222
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Numerical investigation of the flow around a rotating cylinder with a plate under the subcritical regime of the Reynolds number

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 973-987 | Received 26 Feb 2023, Accepted 16 Jun 2023, Published online: 25 Jun 2023

References

  • Apelt, C. J., and G. S. West. 1975. The effects of wake splitter plates on the flow past a circular cylinder in the range 104< R< 5× 104. Journal of Fluid Mechanics 71 (1):145. doi:10.1017/S0022112075002479.
  • Bakhtybekova, A. R., N. K. Tanasheva, L. L. Minkov, N. N. Shuyushbayeva, and A. N. Dyusembaeva. 2022. Aerodynamic features of a rotating cylinder with a deflector. Journal of Applied Mechanics and Technical Physics 63 (5):833. doi:10.1134/S0021894422050121.
  • Benim, A. C., E. Pasqualotto, and S. H. Suh. 2008. Modelling turbulent flow past a circular cylinder by RANS, URANS, LES and DES. An International Journal 8 (5):299. doi:10.1504/PCFD.2008.019483.
  • Bruno, L., D. Fransos, N. Coste, and A. Bosco. 2010. 3D flow around a rectangular cylinder: A computational study. Journal of Wind Engineering and Industrial Aerodynamics 98 (6–7):263. doi:10.1016/j.jweia.2009.10.005.
  • Carassale, L., A. Freda, and M. Marre-Brunenghi. 2014. Experimental investigation on the aerodynamic behavior of square cylinders with rounded corners. Journal of Fluids and Structures 44:195. doi:10.1016/j.jfluidstructs.2013.10.010.
  • Chatterjee, D., N. K. Chaitanya, and S. Ghosh. 2020. Numerical analysis and experimental investigation in the machining of AISI 316 steel. Sādhanā 45 (1):1. doi:10.1007/s12046-019-1235-5.
  • Delany, N. K., and N. E. Sorensen. 1953. Low-Speed Drag of Cylinders of Various Shapes (No NACA-TN-3038). https://ntrs.nasa.gov/citations/19930083675
  • Díaz-Ojeda, H. R., L. M. González, and F. J. Huera-Huarte. 2019. On the influence of the free surface on a stationary circular cylinder with a flexible splitter plate in laminar regime. Journal of Fluids and Structures 87:102. doi:10.1016/j.jfluidstructs.2019.03.009.
  • Farhadi, M., K. Sedighi, and E. Fattahi. 2010. Proceedings of the institution of mechanical engineers, part G: Journal of Aerospace Engineering, 224: 321 doi:10.1243/09544100JAERO594.
  • Karabelas, S. J., B. C. Koumroglou, C. D. Argyropoulos, and N. C. Markatos. 2012. High Reynolds number turbulent flow past a rotating cylinder. Applied Mathematical Modelling 36 (1):379. doi:10.1016/j.apm.2011.07.032.
  • Krishna Chaitanya, N. V. V., and D. Chatterjee. 2021. Influence of counter rotation on fluid flow and heat transfer around tandem circular cylinders at low Reynolds number. Journal of the Brazilian Society of Mechanical Sciences and Engineering 43 (7):357. doi:10.1007/s40430-021-03072-8.
  • Lekkala, M. R., M. Latheef, J. H. Jung, A. Coraddu, H. Zhu, N. Srinil, B. H. Lee, and D. K. Kim. 2022. Recent advances in understanding the flow over bluff bodies with different geometries at moderate Reynolds numbers. Ocean Engineering 261:111611. doi:10.1016/j.oceaneng.2022.111611.
  • Liu, K., J. Deng, and M. Mei. 2016. Flow Measurement and Instrumentation. Flow Measurement and Instrumentation 51:95. doi:10.1016/j.flowmeasinst.2016.09.002.
  • Liu, P., and P. Liu. 2021. Aerodynamics Springer Singapore. doi:10.1007/978-981-33-6660-2_2.
  • Mannini, C., A. Šoda, and G. Schewe. 2011. Numerical investigation on the three-dimensional unsteady flow past a 5: 1 rectangular cylinder. Journal of Wind Engineering and Industrial Aerodynamics 99 (4):469. doi:10.1016/j.jweia.2010.12.016.
  • Mustto Angelo, A., and C. R. B. Gustavo. 2011. Subgrid-scale modeling of turbulent flow around circular cylinder by mesh-free vortex method. Engineering Applications of Computational Fluid Mechanics 5 (2):259. doi:10.1080/19942060.2011.11015369.
  • Olawore, A. S., and I. F. Odesola. 2013. Afrrev stech. An International Journal of Science and Technology 2:1.
  • Pezzotti, S., V. N. Mora, A. S. Andrés, and S. Franchini. 2020. Experimental study of the Magnus effect in cylindrical bodies with 4, 6, 8 and 10 sides. Journal of Wind Engineering and Industrial Aerodynamics 197:104065. doi:10.1016/j.jweia.2019.104065.
  • Piroozfam, N., S. E. Razavi, and A. Hossein Pour Shafaghi. 2016. Numerical Study on Hydrodynamics and Heat Transfer Characteristics Around a Cylinder with Inclined Splitter Plates. International Journal of Engineering 29 (4):546–53. doi:10.5829/idosi.ije.2016.29.04a.14.
  • Qu, L., C. Norberg, L. Davidson, S. H. Peng, and F. Wang. 2013. Quantitative numerical analysis of flow past a circular cylinder at Reynolds number between 50 and 200. Journal of Fluids and Structures 39:347. doi:10.1016/j.jfluidstructs.2013.02.007.
  • Rahman, M. M., M. M. Karim, and M. A. Alim. 2007. Numerical investigation of unsteady flow past a circular cylinder using 2-D finite volume method. Journal of Naval Architecture and Marine Engineering 4 (1):27. doi:10.3329/jname.v4i1.914.
  • Sarioglu, M. 2017. Control of flow around a square cylinder at incidence by using a splitter plate. Flow Measurement and Instrumentation 53:221. doi:10.1016/j.flowmeasinst.2016.06.024.
  • Shukla, S., R. N. Govardhan, and J. H. Arakeri. 2009. Flow over a cylinder with a hinged-splitter plate. Journal of Fluids and Structures 25 (4):713. doi:10.1016/j.jfluidstructs.2008.11.004.
  • Sun, X., C. S. Suh, Z. H. Ye, and B. Yu. 2020. Dynamics of a circular cylinder with an attached splitter plate in laminar flow: A transition from vortex-induced vibration to galloping. Physics of Fluids 32 (2):027104. doi:10.1063/1.5125588.
  • Tanasheva, N. K. 2021. Numerical simulation of the flow around a wind wheel with rotating cylindrical blades. Eurasian Physical Technical Journal 18 (1):51. doi:10.31489/2021No1/51-56.
  • Tanasheva, N. K., A. R. Bakhtybekova, G. S. Shaimerdenova, S. E. Sakipova, and N. Shuyushbaeva. 2022. Modeling aerodynamic characteristics of a wind energy installation with rotating cylinder blades on the basis of the ansys suite. Journal of Engineering Physics and Thermophysics 95 (2):457. doi:10.1007/s10891-022-02500-3.
  • Tanasheva, N. K., A. R. Bakhtybekova, N. N. Shuyushbayeva, A. K. Tussupbekova, and A. Tleubergenova. 2022. Calculation of the aerodynamic characteristics of a wind-power plant with blades in the form of rotating cylinders. Technical Physics Letters 48 (2):51. doi:10.1134/S1063785022020092.
  • Tian, X., M. C. Ong, J. Yang, and D. Myrhaug. 2013. Unsteady RANS simulations of flow around rectangular cylinders with different aspect ratios. Ocean Engineering 58:208. doi:10.1016/j.oceaneng.2012.10.013.
  • Yagmur, S., S. Dogan, M. H. Aksoy, I. Goktepeli, and M. Ozgoren. 2017. Comparison of flow characteristics around an equilateral triangular cylinder via PIV and Large Eddy Simulation methods. Flow Measurement and Instrumentation 55:23. doi:10.1016/j.flowmeasinst.2017.04.001.
  • Zhang, K., H. Katsuchi, D. Zhou, H. Yamada, and Z. Han. 2016. Numerical study on the effect of shape modification to the flow around circular cylinders. Journal of Wind Engineering & Industrial Aerodynamics 152:23. doi:10.1016/j.jweia.2016.02.008.
  • Zhang, H., and W. Shi. 2016. Numerical simulation of flow over a circular cylinder with a splitter plate near a moving wall. Ocean Engineering 122:162. doi:10.1016/j.oceaneng.2016.06.026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.