model for simulation of short and medium timescale thermal response. Renew Energy 83:518–26. doi:10.1016/j.renene.2015.05.004.
  • Rees, S. J., J. D. Spitler, Z. Deng, C. D. Orio, and C. N. Johnson. 2004. A study of geothermal heat pump and standing column well performance. ASHRAE Transaction 110:3–13.
  • Sarbu, I., and C. Sebarchievici. 2014. General review of ground-source heat pump systems for heating and cooling of buildings. Energy Buildings 70:441–54. doi:10.1016/j.enbuild.2013.11.068.
  • Thomas, H. R., and S. W. Rees. 1999. The thermal performance of ground floor slabs—a full scale in-situ experiment. Building & Environment 34 (2):139–64. doi:10.1016/S0360-1323(98)00001-8.
  • Wang, H., and C. Qi. 2008. Seasonal effect on in-situ thermal response tests for ground heat source pump. Journal of Heating, Ventilation and Air Conditioning 39:14–18.
  • Wang, Z., F. Wang, J. Liu, Z. Ma, E. Han, and M. Song. 2017. Field test and numerical investigation on the heat transfer characteristics and optimal design of the heat exchangers of a deep borehole ground source heat pump system. Energy Conversion & Management 153:603–15. doi:10.1016/j.enconman.2017.10.038.
  • Wang XY, N. Y., Z. P. Deng, W. L. Cheng, and W. Cheng. 2022. Estimation method for layered ground thermal conductivity using genetic algorithm based on a 2-D heat transfer model. Energy Buildings 258:111841. doi:10.1016/j.enbuild.2022.111841.
  • Yang, H., P. Cui, and Z. Fang. 2010. Vertical-borehole ground-coupled heat pumps: A review of models and systems. Applied Energy 87 (1):16–27. doi:10.1016/j.apenergy.2009.04.038.
  • Zeng, H., N. Diao, and Z. Fang. 2003. Heat transfer analysis of boreholes in vertical ground heat exchangers. International Journal of Heat & Mass Transfer 46 (23):4467–81. doi:10.1016/S0017-9310(03)00270-9.
  • Zhang, L., J. Chen, J. Wang, and G. Huang. 2018. Estimation of soil and grout thermal properties for ground-coupled heat pump systems: Development and application. Applied Thermal Engineering 143:112–22. doi:10.1016/j.applthermaleng.2018.07.089.
  • Zhang, C., S. Hu, Y. Liu, and Q. Wang. 2016. Optimal design of borehole heat exchangers based on hourly load simulation. Energy 116:1180–90. doi:10.1016/j.energy.2016.10.045.
  • Zhang, C., Y. Wang, Y. Liu, X. Kong, and Q. Wang. 2018. Computational methods for ground thermal response of multiple borehole heat exchangers: A review. Renew Energy 127:461–73. doi:10.1016/j.renene.2018.04.083.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.