131
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Thermal Performance Analysis on shell-and-tube heat exchangers by Utilizing Liquid Carbon Dioxide for Mine Cooling

, , , &
Pages 1043-1059 | Received 19 Dec 2022, Accepted 19 Jun 2023, Published online: 03 Jul 2023

References

  • Ahn, Y., S. J. Bae, M. Kim, S. K. Cho, S. Baik, J. I. Lee, and J. E. Cha. 2015. Review of supercritical CO2 power cycle technology and current status of research and development. Nuclear Engineering and Technology 47 (6):647–61. doi:10.1016/j.net.2015.06.009.
  • Bayale, N., E. Ali, A. F. Tchagnao, and A. Nakumuryango. 2021. Determinants of renewable energy production in WAEMU countries: New empirical insights and policy implications. International Journal of Green Energy 18 (6):602–14. doi:10.1080/15435075.2021.1875467.
  • Bredesen, A. M., A. Hafner, J. Pettersen, P. Neksa, and K. Aflekt. 1997. Heat transfer and pressure drop for in-tube evaporation of CO2. In Proceedings of the International Conference in Heat Transfer Issues in Natural Refrigerants, College Park, Maryland, USA. 1–15. 6-7 NOV.
  • Cecchinato, L., M. Chiarello, and M. Corradi. 2010. Design and experimental analysis of a carbon dioxide transcritical chiller for commercial refrigeration. Applied Energy 87 (6):2095–101. doi:10.1016/j.apenergy.2009.12.009.
  • Cheng, L., G. Ribatski, J. M. Quibén, and J. R. Thome. 2008. New prediction methods for CO2 evaporation inside tubes: Part I–A two-phase flow pattern map and a flow pattern based phenomenological model for two-phase flow frictional pressure drops. International Journal of Heat and Mass Transfer 51 (1–2):111–24. doi:10.1016/j.ijheatmasstransfer.2007.04.002.
  • Cheng, L., G. Ribatski, and J. R. Thome. 2008. New prediction methods for CO2 evaporation inside tubes: Part II—An updated general flow boiling heat transfer model based on flow patterns. International Journal of Heat and Mass Transfer 51 (1–2):125–35. doi:10.1016/j.ijheatmasstransfer.2007.04.001.
  • Cheng, L., G. Ribatski, L. Wojtan, and J. R. Thome. 2006. New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside horizontal tubes. International Journal of Heat and Mass Transfer 49 (21–22):4082–94. doi:10.1016/j.ijheatmasstransfer.2006.04.003.
  • Chisholm, D. 1973. Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels. International Journal of Heat and Mass Transfer 16 (2):347–58. doi:10.1016/0017-9310(73)90063-X.
  • Cho, J. M., and M. S. Kim. 2007. Experimental studies on the evaporative heat transfer and pressure drop of CO2 in smooth and micro-fin tubes of the diameters of 5 and 9.52 mm. International Journal of Refrigeration 30 (6):986–94. doi:10.1016/j.ijrefrig.2007.01.007.
  • Cho, J. M., Y. J. Kim, and M. S. Kim. 2010. Experimental studies on the characteristics of evaporative heat transfer and pressure drop of CO2/propane mixtures in horizontal and vertical smooth and micro-fin tubes. International Journal of Refrigeration 33 (1):170–79. doi:10.1016/j.ijrefrig.2009.09.009.
  • Cicchitti, A., C. Lombardi, M. Silvestri, Soldaini, G., Zavatarelli, R. 1960. Two-phase cooling experiments: Pressure drop, heat transfer and burnout measurements 7:407–425. MilanEnergia Nucleare.
  • Cooper, M. G. 1984. Heat flow rates in saturated nucleate pool boiling-a wide-ranging examination using reduced properties. Advances in Heat Transfer 16:157–239.
  • Dittus, F. W., and L. M. K. Boelter. 1985. Heat transfer in automobile radiators of the tubular type. International Communications in Heat and Mass Transfer 12 (1):3–22. doi:10.1016/0735-1933(85)90003-X.
  • Fang, X., Z. Zhou, and D. Li. 2013. Review of correlations of flow boiling heat transfer coefficients for carbon dioxide. International Journal of Refrigeration 36 (8):2017–39. doi:10.1016/j.ijrefrig.2013.05.015.
  • Feng, X. P., Z. Jia, H. Liang, Z. Wang, B. Wang, X. Jiang, H. Cao, and X. Sun. 2018. A full air cooling and heating system based on mine water source. Applied Thermal Engineering 145:610–17. doi:10.1016/j.applthermaleng.2018.09.047.
  • Friedel, L.1979. Improved friction pressure drop correlation for horizontal and vertical two-phase pipe flow. Proc of European Two-Phase Flow Group Meet, Ispra, Italy.
  • Grauso, S., R. Mastrullo, A. W. Mauro, and G. P. Vanoli. 2013. Flow boiling of R410A and CO2 from low to medium reduced pressures in macro channels: Experiments and assessment of prediction methods. International Journal of Heat and Mass Transfer 56 (1–2):107–18. doi:10.1016/j.ijheatmasstransfer.2012.09.015.
  • Greco, A., and G. P. Vanoli. 2006. Experimental two-phase pressure gradients during evaporation of pure and mixed refrigerants in a smooth horizontal tube. Comparison with Correlations Heat and Mass Transfer 42 (8):709–25. doi:10.1007/s00231-005-0020-7.
  • Grönnerud, R. 1979. Investigation of liquid hold-up, flow resistance and heat transfer in circulation type evaporators, Part IV: Two-phase flow resistance in boiling refrigerants, in: Annexe 19721, Bull. de l’Inst. Froid., in: Annexe 19721, Bull. de l’Inst. Froid.
  • Gungor, K. E., and R. H. S. Winterton. 1986. A general correlation for flow boiling in tubes and annuli. International Journal of Heat and Mass Transfer 29 (3):351–58. doi:10.1016/0017-9310(86)90205-X.
  • Gungor, K. E., and R. S. Winterton. 1987. Simplified general correlation for saturated flow boiling and comparisons of correlations with data. Chemical Engineering Research & Design 65 (2):148–56.
  • Gupta, S. K., H. Verma, and N. Yadav (2022). A review on recent development of nanofluid utilization in shell & tube heat exchanger for saving of energy. Materials Today: Proceedings, 54, 579–89 doi:10.1016/j.matpr.2021.09.455.
  • Hihara, E., and C. Dang 2007. Boiling heat transfer of carbon dioxide in horizontal tubes. In: Proc. 2007 ASME-JSME Thermal Eng. Summer Heat Transfer Conf. Canada. HT2007-32885:843–49.
  • Huang, M. T., and P. M. Zhai. 2021. Achieving Paris Agreement temperature goals requires carbon neutrality by middle century with far-reaching transitions in the whole society. Advances in Climate Change Research 12 (2):281–86. doi:10.1016/j.accre.2021.03.004.
  • Jung, D. S., M. McLinden, R. Radermacher, and D. Didion. 1989. A study of flow boiling heat transfer with refrigerant mixtures. International Journal of Heat and Mass Transfer 32 (9):1751–64. doi:10.1016/0017-9310(89)90057-4.
  • Kandlikar, S. G. 1990. A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes. Journal of Heat Transfer 112 (1):219–28. doi:10.1115/1.2910348.
  • Kim, S., N. Pehlivanoglu, and P. S. Hrnjak (2010). R744 flow boiling heat transfer with and without oil at low temperatures in 11.2 mm horizontal smooth tube. International Refrigeration and Air Conditioning Conference at Purdue. Purdue University, West Lafayette, IN, USA. July 12-15.
  • Liu, Z., Y. Li, and K. Zhou. 2016. Thermal analysis of double-pipe heat exchanger in thermodynamic vent system. Energy Conversion and Management 126:837–49. doi:10.1016/j.enconman.2016.08.065.
  • Liu, Z., and H. Tan. 2019. Thermal performance of ice making machine with a multi-channel evaporator. International Journal of Green Energy 16 (7):520–29. doi:10.1080/15435075.2019.1597368.
  • Liu, Z., and R. H. S. Winterton. 1991. A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation. International Journal of Heat and Mass Transfer 34 (11):2759–66. doi:10.1016/0017-9310(91)90234-6.
  • Liu, H., and F. Yan. 2022. Quantitative analysis of impact factors and scenario prediction of energy related carbon emissions at county level. International Journal of Green Energy 1–10. doi:10.1080/15435075.2022.2110379.
  • Liu, Z., J. Yan, P. Gao, and H. Tan. 2019. Experimental study on temperature distribution in an ice-making machine multichannel evaporator. Science and Technology for the Built Environment 25 (1):69–82. doi:10.1080/23744731.2018.1499382.
  • Lockhart, R. W. 1949. Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chemical Engineering Progress 45:39–48.
  • Mastrullo, R., A. W. Mauro, A. Rosato, and G. P. Vanoli. 2009. Carbon dioxide local heat transfer coefficients during flow boiling in a horizontal circular smooth tube. International Journal of Heat and Mass Transfer 52 (19–20):4184–94. doi:10.1016/j.ijheatmasstransfer.2009.04.004.
  • Mastrullo, R., A. W. Mauro, A. Rosato, and G. P. Vanoli. 2010. Carbon dioxide heat transfer coefficients and pressure drops during flow boiling: Assessment of predictive methods. International Journal of Refrigeration 33 (6):1068–85. doi:10.1016/j.ijrefrig.2010.04.005.
  • Müller-Steinhagen, H., and K. Heck. 1986. A simple friction pressure drop correlation for two-phase flow in pipes. Chemical Engineering and Processing: Process Intensification 20 (6):297–308. doi:10.1016/0255-2701(86)80008-3.
  • Munusamy, A., D. Barik, P. Sharma, B. J. Medhi, and B. J. Bora. 2023. Performance analysis of parabolic type solar water heater by using copper-dimpled tube with aluminum coating. Environmental Science and Pollution Research 1–16. doi:10.1007/s11356-022-25071-5.
  • Oh, H. K., H. G. Ku, G. S. Roh, C. H. Son, and S. J. Park. 2008. Flow boiling heat transfer characteristics of carbon dioxide in a horizontal tube. Applied Thermal Engineering 28 (8–9):1022–30. doi:10.1016/j.applthermaleng.2007.06.032.
  • Oh, H. K., and C. H. Son. 2011. Flow boiling heat transfer and pressure drop characteristics of CO2 in horizontal tube of 4.57-mm inner diameter. Applied Thermal Engineering 31 (2–3):163–72. doi:10.1016/j.applthermaleng.2010.08.026.
  • Padilla, M., R. Revellin, P. Haberschill, A. Bensafi, and J. Bonjour. 2011. Flow regimes and two-phase pressure gradient in horizontal straight tubes: Experimental results for HFO-1234yf, R-134a and R-410A. Experimental Thermal and Fluid Science 35 (6):1113–26. doi:10.1016/j.expthermflusci.2011.03.006.
  • Park, C. Y., and P. S. Hrnjak. 2005. Flow boiling heat transfer of CO 2 at low temperatures in a horizontal smooth tube. Journal of Heat Transfer 127 (12):1305–12. doi:10.1115/1.2098853.
  • Park, C. Y., and P. S. Hrnjak. 2007. CO2 and R410A flow boiling heat transfer, pressure drop, and flow pattern at low temperatures in a horizontal smooth tube. International Journal of Refrigeration 30 (1):166–78. doi:10.1016/j.ijrefrig.2006.08.007.
  • Pettersen, J. 2003. Two-phase flow pattern, heat transfer, and pressure drop in microchannel vaporization of CO2. ASHRAE Transactions 109 (Pt 1):8–1.
  • Qian, X., S. Lee, A. M. Soto, and G. Chen. 2018. Regression model to predict the higher heating value of poultry waste from proximate analysis. Resources 7 (3):39. doi:10.3390/resources7030039.
  • Qian, X., S. W. Lee, and Y. Yang. 2021. Heat transfer coefficient estimation and performance evaluation of shell and tube heat exchanger using flue gas. Processes 9 (6):939. doi:10.3390/pr9060939.
  • Salvia, M., D. Reckien, F. Pietrapertosa, P. Eckersley, N. A. Spyridaki, A. Krook-Riekkola, O. Heidrich, S. De Gregorio Hurtado, S. G. Simoes, and D. Geneletti. 2021. Will climate mitigation ambitions lead to carbon neutrality? An analysis of the local-level plans of 327 cities in the EU. Renewable and Sustainable Energy Reviews 135:110253. doi:10.1016/j.rser.2020.110253.
  • Schael, A. E., and M. Kind. 2005. Flow pattern and heat transfer characteristics during flow boiling of CO2 in a horizontal micro fin tube and comparison with smooth tube data. International Journal of Refrigeration 28 (8):1186–95. doi:10.1016/j.ijrefrig.2005.09.002.
  • Shah, M. M. 1982. Chart correlation for saturated boiling heat transfer: Equations and further study. ASHRAE Trans (United States) 88:185–196.
  • Song, D., X. Zhou, and J. Li. 2017. Liquid carbon dioxide phase-change refrigeration and cooling technology of high temperature mine. Coal Science and Technology 45 (10):82–87. in Chinese.
  • Thakur, A. K., M. S. Ahmed, H. Kang, R. Prabakaran, Z. Said, S. Rahman, J. Y. Hwang, J. Kim, and J.-Y. Hwang. 2022. Critical review on internal and external battery thermal management systems for fast charging applications. Advanced Energy Materials 2202944 (11). doi:10.1002/aenm.202202944.
  • Thantharate, V., and D. B. Zodpe. 2013. Experimental and numerical comparison of heat transfer performance of twisted tube and plain tube heat exchangers. International Journal of Engineering Research 4 (7):1107–13.
  • Wang, Y., Y. Dong, and X. Sun. 2023. Can environmental regulations facilitate total-factor efficiencies in OECD countries? Energy-saving target VS emission-reduction target. International Journal of Green Energy 1–13. doi:10.1080/15435075.2022.2160932.
  • Wang, X., Y. Song, C. Li, Y. Zhang, H. M. Ali, S. Sharma, and Z. Zhou (2023). Nanofluids application in machining: A comprehensive review. The International Journal of Advanced Manufacturing Technology, 1–52.
  • Wu, J., T. Koettig, C. Franke, D. Helmer, T. Eisel, F. Haug, and J. Bremer. 2011. Investigation of heat transfer and pressure drop of CO2 two-phase flow in a horizontal minichannel. International Journal of Heat and Mass Transfer 54 (9–10):2154–62. doi:10.1016/j.ijheatmasstransfer.2010.12.009.
  • Xin, S., Z. P. Wang, S. J. Miao, et al. 2011. Prevention and control of mine thermal damage. Beijing: China Coal Industry Publishing House.
  • Xu, G., H. Dong, Z. Xu, and N. Bhattarai. 2022. China can reach carbon neutrality before 2050 by improving economic development quality. Energy 243:123087. doi:10.1016/j.energy.2021.123087.
  • Xu, Y., and X. Fang. 2012. A new correlation of two-phase frictional pressure drop for evaporating flow in pipes. International Journal of Refrigeration 35 (7):2039–50. doi:10.1016/j.ijrefrig.2012.06.011.
  • Yoon, S. H., E. S. Cho, Y. W. Hwang, M. S. Kim, K. Min, and Y. Kim. 2004. Characteristics of evaporative heat transfer and pressure drop of carbon dioxide and correlation development. International Journal of Refrigeration 27 (2):111–19. doi:10.1016/j.ijrefrig.2003.08.006.
  • Zhai, X., Y. Xu, and Z. Yu. 2019. Design and performance simulation of a novel liquid CO2 cycle refrigeration system for heat hazard control in coal mines. Journal of Thermal Science 28 (3):585–95. doi:10.1007/s11630-019-1111-y.
  • Zhao, J., F. Q. Yang, Y. Guo, and X. Ren. 2023. Mapping knowledge domains for mine heat hazard: A bibliometric analysis of research trends and future needs. Environmental Science and Pollution Research 2023:1–18.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.