369
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Prospects of novel heterogeneous base catalysts and nanocatalysts in achieving sustainable biodiesel production

, , , , , & show all
Pages 1017-1042 | Received 22 Nov 2022, Accepted 17 Jun 2023, Published online: 05 Jul 2023

References

  • Abbaszaadeh, A., B. Ghobadian, M. R. Omidkhah, and G. Najafi. 2012. Current biodiesel production technologies: A comparative review. Energy Conversion and Management 63:138–48. doi:10.1016/j.enconman.2012.02.027.
  • Abdul Hakim Shaah, M., M. S. Hossain, F. A. Salem Allafi, A. Alsaedi, N. Ismail, M. O. Ab Kadir, and M. I. Ahmad. 2021. A review on non-edible oil as a potential feedstock for biodiesel: Physicochemical properties and production technologies. RSC Advances 11 (40):25018–37. doi:10.1039/D1RA04311K.
  • Acevedo, J. C., J. A. Hernandez, C. F. Valdes, and S. K. Khanal. 2015. Analysis of operating costs for producing biodiesel from palm oil at pilot-scale in Colombia. Bioresource Technology 188:117–23. doi:10.1016/j.biortech.2015.01.071.
  • Adnan, M., K. Li, J. Wang, L. Xu, and Y. Yan. 2018a. Hierarchical ZIF-8 toward Immobilizing Burkholderia cepacia lipase for application in biodiesel preparation. International Journal of Molecular Sciences 19 (5):1424. doi:https://doi.org/10.3390/ijms19051424.
  • Adnan, M., K. Li, L. Xu, and Y. Yan. 2018b. X-Shaped ZIF-8 for Immobilization Rhizomucor miehei Lipase via Encapsulation and Its Application toward Biodiesel Production. Catalysts 8 (3):96. doi:https://doi.org/10.3390/catal8030096.
  • Afsharizadeh, M., and M. Mohsennia. 2021. Novel rare-earth metal oxides-zirconia nanocatalysts for biodiesel production from corn oil and waste cooking oil. Fuel 304:121350. doi:10.1016/j.fuel.2021.121350.
  • Akia, M., F. Yazdani, E. Motaee, D. Han, and H. Arandiyan. 2014. A review on conversion of biomass to biofuel by nanocatalysts. Biofuel Research Journal 1 (01):16–25. doi:https://dx.doi.org/10.18331/BRJ2015.1.1.5.
  • Alaei, S., M. Haghighi, J. Toghiani, and B. Rahmani Vahid. 2018. Magnetic and reusable MgO/MgFe2O4 nanocatalyst for biodiesel production from sunflower oil: Influence of fuel ratio in combustion synthesis on catalytic properties and performance. Industrial Crops and Products 117:322–32. doi:10.1016/j.indcrop.2018.03.015.
  • Ali, S., O. Shafique, S. Mahmood, T. Mahmood, B. A. Khan, and I. Ahmad. 2020. Biofuels production from weed biomass using nanocatalyst technology. Biomass & bioenergy 139:105595. doi:10.1016/j.biombioe.2020.105595.
  • Al-Mawali, K. S., A. I. Osman, H. A. Al-Muhtaseb, N. Mehta, F. Jamil, F. Mjalli, G. R. Vakili-Nezhaad, and D. W. Rooney. 2021. Life cycle assessment of biodiesel production utilising waste date seed oil and a novel magnetic catalyst: A circular bioeconomy approach. Renewable Energy 170:832–46. doi:10.1016/j.renene.2021.02.027.
  • Alves, M. B., F. C. M. Medeiros, M. H. Sousa, J. C. Rubin, and P. A. Z. Suarez. 2014. Cadmium and tin magnetic nanocatalysts useful for biodiesel production. Journal of the Brazilian Chemical Society 25:2304–13. doi:10.5935/0103-5053.20140238.
  • Amalia, S., S. N. Khalifah, H. Baroroh, A. Muiz, A. Rahmatullah, N. Aini, M. R. A. Hs, M. N. Umam, I. A. Isnaini, and R. Suryana. 2019. Biodiesel production from castor oil using heterogeneous catalyst KOH/zeolite of natural zeolite Bandung Indonesia. International Conference on Biology and Applied Science (ICOBAS). 2120:3–10. 10.1063/1.5115754.
  • Ambat, I. V., M. Srivastava, and Sillanpää. 2018. Recent advancement in biodiesel production methodologies using various feedstock. Renewable and Sustainable Energy Reviews 90:356–69. doi:10.1016/j.rser.2018.03.069.
  • Anbia, M., S. Sedaghat, S. Saleh, and S. Masoomi. 2021. Effects of synthesis method on the catalystic performance of Ca-Mg-Al mixed metal oxide nanocatalyst for biodiesel production from waste cooking oil. Advanced Energy Conversion Materials 13–26. doi:10.37256/aecm.212021759.
  • Aransiola, E. F., T. V. Ojumu, O. O. Oyekola, T. F. Madzimbamuto, and D. I. O. Ikhu-Omoregbe. 2014. A review of current technology for biodiesel production: State of the art. Biomass and Bioenergy 61:276–97. doi:10.1016/j.biombioe.2013.11.014.
  • Ashok, A., L. J. Kennedy, J. J. Vijaya, and U. Aruldoss. 2018. Optimization of biodiesel production from waste cooking oil by magnesium oxide nanocatalyst synthesized using coprecipitation method. Clean Technology and Environmental Policy 20 (6):1219–31. doi:https://doi.org/10.1007/s10098-018-1547-x.
  • Atadashi, I. M., M. K. Aroua, A. R. Abdul Aziz, and N. M. N. Sulaiman. 2013. The effects of catalysts in biodiesel production: A review. Journal of Industrial and Engineering Chemistry 19 (1):14–26. doi:https://doi.org/10.1016/j.jiec.2012.07.009.
  • Athar, M., and S. Zaidi. 2020. A review of the feedstocks, catalysts, and intensification techniques for sustainable biodiesel production. Journal of Environmental Chemical Engineering 8 (6):104523. doi:https://doi.org/10.1016/j.jece.2020.104523.
  • Avhad, M. R., and J. M. Marchetti. 2015. A review on recent advancement in catalytic materials for biodiesel production. Renewable and Sustainable Energy Reviews 50:696–718. doi:10.1016/j.rser.2015.05.038.
  • Avinash, A., and A. Murugesan. 2017. Economic analysis of biodiesel production from waste cooking oil. ENERGY SOURCES, PART B: ECONOMICS, PLANNING. Energy Sources, Part B: Economics, Planning, & Policy 12 (10):890–94. doi:10.1080/15567249.2017.1319438.
  • Awogbemi, O., D. V. Von Kallon, and V. S. Aigbodion. 2021. Trends in the development and utilization of agricultural wastes as heterogeneous catalyst for biodiesel production. Journal of the Energy Institute 98:244–58. doi:10.1016/j.joei.2021.06.017.
  • Bai, H. X., X. Z. Shen, X. H. Liu, and S. Y. Liu. 2009. Synthesis of porous CaO microsphere and its application in catalyzing transesterification reaction for biodiesel. Transactions of Nonferrous Metals Society of China 19:s674–s77. doi:10.1016/S1003-6326(10)60130-6.
  • Bano, S., A. S. Ganie, S. Sultana, S. Sabir, and M. Z. Khan. 2020. Fabrication and optimisation of nanocatalysts for biodiesel production. An overview. Frontiers in Energy Research 8. doi:10.3389/fenrg.2020.579014.
  • Baskar, G., A. Gurugulladevi, T. Nishanthini, R. Aiswarya, and K. Tamilarasan. 2017. Optimization and kinetics of biodiesel production from Mahua oil using manganese 2 doped zinc oxide nanocatalyst. Renewable Energy 103:641–46. doi:10.1016/j.renene.2016.10.077.
  • Basumatary, B., S. Basumatary, B. Das, B. Nath, and P. Kalita. 2021a. Waste Musa paradisiaca plant: An efficient heterogeneous base catalyst for fast production of biodiesel. Journal of Cleaner Production 305:127089. doi:10.1016/j.jclepro.2021.127089.
  • Basumatary, S., B. Nath, and P. Kalita. 2021b. Utilization of renewable and sustainable basic heterogeneous catalyst from Heteropanax fragrans (Kesseru) for effective synthesis of biodiesel from Jatropha curcas oil. Fuel 286:119357. doi:10.1016/j.fuel.2020.119357.
  • Bet-Moushoul, E., K. Farhadi, Y. Mansourpanah, A. M. Nikbakht, R. Molaei, and M. Forough. 2016. Application of CaO-based/Au nanoparticles as heterogeneous nanocatalysts in biodiesel production. Fuel 164:119–27. doi:10.1016/j.fuel.2015.09.067.
  • Bharti, P., B. Singh, and R. K. Dey. 2019. Process optimization of biodiesel production catalyzed by CaO nanocatalyst using response surface methodology. Journal of Nanostructure in Chemistry 9 (4):269–80. doi:https://doi.org/10.1007/s40097-019-00317-w.
  • Buasri, A., P. Worawanitchaphong, S. Trongyong, and V. Loryuenyong. 2014. Utilization of scallop waste shell for biodiesel production from palm oil - optimization using Taguchi method. APCBEE procedia 8:216–21. doi:10.1016/j.apcbee.2014.03.030.
  • Calero, J., D. Luna, C. Luna, F. M. Bautista, A. A. Romero, A. Posadillo, and R. Estevez. 2020. Optimization by response surface methodology of the reaction conditions in 1,3-selective transesterification of sunflower oil, by using CaO as heterogeneous catalyst. Molecular Catalysis 122:94–102. doi:10.1016/j.mcat.2020.110804.
  • Cerveró, P. J. M., J. Coca, and S. Luque. 2008. Production of biodiesel from vegetable oils. Grasasy Aceites 59 (1):76–83. doi:10.3989/gya.2008.v59.i1.494.
  • Chakraborty, R., S. Bepari, and A. Banerjee. 2011. Application of calcined waste fish (Labeo rohita) scale as low-cost heterogeneous catalyst for biodiesel synthesis. Bioresource Technology 102 (3):3610–18. doi:https://doi.org/10.1016/j.biortech.2010.10.123.
  • Chakraborty, R., S. Das, and S. K. Bhattacharjee. 2014. Optimization of biodiesel production from Indian mustard oil by biological tri-calcium phosphate catalyst derived from turkey bone ash. Clean Technology and Environmental Policy 17 (2):455–63. doi:http://dx.doi.org/10.1007/s10098-014-0802-z.
  • Changmai, B., C. Vanlalveni, A. P. Ingle, R. Bhagat, and L. Rokhum. 2020. Widely used catalysts in biodiesel production: A review. RSC Advances 10 (68):41625–79. doi:https://doi.org/10.1039/D0RA07931F.
  • Cheng, F., and X. Li. 2018. Preparation and application of Biochar-based Catalysts for Biofuel production. Catalysts 8 (9):346. doi:10.3390/catal8090346.
  • Chen, G., R. Shan, J. Shi, C. Liu, and B. Yan. 2015. Biodiesel production from palm oil using active and stable K doped hydroxyapatite catalysts. Energy Conversion and Management 98:463–69. doi:10.1016/j.enconman.2015.04.012.
  • Choksi, H., S. Pandian, S. S. Arumugamurthi, P. Sivanandi, A. Sircar, and V. K. Booramurthy. 2021. Production of biodiesel from high free fatty acid feedstock using heterogeneous acid catalyst derived from palm-fruit-bunch. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 43:3393–402. doi:10.1080/15567036.2019.1623953.
  • Chouhan, A. P. S., and A. K. Sarma. 2011. Modern heterogeneous catalysts for biodiesel production: A comprehensive review. Renewable and Sustainable Energy Reviews 15 (9):4378–99. doi:https://doi.org/10.1016/j.rser.2011.07.112.
  • Chung, Z. L., T. H. Tan, Y. San Chan, J. Kansedo, N. M. Mubarak, M. Ghasemi, and M. O. Abdullah. 2019. Life cycle assessment of waste cooking oil for biodiesel production using waste chicken eggshell derived CaO as catalyst via transesterification. Biocatalysis and Agricultural Biotechnology 21:101317. doi:10.1016/j.bcab.2019.101317.
  • Cong, W. J., S. Nanda, H. Li, Z. Fang, A. K. Dalai, and J. A. Kozinski. 2021. Metal–organic framework-based functional catalytic materials for biodiesel production: A review. Green Chemistry 23 (7):2595–618. doi:10.1039/d1gc00233c.
  • Dai, Y. M., Y. Y. Li, J. H. Lin, B. Y. Chen, and C. C. Cheng. 2021. One-pot synthesis of acid-base bifunctional catalysts for biodiesel production. Journal of Environmental Management 299:113592. doi:10.1016/j.jenvman.2021.113592.
  • Da Luz Corrêa, A. P., R. R. C. Bastos, G. N. da Rocha Filho, J. R. Zamian, and L. R. V. da Conceição. 2020. Preparation of sulfonated carbon-based catalysts from murumuru kernel shell and their performance in the esterification reaction. RSC Advances 10 (34):20245–56. doi:10.1039/D0RA03217D.
  • Dantas, J., E. Leal, D. R. Cornejo, R. H. G. A. Kiminami, and A. C. F. M. Costa. 2018. Biodiesel production evaluating the use and reuse of magnetic nanocatalysts Ni0.5Zn0.5Fe2O4 synthesized in pilot-scale. Arabian Journal Chemistry 13 (1):3026–42. doi:10.1016/j.arabjc.2018.08.012.
  • Dawood, S., A. K. Koyande, M. Ahmad, M. Mubashir, S. Asif, J. J. Klemeš, A. Bokhari, S. Saqib, M. Lee, M. A. Qyyum, et al. 2021. Synthesis of biodiesel from non-edible (Brachychiton populneus) oil in the presence of nickel oxide nanocatalyst: Parametric and optimisation studies. Chemosphere 278:130469. doi:10.1016/j.chemosphere.2021.130469.
  • De, A., and S. S. Boxi. 2020. Application of Cu impregnated TiO2 as a heterogeneous nanocatalyst for the production of biodiesel from palm oil. Fuel 265:117019. doi:10.1016/j.fuel.2020.117019.
  • Degirmenbasi, N., S. Coskun, N. Boz, and D. M. Kalyon. 2015. Biodiesel synthesis from canola oil via heterogeneous catalysis using functionalized CaO nanoparticles. Fuel 153:620–27. doi:10.1016/j.fuel.2015.03.018.
  • De Lima, A. L., C. M. Ronconi, and C. J. A. Mota. 2016. Heterogeneous Basic Catalysts for Biodiesel Production. Catalysis Science & Technology 6 (9):2877–91. doi:https://doi.org/10.1039/C5CY01989C.
  • Deng, X., Z. Fang, Y. H. Liu, and C. L. Yu. 2010. Production of biodiesel from Jatropha oil catalyzed by nanosized solid basic catalyst. Energy 36 (2):777–84. doi:https://doi.org/10.1016/j.energy.2010.12.043.
  • de Oliveira, K. G., R. R. S. de Lima, H. M. D. A. Moura, T. D. C. Bicudo, and L. S. de Carvalho. 2022. Tangerine peel ashes applied as green catalyst: A biorefinery-based approach for biodiesel production. Biofuels, Bioprod, Biorefining 16 (2):548–61. doi:https://doi.org/10.1002/bbb.2327.
  • de Vasconcellos, A., A. H. Miller, D. A. G. Aranda, and J. G. Nery. 2018. Biocatalysts based on nanozeolite-enzyme complexes: Effects of alkoxysilane surface functionalization and biofuel production using microalgae lipids feedstock. Colloids and Surface B: Biointerfaces 165:150–57. doi:10.1016/j.colsurfb.2018.02.029.
  • Dhawane, S. H., T. Kumar, and G. Halder. 2016. Parametric effects and optimization on synthesis of iron (II) doped carbonaceous catalyst for the production of biodiesel. Energy Conversion and Management 122:310–20. doi:10.1016/j.enconman.2016.06.005.
  • Dhawane, S. H., T. Kumar, and G. Halder. 2018. Recent advancement and prospective of heterogeneous carbonaceous catalysts in chemical and enzymatic transformation of biodiesel. Energy Conversion and Management 167:176–202. doi:10.1016/j.enconman.2018.04.073.
  • Ding, S. Y., J. Gao, Q. Wang, Y. Zhang, W. G. Song, C. Y. Su, and W. Wang. 2011. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. Journal of the American Chemical Society 133 (49):19816–22. doi:10.1021/ja206846p.
  • Di Serio, M., R. Tesser, L. Pengmei, and E. Santacesaria. 2008. Heterogeneous catalysts for biodiesel production. Energy & Fuels 22 (1):207–17. doi:10.1021/ef700250g.
  • Doddabasawa R.P. 2014. Biodiesel Production Cost Analysis from the Pongamia Pinnata: A Case Study in Yadagiri District of Karnataka-India. International Journal of Science and Research 2319:7064.
  • Dos Santos, T. C., E. C. S. Santos, J. P. Dias, J. Barreto, F. L. Stavale, and C. M. Ronconi. 2019. Reduced graphene oxide as an excellent platform to produce a stable Bronsted acid catalyst for biodiesel production. Fuel 256:115793. doi:10.1016/j.fuel.2019.115793.
  • Esmaeili, H. 2022. A critical review on the economic aspect and life cycle assessment of biodiesel production using heterogeneous nanocatalysts. Fuel Processing and Technology 230:107224. doi:10.1016/j.fuproc.2022.107224.
  • Esmaeili, E., A. Khodadadi, and Y. Mortazavi. 2009. Microwave-induced combustion process variables for MgO nanoparticle synthesis using polyethylene glycol and sorbitol. Journal of the European Ceramic Society 29 (6):1061–68. doi:https://doi.org/10.1016/j.jeurceramsoc.2008.07.051.
  • Essamlali, Y., O. Amadine, A. Fihri, and M. Zahoily. 2018. Sodium modified fluorapatite as a sustainable solid bi-functional catalyst for biodiesel production from rapeseed oil. Renewable Energy 133:1–13. doi:https://doi.org/10.1016/j.renene.2018.08.103.
  • FA0. 2020. Current scenario of biodiesel production, FAO OECD Outlook https://www.oecd-ilibrary.org/sites/3aeb7be3-en/index.html?itemId=/content/component/3aeb7be3-en.
  • Farooq, M., A. Ramli, and A. Naeem. 2015. Biodiesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones. Renewable Energy 76:362–68. doi:10.1016/j.renene.2014.11.042.
  • Farooq, M., A. Ramli, and D. Subbarao. 2013. Biodiesel Production from Waste Cooking Oil using Bifunctional Heterogeneous Solid Catalysts. Journal of Cleaner Production 59:131–40. doi:10.1016/j.jclepro.2013.06.015.
  • Faruque, M. O., S. A. Razzak, and M. M. Hossain. 2020. Application of Heterogeneous Catalysts for Biodiesel Production from Microalgal Oil—A Review. Catalysts 10 (9):1025. doi:10.3390/catal10091025.
  • Feng, X., L. Xia, Z. Jiang, M. Tian, S. Zhang, and C. He. 2022. Dramatically promoted toluene destruction over Mn@Na-Al2O3@Al monolithic catalysts by Ce incorporation: Oxygen vacancy construction and reaction mechanism. Fuel 326:125051. doi:10.1016/j.fuel.2022.125051.
  • Ferrero, G. O., E. M. S. Faba, and G. A. Eimer. 2021. Biodiesel production from alternative raw materials using a heterogeneous low ordered biosilicifed enzyme as biocatalyst. Biotechnology for Biofuels 14 (1). doi:10.1186/s13068-021-01917-x.
  • Feyzi, M., N. Hosseini, N. Yaghobi, and R. Ezzati. 2017. Preparation, characterization, kinetic and thermodynamic studies of MgO-La2O3 nanocatalysts for biodiesel production from sunflower oil. Chemical Physics Letters 677:19–29. doi:10.1016/j.cplett.2017.03.014.
  • Feyzi, M., and L. Norouzi. 2016. Preparation and kinetic study of magnetic Ca/Fe3O4@SiO2 nanocatalysts for biodiesel production. Renewable Energy 94:579–86. doi:10.1016/j.renene.2016.03.086.
  • Foroutan, R., R. Mohammadi, H. Esmaeili, F. Mirzaee Bektashi, and S. Tamjidi. 2020. Transesterification of waste edible oils to biodiesel using calcium oxide@magnesium oxide nanocatalyst. Waste Management 105:373–83. doi:10.1016/j.wasman.2020.02.032.
  • Gardy, J., M. Rehan, A. Hassanpour, X. Lai, and A. S. Nizami. 2019. Advances in nano-catalysts based biodiesel production from non-food feedstocks. Journal of Environmental Management 249:109316. doi:10.1016/j.jenvman.2019.109316.
  • Gerpen, J. V. 2005. Biodiesel processing and production. Fuel Processing Technology 86 (10):1097–107. doi:https://doi.org/10.1016/j.fuproc.2004.11.005.
  • Ghalandari, A., M. Taghizadeh, and M. Rahmani. 2018. Statistical Optimization of the Biodiesel Production Process Using a Magnetic Core-Mesoporous Shell KOH/Fe3O4@g-Al2O3 Nanocatalyst. Chemical Engineering & Technology. doi:10.1002/ceat.201700658.
  • Ghanei, R., R. Khalili Dermani, Y. Salehi, and M. Mohammadi. 2016. Waste animal bone as support for CaO impregnation in catalytic biodiesel production from vegetable oil. Waste and Biomass Valorization 7 (3):527–32. doi:10.1007/s12649-015-9473-1.
  • Gholami, A., F. Pourfayaz, and A. Maleki. 2020. Recent advancements of biodiesel production using ionic liquids supported on nanoporous materials as catalysts. Frontiers in Energy Research 8. doi:10.3389/fenrg.2020.00144.
  • Ghosh, N., and G. Halder. 2022. Current progress and perspective of heterogeneous nanocatalytic transesterification towards biodiesel from edible and inedible feedstock: A review. Energy Conversion & Management 270:116292. doi:https://doi.org/10.1016/j.enconman.2022.116292.
  • Gohain, M., K. Laskar, A. K. Paul, N. Diamary, M. Maharana, I. K. Goswami, A. Hazarika, U. Bora, and D. Deka. 2019. Carica papaya stem: A source of versatile heterogeneous catalyst for biodiesel production and C-C bond formation. Renewable Energy 147:541–55. doi:10.1016/j.renene.2019.09.016.
  • Gonçalves, M. A., E. K. L. Mares, J. R. Zamian, G. N. R. Filho, and L. R. V. da Conceição. 2021. Statistical optimization of biodiesel production from waste cooking oil using magnetic acid heterogeneous catalyst MoO3/SrFe2O4. Fuel 304:121463. doi:10.1016/j.fuel.2021.121463.
  • Guo, P., F. Huang, M. Zheng, W. Li, and Q. Huang. 2012. Magnetic Solid Base Catalysts for the production of Biodiesel. JAOCS. Journal of the American Oil Chemist’s Society 89 (5):925–33. doi:10.1007/s11746-011-1979-5.
  • Guo, J., and D. Jiang. 2020. Covalent organic frameworks for heterogeneous catalysis: Principle, current status, and challenges. ACS Central Science 6 (6):869–79. doi:10.1021/acscentsci.0c00463.
  • Gurunathan, B., and A. Ravi. 2015. Process optimization and kinetics of biodiesel production from neem oil using copper doped zinc oxide heterogeneous nanocatalyst. Bioresource Technology 190:424–28. doi:10.1016/j.biortech.2015.04.101.
  • Haas, M. J., A. J. McAloon, W. C. Yee, and T. A. Foglia. 2005. A process model to estimate biodiesel production costs. Bioresource Technology 97 (4):671–78. doi:10.1016/j.biortech.2005.03.039.
  • Hassan, M. M., and A. B. Fadhil. 2021. Development of an effective solid base catalyst from potassium-based chicken bone (K-CBs) composite for biodiesel production from a mixture of non-edible feedstocks. Energy Sources, Part A: Recovery, Utilization,and Environmental Effects 1–16. doi:10.1080/15567036.2021.1927253.
  • Hassan, N., K. N. Ismail, K. H. Ku Hamid, and A. Hadi. 2018. CaO Nanocatalyst for Transesterification Reaction of Palm Oil to Biodiesel: Effect of Precursor’s Concentration on the Catalyst Behavior. IOP Conference Series: Materials Science and Engineering. 358:012059. 10.1088/1757-899X/358/1/012059.
  • Helmi, M., K. Tahvildari, and A. Hemmati. 2021. Parametric optimization of biodiesel synthesis from Capparis spinosa oil using NaOH/NaX as nanoheterogeneous catalyst by response surface methodology. Brazilian Journal of Chemical Engineering 38 (1):61–75. doi:https://doi.org/10.1007/s43153-020-00074-2.
  • Huang, Z., S. Cao, J. Yu, X. Tang, Y. Guo, Y. Guo, L. Wang, S. Dai, and W. Zhang. 2022. Total Oxidation of Light Alkane over Phosphate-Modified Pt/CeO2 Catalysts. Environment Science and Technology 56 (13):9661–71. doi:10.1021/acs.est.2c00135.
  • Huang, Z., J. Ding, X. Yang, H. Liu, P. Song, Y. Guo, L. Wang, and W. Zhan. 2022. Highly Efficient Oxidation of Propane at Low Temperature over a Pt/Based Catalysts by Optimization Support. Environmental Science and Technology 56 (23):17278–87. doi:10.1021/acs.est.2c05599.
  • Huang, M., J. Luo, Z. Fang, and H. Li. 2016. Biodiesel Production Catalyzed by Highly Acidic Carbonaceous Catalysts Synthesized via Carbonizing Lignin in Sub- and Super-critical Ethanol. Applied Catalysis: B Environmental 190:103–14. doi:10.1016/j.apcatb.2016.02.069.
  • Hu, Y., L. Dai, D. Liu, and W. Du. 2018. Rationally designing hydrophobic UiO-66 support for the enhanced enzymatic performance of immobilized lipase. Green Chemistry 20 (19):4500–06. doi:https://doi.org/10.1039/C8GC01284A.
  • Hundie, K. B., and D. A. Akuma. 2022. Optimization of biodiesel production parameters from Prosopis julifera seed using definitive screening design. Heliyon 8 (2):e08965. doi:https://doi.org/10.1016/j.heliyon.2022.e08965.
  • Ingle, A. P., A. K. Chandel, R. Philippini, S. E. Martiniano, and S. S. da Silva. 2020. Advances in Nanocatalysts Mediated Biodiesel Production: A Critical Appraisal. Symmetry 12 (2):1–22. (Basel). doi:https://doi.org/10.3390/sym12020256.
  • Jamil, F., P. S. Murphin Kumar, L. Al-Haj, M. Tay Zar Myint, and A. H. Al-Muhtaseb. 2021. Heterogeneous carbon-based catalyst modified by alkaline earth metal oxides for biodiesel production: Parametric and kinetic study. Energy Conversion and Management: X 10:100047. doi:10.1016/j.ecmx.2020.100047.
  • Ji, P., X. Feng, P. Oliveres, Z. Li, A. Murakami, C. Wang, and W. Lin. 2019. Strongly Lewis Acidic Metal–Organic Frameworks for Continuous Flow Catalysis. Journal of the American Oil Chemists’ Society 141 (37):14878–88. doi:https://doi.org/10.1021/jacs.9b07891.
  • Ji, D., N. Xi, G. Li, P. Dong, H. Li, C. Li, P. Wang, and Y. Zhao. 2021. Hydrotalcite-based CoxNiyAl1Ox mixed oxide as a highly efficient catalyst for selective ethylbenzene oxidation. Molecular Catalysis 508:111579. doi:10.1016/j.mcat.2021.111579.
  • Jume, B. H., M. A. Gabris, H. R. Nodeh, S. Rezania, and J. Cho. 2020. Biodiesel production from waste cooking oil using a novel heterogeneous catalyst based on graphene oxide doped metal oxide nanoparticles. Renewable Energy 162 (C):2182–89. doi:https://doi.org/10.1016/j.renene.2020.10.046.
  • Karkal, S. S., and T. G. Kudre. 2020. Valorization of fish discards for the sustainable production of renewable fuels. Journal of Cleaner Production 275:122985. doi:10.1016/j.jclepro.2020.122985.
  • Karkal, S. S., and T. G. Kudre. 2022. Valorization of marine fish waste biomass and Gallus gallus eggshells as feedstock and catalyst for biodiesel production. International Journal of Environmental Science and Technology 20 (7):7993–8016. doi:https://doi.org/10.1007/s13762-022-04413-3.
  • Karkal, S. S., D. R. Rathod, A. S. Jamadar, S. S. Mamatha, and T. G. Kudre. 2022. Production optimization, scale-up, and characterization of biodiesel from marine fishmeal plant oil using Portunus sanguinolentus crab shell derived heterogeneous catalyst. Biocatalysis and Agriculture Biotechnology 47:102571. doi:https://doi.org/10.1007/s13762-022-04413-3.
  • Karmakar, B., and G. Halder. 2019. Progress and future of biodiesel synthesis: Advancements in oil extraction and conversion technologies. Energy Conversion and Management 182:307–39. doi:10.1016/j.enconman.2018.12.066.
  • Kawashima, A., K. Matsubara, and K. Honda. 2009. Acceleration of catalytic activity of calcium oxide for biodiesel production. Bioresource Technology 100 (2):696–700. doi:https://doi.org/10.1016/j.biortech.2008.06.049.
  • Khalifeh, R., and H. Esmaeili. 2020. Biodiesel production from goat fat using calcium oxide nanocatalyst and its combination with diesel fuel to improve fuel properties. International Journal of Sustainable Energy 14 (5):1122–31. doi:https://doi.org/10.1080/19397038.2020.1780336.
  • Khan, I. W., A. Naeem, M. Forooq, I. U. Din, Z. A. Ghazi, and T. Saeed. 2021. Reusable Na-Sio2@Ceo2 catalysts for efficient biodiesel production from non-edible wild olive oil as a new and potential feedstock. Energy Conversion and Management 231:113854. doi:10.1016/j.enconman.2021.113854.
  • Khatavi, S. Y., and K. Kantharaju. 2021. Waste to wealth: Agro-waste catalyzed green method synthesis of 5-aryl-1,2,4-triazolidine-3-thiones and 1,2,4-triazospiro-3-thiones. Organic Communications 14 (3):240–54. doi:10.25135/acg.oc.107.21.04.2040.
  • Kudre, T. G., N. Bhaskar, and P. Z. Sakhare. 2017. Optimization and characterization of biodiesel production from rohu (Labeo rohita) processing waste. Renewable Energy 113:1408–18. doi:10.1016/j.renene.2017.06.101.
  • Kuepethkaew, S., K. Sangkharak, S. Benjakul, and S. Klomklao. 2017. Use of TPP and ATPS for partitioning and recovery of lipase from Pacific white shrimp (Litopenaeus vannamei) hepatopancreas. Journal of Food Science and Technology 54 (12):3880–91. doi:http://doi.org/10.1007/s13197-017-2844-9.
  • Kumar, R., and P. Pal. 2021. Lipase immobilized graphene oxide biocatalyst assisted enzymatic transesterification of Pongamia pinnata (Karanja) oil and downstream enrichment of biodiesel by solar-driven direct contact membrane distillation followed by ultrafiltration. Fuel Processing Technology 211:106577. doi:10.1016/j.fuproc.2020.106577.
  • Lee, A. F., J. A. Bennett, J. C. Manayil, and K. Wilson. 2014. Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chemical Society Reviews 43 (22):7887–916. doi:10.1039/C4CS00189C.
  • Lee, S. L., Y. C. Wong, Y. P. Tan, and S. Y. Yew. 2015. Transesterification of palm oil to biodiesel by using waste obtuse horn shell-derived CaO catalyst. Energy Conversion and Management 93:282–88. doi:10.1016/j.enconman.2014.12.067.
  • Li, H., H. Chu, X. Ma, G. Wang, F. Liu, M. Guo, W. Lu, S. Zhou, and M. Yu. 2021. Efficient heterogeneous acid synthesis and stability enhancement of UiO–66 impregnated with ammonium sulfate for biodiesel production. Chemical Engineering Journal 408:127277. doi:10.1016/j.cej.2020.127277.
  • Liu, W. J., H. Jiang, and H.-Q. Yu. 2015. Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material. Toward a Sustainable Platform Carbon Material. Chemical Review 115 (22):12251–85. doi:10.1021/acs.chemrev.5b00195.
  • Li, M., Y. Zheng, Y. Chen, and X. Zhu. 2014. Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk. Bioresource Technology 154:345–48. doi:10.1016/j.biortech.2013.12.070.
  • Long, Y. D., Z. Fang, T. C. Su, and Q. Yang. 2014. Co-production of biodiesel and hydrogen from rapeseed and Jatropha oils with sodium silicate and Ni catalysts. Applied Energy 113:1819–25. doi:10.1016/j.apenergy.2012.12.076.
  • Lotero, E., Y. Liu, D. E. Lopez, K. Suwannakarn, D. A. Bruce, and J. G. Goodwin Jr. 2005. Synthesis of biodiesel via acid catalysis. Industrial and Engineering Chemistry Research 44 (14):5353–63. doi:https://doi.org/10.1021/ie049157g.
  • Mahloujifar, M., and M. Mansournia. 2021. A comparative study on the catalytic performances of alkali metals-loaded KAlSiO4 for biodiesel production from sesame oil. Fuel 291:120145. doi:10.1016/j.fuel.2021.120145.
  • Malek, M. N. F. A., L. Pushparaja, N. M. Hussin, N. H. Embong, P. Bhuyar, M. H. A. Rahim, and G. P. Maniam. 2021. Exploration of efficiency of nano calcium oxide (Cao) as catalyst for enhancement of biodiesel production. Journal of Microbiology, Biotechnology and Food Science 11 (1):1–4. doi:https://doi.org/10.15414/jmbfs.3935.
  • Manikandan, M., P. Manimuthu, and C. Venkateswaran. 2014. Structural and Magnetic properties of MgFe2O4 Ceramic. AIP Conference Proceedings. 1576:194–96. 10.1063/1.4862018.
  • Mansir, N., Y. H. Taufiq-Yap, U. Rashid, and I. M. Lokman. 2017. Investigation of heterogeneous solid acid catalyst performance on low grade feedstocks for biodiesel production: A review. Energy Conversion and Management 141:171–82. doi:10.1016/j.enconman.2016.07.037.
  • Marchetti, J. M. 2012. A summary of the available technologies for biodiesel production based on a comparison of different feedstock’s properties. Process Safety and Environmental Protection 90:157–63. doi:10.1016/j.psep.2011.06.010. 3
  • Marchetti, J. M., M. N. Pedernera, and N. S. Schbib. 2011 1-6. Production of biodiesel from acid oil using sulfuric acid as catalyst: Kinetics study. International Journal of Low-Carbon Technolgies 6 (1):38–43. doi:10.1093/ijlct/ctq040.
  • Mardhiah, H. H., H. C. Ong, H. H. Masjuki, S. Lim, and H. V. Lee. 2017. A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils. Renewable and Sustainable Energy Reviews 67:1225–36. doi:10.1016/j.rser.2016.09.036.
  • Mares, E. K. L., M. A. Gonçalves, P. T. S. da Luz, G. N. da Rocha Filho, J. R. Zamian, and L. R. V. da Conceição. 2021. Acai seed ash as a novel basic heterogeneous catalyst for biodiesel synthesis: Optimization of the biodiesel production process. Fuel 299:120887. doi:https://doi.org/10.1016/j.fuel.2021.120887.
  • Marwaha, A., P. Rosha, S. K. Mohapatra, S. K. Mahla, and A. Dhir. 2018. Waste materials as potential catalysts for biodiesel production: Current state and future scope. Fuel Processing Technology 181:175–86. doi:10.1016/j.fuproc.2018.09.011.
  • Mazaheri, H., H. C. Ong, H. H. Masjuki, Z. Amini, M. D. Harrison, C. T. Wang, F. Kusumo, and A. Alwi. 2017. Rice bran oil based biodiesel production using calcium oxide catalyst derived from Chicoreus brunneus shell. Energy 144:10–19. doi:10.1016/j.energy.2017.11.073.
  • Menegazzo M Lara, Franco Lucas B, Boarin Alcade L, Petenucci M Eugenia and Graciano Fonseca G. (2015). Production of biodiesel via methyl and ethyl routes from Nile tilapia and hybrid Sorubim crude oils. Journal of Environmental Chemical Engineering, 3(1), 150–154. 10.1016/j.jece.2014.12.011
  • Mohadesi, M., A. Gouran, and I. Mehtaran Ghadmakheir. 2021. Biodiesel production from waste cooking oil using heterogeneous catalysts supported phosphate soil. SSRN. Electronic Journal 1–20. doi:10.2139/ssrn.3904606.
  • Mohamed, R. M., G. A. Kadry, H. A. Abdel-Samad, and M. E. Awad. 2019. High operative heterogeneous catalyst in biodiesel production from waste cooking oil. Egyptian Journal of Petroleum 29 (1):59–65. doi:https://doi.org/10.1016/j.ejpe.2019.11.002.
  • Mwenge, P., H. Rutto, and C. Enweremadu. 2021. Biodiesel production using Chlor-alkali brine sludge waste as a heterogeneous catalyst: Optimisation using response surface methodology. International Journal of Sustainable Energy 41 (7):832–45. doi:https://doi.org/10.1080/14786451.2021.1986042.
  • Narasimhan, M., M. Chandrasekaran, S. Govindasamy, and A. Aravamudhan. 2021. Heterogeneous nanocatalysts for sustainable biodiesel production: A review. Journal of Environmental Chemical Engineering 9 (1):104876. doi:https://doi.org/10.1016/j.jece.2020.104876.
  • Nath, B., B. Das, P. Kalita, and S. Basumatary. 2019. Waste to value addition: Utilization of waste Brassica nigra plant derived novel green heterogeneous base catalyst for effective synthesis of biodiesel. Journal of Cleaner Production 239:118112. doi:10.1016/j.jclepro.2019.118112.
  • Nazir, M. H., M. Ayoub, I. Z. R. B. Shamsuddin, S. Yusup, M. Ameen, Zulqarnain, and M. U. Qadeer. 2021. Development of lignin based heterogeneous solid acid catalyst derived from sugarcane bagasse for microwave assisted-transesterification of waste cooking oil. Biomass & bioenergy 146:105978. doi:10.1016/j.biombioe.2021.105978.
  • Nevase, S. S., S. R. Gadge, A. K. Dubey, and B. D. Kadu. 2012. Economics of biodiesel production from Jatropha oil. Journal of Agriculture Technology 8 (2):657–62. http://www.ijat-aatsea.com.
  • Obidike, L. I., and K. O. Yoro. 2021. Effect of zeolitic nano-catalyst on biodiesel yield and biochar formation during the pyrolysis of tallow. Biofuels 13 (6):683–92. doi:https://doi.org/10.1080/17597269.2021.1882718.
  • Ok, Y. S., S. X. Chang, B. Gao, and H. J. Chung. 2015. SMART biochar technology—A shifting paradigm towards advanced materials and healthcare research. Environmental Technology & Innovation 4:206–09. doi:10.1016/j.eti.2015.08.003.
  • Ou, C. H., Y. M. Pan, and H. T. Tang. 2022. Electrochemically promoted N-heterocyclic carbene polymer-catalyzed cycloaddition of aldehyde with isocyanide acetate. Science China Chemistry 65 (10):1873–78. doi:https://doi.org/10.1007/s11426-022-1360-3.
  • Owusu, P. A., and S. Asumadu-Sarkodie. 2016. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering 3 (1):1167990. doi:https://doi.org/10.1080/23311916.2016.1167990.
  • Pan, H., H. Li, H. Zhang, A. Wang, D. Jin, and S. Yang. 2018. Effective production of biodiesel from non-edible oil using facile synthesis of imidazolium salts-based Brønsted-Lewis solid acid and co-solvent. Energy Conversion & Management 166:534–44. doi:10.1016/J.ENCONMAN.2018.04.061.
  • Parandi, E., M. Safaripour, M. H. Abdellattif, M. Saidi, A. Bozorgian, H. R. Nodeh, and S. Rezania. 2021. Biodiesel production from waste cooking oil using a novel biocatalyst of lipase enzyme immobilized magnetic nanocomposite. Fuel 313:123057. doi:10.1016/j.fuel.2021.123057.
  • Qasemi, Z., D. Jafari, K. Jafari, and H. Esmaeili. 2021. Heterogeneous aluminum oxide/calcium oxide catalyzed transesterification of Mespilus germanica triglyceride for biodiesel production. Environmental Progress & Sustainable Energy 41 (2):1–12. doi:https://doi.org/10.1002/ep.13738.
  • Qu, T., S. Niu, Z. Gong, K. Han, Y. Wang, and C. Lu. 2020. Wollastonite decorated with calcium oxide as heterogeneous transesterification catalyst for biodiesel production: Optimized by response surface methodology. Renewable Energy 159:873–84. doi:10.1016/j.renene.2020.06.009.
  • Rafati, A., K. Tahvildari, and M. Nozari. 2019. Production of biodiesel by electrolysis method from waste cooking oil using heterogeneous MgO NaOH nano catalyst. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 41 (9):1062–74. doi:https://doi.org/10.1080/15567036.2018.1539139.
  • Rahimi, T., D. Kahrizi, M. Feyzi, H. R. Ahmadvandi, and M. Mostafaei. 2021. Catalytic performance of MgO/Fe2O3 -SiO2 core shell magnetic nanocatalysts for biodiesel production of camelina sativa seed oil: Optimization by RSM-CCD method. Industrial Crops and Production 159:113065. doi:10.1016/j.indcrop.2020.113065.
  • Rao, K. S. 2015. Cost Estimation Analysis of Biodiesel Production from Waste Chicken Fat. International Journal of Applied Engineering Research 10 (4):8863–70. https://www.researchgate.net/publication/274831997.
  • Rasouli, H., and H. Esmaeili. 2019. Characterization of MgO nanocatalyst to produce biodiesel from goat fat using transesterifcation process. 3 Biotech 9 (11):1–11. doi:https://doi.org/10.1007/s13205-019-1963-6.
  • Reddy, A. N. R., A. A. Saleh, M. S. Islam, S. Hamdan, and M. A. Maleque. 2015. Biodiesel Production from Crude Jatropha Oil using a Highly Active Heterogeneous Nanocatalyst by Optimizing Transesterification Reaction Parameters. Energy and Fuels 30 (1):334–43. doi:https://doi.org/10.1021/acs.energyfuels.5b01899.
  • Refaat, A. A. 2011. Biodiesel production using solid metal oxide catalysts. International Journal of Environmental Science and Technology 8 (1):203–21. doi:https://doi.org/10.1007/BF03326210.
  • Rezaei, R., M. Mohadesi, and G. R. Moradi. 2013. Optimization of biodiesel production using waste mussel shell catalyst. Fuel 109:534–41. doi:10.1016/j.fuel.2013.03.004.
  • Rezania, S., M. A. Kamboh, S. S. Arian, N. A. Al-Dhabi, M. V. Arasu, G. A. Esmail, and K. Kumar Yadav. 2021. Conversion of waste frying oil into biodiesel using recoverable nanocatalyst based on magnetic graphene oxide supported ternary mixed metal oxide nanoparticles. Bioresource Technology 323:124561. doi:10.1016/j.biortech.2020.124561.
  • Rizwanul Fattah, I. M., H. C. Ong, T. M. I. Mahlia, M. Mofijur, A. S. Silitonga, S. M. Ashrafur Rahman, and A. Ahmad. 2020. State of the art of catalysts for biodiesel production. Frontiers in Energy Research 8:1–17. doi:10.3389/fenrg.2020.00101.
  • Saeedi, M., R. Fazaeli, and H. Aliyan. 2016. Nanostructured sodium–zeolite imidazolate framework (ZIF-8) doped with potassium by sol–gel processing for biodiesel production from soybean oil. Journal of Sol-Gel Science and Technology 77 (2):404–15. doi:10.1007/s10971-015-3867-1.
  • Salamatinia, B., I. Hashemizadeh, and A. Z. Abdullah. 2013. Development of synergic mixed metal oxides for the combined catalystic-Absorptive removal of nitric oxide from diesel exhaust. Iranian Journal of Chemistry & Chemical Engineering 32:113–26. doi:10.30492/IJCCE.2013.5911.
  • Salimi, Z., and S. A. Hosseini. 2019. Study and optimization of conditions of biodiesel production from edible oils using ZnO/BiFeO3 nano magnetic catalyst. Fuel 239:1204–12. doi:10.1016/j.fuel.2018.11.125.
  • Sani, Y. M., W. M. A. W. Daud, and A. R. Abdul Aziz. 2013. Solid acid-catalyzed biodiesel production from microalgal oil—The dual advantage. Journal of Environmental Chemical Engineering 1 (3):113–21. doi:https://doi.org/10.1016/j.jece.2013.04.006.
  • Santos, T. C. D., E. C. S. Santos, J. P. Dias, J. Barreto, F. L. Stavale, and C. M. Ronconi. 2019. Reduced graphene oxide as an excellent platform to produce a stable Brønsted acid catalyst for biodiesel production. Fuel 256:115793. doi:10.1016/j.fuel.2019.115793.
  • Saranya, G., and T. V. Ramachandra. 2020. Novel biocatalyst for optimal biodiesel production from diatoms. Renewable Energy 153:919–34. doi:10.1016/j.renene.2020.02.053.
  • Silitonga, A. S., A. H. Shamsuddin, T. M. I. Mahlia, J. Milano, F. Kusumo, J. Siswantoro, S. Dharma, A. H. Sebayang, H. H. Masjuki, and H. C. Ong. 2020. Biodiesel synthesis from Ceiba pentandra oil by microwave irradiation-assisted transesterification: ELM modeling and optimization. Renewable Energy 146:1278–91. doi:10.1016/j.renene.2019.07.065.
  • Simbi, I., U. O. Aigbe, O. Oyekola, and O. A. Osibote. 2022. Optimization of biodiesel produced from waste sunflower cooking oil over bi-functional catalyst. Results in Engineering 13:100374. doi:10.1016/j.rineng.2022.100374.
  • Smith, S. M., C. Oopathum, V. Weeramongkhonlert, C. B. Smith, S. Chaveanghong, P. Ketwong, and S. Boonyuen. 2013. Transesterification of soybean oil using bovine bone waste as new catalyst. Bioresource Technology 143:686–90. doi:10.1016/j.biortech.2013.06.087.
  • Statista. 2023. Leading biodiesel producers worldwide 2021, by country. https://www.statista.com/statistics/271472/biodiesel-production-in-selected-countries.
  • Sulaiman, N. F., N. I. Ramly, M. H. Abd Mubin, and S. L. Lee. 2021. Transition metal oxide (NiO, CuO, ZnO)-doped calcium oxide catalysts derived from eggshells for the transesterification of refined waste cooking oil. RSC Advances 11 (35):21781–95. doi:10.1039/D1RA02076E.
  • Sulaiman, S., B. Shah, and P. Jamal. 2017. Production of biodiesel from palm oil using chemically treated fish bone catalyst. Chemical Engineering Transactions 56:1525–30. doi:10.3303/CET1756255.
  • Sun, Y., V. Sage, and Z. Sun. 2017. High performance biodiesel catalyst preparation by direct fluidized bed calcination of shrimp shell: Process optimization and intensification. Chemical Engineering Research and Design 126:142–52. doi:10.1016/j.cherd.2017.08.010.
  • Tamjidi, S., H. Esmaeili, and B. K. Moghadas. 2021. Performance of functionalized magnetic nanocatalysts and feedstocks on biodiesel production: A review study. Journal of Cleaner Production 305:127200. doi:10.1016/j.jclepro.2021.127200.
  • Tang, Y., S. Wang, X. Cheng, and Y. Lu. 2014. Efficient heterogeneous catalyst for biodiesel production from soybean oil over modified CaO. Progress in Reaction Kinetics and Mechanism 39 (3):273–80. doi:https://doi.org/10.3184/146867814X14043731662828.
  • Thangaraj, B., and S. Piraman. 2016. Heteropoly acid coated ZnO nanocatalyst for Madhuca indica biodiesel synthesis. Biofuels 7 (1):13–20. doi:https://doi.org/10.1080/17597269.2015.1118776.
  • Thangaraj, B., P. R. Solomon, B. Muniyandi, S. Ranganathan, and L. Lin. 2019. Catalysis in biodiesel production—a review. Clean Energy 3 (1):2–23. doi:https://doi.org/10.1093/ce/zky020.
  • Touqeer, T., M. W. Mumtaz, H. Mukhtar, A. Irfan, S. Akram, A. Shabbir, U. Rashid, I. A. Nehdi, and T. S. Y. Choong. 2019. Fe3o4-PDA-Lipase as Surface Functionalized Nano Biocatalyst for the Production of Biodiesel Using Waste Cooking Oil as Feedstock: Characterization and Process Optimization. Energies 13 (1):177. doi:10.3390/en13010177.
  • Tshizanga, N., E. F. Aransiola, and O. Oyekola. 2017. Optimisation of biodiesel production from vegetable oil and eggshell ash. South African Journal of Chemical Engineering 23:145–56. doi:10.1016/j.sajce.2017.05.003.
  • UFOP report on global market supply 2017-2018. https://www.ufop.de/files/3515/1515/2657/UFOPReport_on_Global_Market_Supply_2017-2018.
  • Vahid, B. R., M. Haghighi, and S. Alaei. 2017. Biodiesel production from sunflower oil over MgO/MgAl2O4 nanocatalyst: Effect of fuel type on catalyst nanostructure and performance. Journal Of 143:23–32. doi:10.1016/j.enconman.2016.12.048.
  • Vyas, A. P., J. L. Verma, and N. A. Subrahmanyam. 2010. A review on FAME production processes. Fuel 89 (1):1–9. doi:10.1016/j.fuel.2009.08.014.
  • Wang, W., X. Qiao, J. Chen, and F. Tan. 2008. Preparation and characterization of Ti-doped MgO nanopowders by a modified coprecipitation method. Journal of Alloys and Compound 461 (1–2):542–46. doi:https://doi.org/10.1016/j.jallcom.2007.07.046.
  • Wen, L., Y. Wang, D. Lu, S. Hu, and H. Han. 2010. Preparation of KF/CaO nanocatalyst and its application in biodiesel production from Chinese tallow seed oil. Fuel 89 (9):2267–71. doi:https://doi.org/10.1016/j.fuel.2010.01.028.
  • Wimonsong, P. 2021. Carbon – Zn hydrotalcite hybrid catalyst for fermentative hydrogen production. International Journal of Hydrogen Energy 46 (5):3704–15. doi:https://doi.org/10.1016/j.ijhydene.2020.10.249.
  • Wong, W. Y., S. Lim, Y. L. Pang, S. H. Shuit, W. H. Chen, and K. T. Lee. 2020. Synthesis of renewable heterogeneous acid catalyst from oil palm empty fruit bunch for glycerol-free biodiesel production. Science of the Total Environment 727:138534. doi:10.1016/j.scitotenv.2020.138534.
  • Xie, X., and H. Huang. 2019. Enzymatic production of biodiesel using immobilized lipase on core-shell structured Fe3O4@MIL-100(Fe) composites. Catalysts 9 (10):850. doi:https://doi.org/10.3390/catal9100850.
  • Xiong, X., K. M. Iris, L. Cao, D. C. W. Tsang, S. Zhang, and Y. S. Ok. 2017. A review of biochar-based catalysts for chemical synthesis, biofuel production, and pollution control. Bioresource Technology 206:254–70. doi:10.1016/j.biortech.2017.06.163.
  • Yaghi, O. M., G. Li, and H. Li. 1995. Selective binding and removal of guests in a microporous metal–organic framework. Nature 378 (6558):703–06. doi:https://doi.org/10.1038/378703a0.
  • Yatish, K. V., H. S. Lalithamba, R. Suresh, and H. K. E. Latha. 2020. Ochrocarpus longifolius assisted green synthesis of CaTiO3 nanoparticle for biodiesel production and its kinetic study. Renewable Energy 147:310–21. doi:10.1016/j.renene.2019.08.139.
  • You, Q., X. Yin, Y. Zhao, and Y. Zhang. 2013. Biodiesel production from jatropha oil catalyzed by immobilized Burkholderia cepacia lipase on modified attapulgite. Bioresource Technology 148:202–07. doi:10.1016/j.biortech.2013.08.143.
  • Yusran, Y., H. Li, X. Guan, Q. Fang, and S. Qiu. 2020. Covalent organic frameworks for catalysis. EnergyChem 2 (3):100035. doi:10.1016/j.enchem.2020.100035.
  • Yusuff, A. S., A. K. Bhonsle, J. Trivedi, D. P. Bangwal, L. P. Singh, and N. Atray. 2021. Synthesis and characterization of coal fly ash supported zinc oxide catalyst for biodiesel production using used cooking oil as feed. Renewable Energy 170:302–14. doi:10.1016/j.renene.2021.01.101.
  • Yu, X., Z. Wen, H. Li, and S. T. Tu. 2011. Transesterification of Pistacia chinensis oil for biodiesel catalyzed by CaO–CeO2 mixed oxides. Fuel 90 (5):1868–74. doi:https://doi.org/10.1016/j.fuel.2010.11.009.
  • Zanjani, N. G., A. Kamran-Pirzaman, and M. Khalajzadeh. 2020. Synthesis of modified layered double hydroxide of MgAl catalyst with Ba and Li for the biodiesel production. Clean Technologies and Environmental Policy 22 (5):1173–85. doi:https://doi.org/10.1007/s10098-020-01860-9.
  • Zhang, Y., L. Duan, and H. Esmaeili. 2022. A review on biodiesel production using various heterogeneous nanocatalysts: Operation mechanisms and performances. Biomass and Bioenergy 158:106356. doi:10.1016/j.biombioe.2022.106356.
  • Zhang, Y., S. Niu, C. Lu, Z. Gong, and X. Hu. 2020. Catalytic performance of NaAlO2/γ-Al2O3 as heterogeneous nanocatalyst for biodiesel production: Optimization using response surface methodology. Energy Conversion and Management 203:112263. doi:10.1016/j.enconman.2019.112263.
  • Zulfiqar, A., M. W. Mumtaz, H. Mukhtar, J. Najeeb, A. Irfan, S. Akram, T. Touqeer, and G. Nabi. 2020. Lipase-PDA-TiO2 NPs: An emphatic nano-biocatalyst for optimized biodiesel production from Jatropha curcas oil. Renewable Energy 169:1026–37. doi:10.1016/j.renene.2020.12.135.
  • Zuliani, A., F. Ivars, and R. Luque. 2018. Advances in nanocatalysts design for biofuel production. ChemCatchem 10 (9):1968–81. doi:https://doi.org/10.1002/cctc.201701712.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.