85
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A grid-based percolation model for the electrode of the solid oxide fuel cell

, , , &
Pages 1124-1135 | Received 03 Jan 2023, Accepted 29 Jun 2023, Published online: 10 Aug 2023

References

  • Bello, I. T., S. Zhai, S. Zhao, Z. Li, N. Yu, and M. Ni. 2021. Scientometric review of proton-conducting solid oxide fuel cells. International Journal of Hydrogen Energy 46 (75):37406. doi:10.1016/j.ijhydene.2021.09.061.
  • Bertei, A., H.-W. Choi, J. G. Pharoah, and C. Nicolella. 2012. Percolating behavior of sintered random packings of spheres. Powder Technology 231:44. doi:10.1016/j.powtec.2012.07.041.
  • Chan, S. H., X. J. Chen, and K. A. Khor. 2004. Cathode micromodel of solid oxide fuel cell. Journal of the Electrochemical Society 151 (1):A164. doi:10.1149/1.1630036.
  • Chen, D. F., Z. J. Lin, H. Y. Zhu, and R. J. Kee. 2009a. Percolation theory to predict effective properties of solid oxide fuel cell. Journal of Power Sources 191 (2):240. doi:10.1016/j.jpowsour.2009.02.051.
  • Chen, D. F., Z. J. Lin, H. Y. Zhu, and R. J. Kee. 2009b. Percolation theory to predict effective properties of solid oxide fuel cell composite electrodes. Journal of Power Sources 191 (2):240–52. doi:10.1016/j.jpowsour.2009.02.051.
  • Chen, X. J., K. A. Khor, S. H. Chan, and L. G. Yu. 2002. Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte. Materials Science and Engineering: A 335 (1–2):246. doi:10.1016/S0921-5093(01)01935-9.
  • Choi, H. W., A. Berson, J. G. Pharoah, and S. B. Beale. 2011. Effective transport properties of the porous electrodes in solid oxide fuel cells. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 225 (2):183–97. doi:10.1177/2041296710394266.
  • Costamagna, P., P. Costa, and V. Antonucci. 1998. Micro-modelling of solid oxide fuel cell electrodes. Electrochimica acta 43 (3–4):375. doi:10.1016/S0013-4686(97)00063-7.
  • Costamagna, P., M. Panizza, G. Cerisola, and A. Barbucci. 2002. Effect of composition on the performance of cermet electrodes. Experimental and theoretical approach. Electrochimica acta 47 (7):1079. doi:10.1016/S0013-4686(01)00830-1.
  • He, A., J. M. Gong, and N. Shikazono. 2018. Three dimensional electrochemical simulation of solid oxide fuel cell cathode based on microstructure reconstructed by marching cubes method. Journal of Power Sources 385:91. doi:10.1016/j.jpowsour.2018.03.026.
  • Jiao, Z. J., and N. K. Shikazono. 2016. 3D reconstruction size effect on the quantification of solid oxide fuel cell nickel–yttria-stabilized-zirconia anode microstructural information using scanning electron microscopy-focused ion beam technique, Science bulletin. Science Bulletin 61 (17):1317–23. doi:10.1007/s11434-016-1044-8.
  • Kenney, B., M. Valdmanis, C. Baker, J. G. Pharoah, and K. Karan. 2009. Computation of TPB length, surface area and pore size from numerical reconstruction of composite solid oxide fuel cell electrodes. Journal of Power Sources 189 (2):1051. doi:10.1016/j.jpowsour.2008.12.145.
  • Lay-Grindler, E., J. Laurencin, J. Villanova, P. Cloetens, P. Bleuet, A. Mansuy, J. Mougin, and G. Delette. 2014. Degradation study by 3D reconstruction of a nickel–yttria stabilized zirconia cathode after high temperature steam electrolysis operation. Journal of Power Sources 269:927. doi:10.1016/j.jpowsour.2014.07.066.
  • Mahbub, R., T. Hsu, W. K. Epting, G. Nolan, Y. Lei, N. T. Nuhfer, R. B. Doane, H. W. Abernathy, G. A. Hackett, S. Litster, et al. 2021. Quantifying morphological variability and operating evolution in SOFC anode microstructures. Journal of Power Sources 498:229846. doi:10.1016/j.jpowsour.2021.229846.
  • Norman, W., M. R. Somalu, and A. Muchtar. 2018. A short review on the proton conducting electrolytes for solid oxide fuel cell applications. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 52:115.
  • Ren, J. W., Y. Q. Wang, and Y. X. Shi. 2022. Numerical simulation and thermal stress analysis of direct internal reforming SOFCs. International Journal of Green Energy 19 (4):399. doi:10.1080/15435075.2021.1946817.
  • Vadav, S., M. Kumar Singh, and K. Sudhakar. 2015. Modelling of solid oxide fuel cell - a review. International Journal of Scientific & Engineering Research 6:834.
  • Wan, S. W., M. F. Yan, and Y. X. Zhang. 2018. A numerical study of infiltrated solid oxide fuel cell electrode with dual phase backbone. International Journal of Energy Research 43 (7):2562–70. doi:10.1002/er.4129.
  • Wang, Y., C. R. Wu, Q. Du, M. Ni, K. Jiao, and B. F. Zu. 2021. Morphology and performance evolution of anode microstructure in solid oxide fuel cell: A model-based quantitative analysis. Applications in Energy and Combustion Science 5:100016. doi:10.1016/j.jaecs.2020.100016.
  • Wang, Y., C. R. Wu, S. Y. Zhao, Z. J. Guo, M. F. Han, T. S. Zhao, B. F. Zu, Q. Du, M. Ni, and K. Jiao. 2023. Boosting the performance and durability of heterogeneous electrodes for solid oxide electrochemical cells utilizing a data-driven powder-to-power framework. Science Bulletin 68 (5):516–27. doi:10.1016/j.scib.2023.02.019.
  • Wang, Y., C. R. Wu, B. F. Zu, M. F. Han, Q. Du, M. Ni, and K. Jiao. 2021. Ni migration of Ni-YSZ electrode in solid oxide electrolysis cell: An integrated model study. Journal of Power Sources 516:230660. doi:10.1016/j.jpowsour.2021.230660.
  • Wu, C. R., Y. Wang, Y. Z. Hou, X. Li, Z. J. Peng, Q. Du, M. Ni, and K. Jiao. 2022. Reconstruction and optimization of LSCF cathode microstructure based on Kinetic Monte Carlo method and Lattice Boltzmann method. Chemical Engineering Journal 436:132144. doi:10.1016/j.cej.2021.132144.
  • Xu, W. X., and Y. Jiao. 2019. Theoretical framework for percolation threshold, tortuosity and transport properties of porous materials containing 3D non-spherical pores. International Journal of Engineering Science 134:31. doi:10.1016/j.ijengsci.2018.10.004.
  • Yin, Y. X., H. Y. Qi, X. Su, D. Liu, T. H. Zhang, S. Han, F. J. Zhang, B. F. Tu, and M. J. Cheng. 2022. Investigation of fuel composition and efficiency of solid oxide fuel cell with different methanol pretreating technologies. International Journal of Green Energy 19 (8):827. doi:10.1080/15435075.2021.1964512.
  • Yuan, Z. F., H. Z. Zhang, J. P. Liu, and H. J. Pei. 2021. Percolation micro-model to predict the electrochemical properties of composite anode and cathode in protonic ceramic fuel cell. International Journal of Electrochemical Science 16 (3):210315. doi:10.20964/2021.03.11.
  • Zeng, K. Q., and M. Ni. 2016. Reconstruction of solid oxide fuel cell electrode microstructure and analysis of its effective conductivity. Science Bulletin 61 (1):78–85. doi:10.1007/s11434-015-0946-1.
  • Zeng, Z. Z., C. K. Hao, B. G. Zhao, Y. P. Qian, W. L. Zhuge, Y. Q. Wang, Y. X. Shi, and Y. J. Zhang. 2022. Local heat transfer enhancement by recirculation flows for temperature gradient reduction in a tubular SOFC. International Journal of Green Energy 19 (10):1132. doi:10.1080/15435075.2021.1986406.
  • Zhang, Q., Y. Guo, J. Ding, and G. Jiang. 2019. New approaches for the determination of electrochemical parameters in the model of proton-conducting solid oxide fuel cell. Electrochimica acta 318:560. doi:10.1016/j.electacta.2019.06.053.
  • Zhang, Q., Y. Guo, J. Ding, and S. Xia. 2019. Hole conductivity in the electrolyte of proton-conducting SOFC: Mathematical model and experimental investigation. Journal of Alloys and Compounds 801:343. doi:10.1016/j.jallcom.2019.06.014.
  • Zhang, Y. X., Q. Sun, C. R. Xia, and M. Ni. 2013. Geometric properties of nanostructured solid oxide fuel cell electrodes. Journal of the Electrochemical Society 160 (3):F278. doi:10.1149/2.057303jes.
  • Zhang, Y. X., Y. L. Wang, Y. Wang, F. L. Chen, and C. R. Xia. 2011. Random-packing model for solid oxide fuel cell electrodes with particle size distributions. Journal of Power Sources 196 (4):1983. doi:10.1016/j.jpowsour.2010.09.098.
  • Zhang, Y. X., and C. R. Xia. 2011. Film percolation for composite electrodes of solid oxide fuel cells. Electrochimica acta 56 (13):4763. doi:10.1016/j.electacta.2011.03.036.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.