190
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental study of a novel photovoltaic-thermal-thermoelectric generator-based solar dryer for grapes drying

, , &
Pages 1161-1173 | Received 13 Jan 2023, Accepted 28 Jul 2023, Published online: 07 Aug 2023

References

  • Arslan, E., and M. Aktaş. 2020. 4E analysis of infrared-convective dryer powered solar photovoltaic thermal collector. Solar Energy 208 (April):46–57. doi:10.1016/j.solener.2020.07.071.
  • Asnaz, M. S. K., and A. O. Dolcek. 2021. Comparative performance study of different types of solar dryers towards sustainable agriculture. Energy Reports 7:6107–18. doi:10.1016/j.egyr.2021.08.193.
  • Cai, Y., W. W. Wang, W. T. Ding, G. B. Yang, D. Liu, and F. Y. Zhao. 2019. Entropy generation minimization of thermoelectric systems applied for electronic cooling: Parametric investigations and operation optimization. Energy Conversion and Management 186 (February):401–14. doi:10.1016/j.enconman.2019.02.064.
  • Chauhan, P. S., A. Kumar, and C. Nuntadusit. 2018. Heat transfer analysis of PV integrated modified greenhouse dryer. Renewable Energy 121:53–65. doi:10.1016/j.renene.2018.01.017.
  • Çiftçi, E., A. Khanlari, A. Sözen, İ. Aytaç, and A. D. Tuncer. 2021. Energy and exergy analysis of a photovoltaic thermal (PVT) system used in solar dryer: A numerical and experimental investigation. Renew Energy 180:410–23. doi:10.1016/j.renene.2021.08.081.
  • Daghigh, R., R. Shahidian, and H. Oramipoor. 2020. A multistate investigation of a solar dryer coupled with photovoltaic thermal collector and evacuated tube collector. Solar Energy 199 (January):694–703. doi:10.1016/j.solener.2020.02.069.
  • Das, B., J. D. Mondol, S. Debnath, A. Pugsley, M. Smyth, and A. Zacharopoulos. 2020. Effect of the absorber surface roughness on the performance of a solar air collector: An experimental investigation. Renewable Energy 152:567–78. doi:10.1016/j.renene.2020.01.056.
  • Dimri, N., A. Tiwari, and G. N. Tiwari. 2017. Thermal modelling of semitransparent photovoltaic thermal (PVT) with thermoelectric cooler (TEC) collector. Energy Conversion and Management 146:68–77. doi:10.1016/j.enconman.2017.05.017.
  • Dimri, N., A. Tiwari, and G. N. Tiwari. 2018. Effect of thermoelectric cooler (TEC) integrated at the base of opaque photovoltaic (PV) module to enhance overall electrical efficiency. Solar Energy 166:159–70. doi:10.1016/j.solener.2018.03.030.
  • Dimri, N., A. Tiwari, and G. N. Tiwari. 2019. Comparative study of photovoltaic thermal (PVT) integrated thermoelectric cooler (TEC) fluid collectors. Renewable Energy 134:343–56. doi:10.1016/j.renene.2018.10.105.
  • Dorouzi, M., H. Mortezapour, H. R. Akhavan, and A. G. Moghaddam. 2018. Tomato slices drying in a liquid desiccant-assisted solar dryer coupled with a photovoltaic-thermal regeneration system. Solar Energy 162 (January):364–71. doi:10.1016/j.solener.2018.01.025.
  • Dutta, P., P. P. Dutta, and P. Kalita. 2021. Thermal performance studies for drying of Garcinia pedunculata in a free convection corrugated type of solar dryer. Renewable Energy 163:599–612. doi:10.1016/j.renene.2020.08.118.
  • ELkhadraoui, A., S. Kooli, I. Hamdi, and A. Farhat. 2015. Experimental investigation and economic evaluation of a new mixed-mode solar greenhouse dryer for drying of red pepper and grape. Renewable Energy 77:1–8. doi:10.1016/j.renene.2014.11.090.
  • Eltawil, M. A., M. M. Azam, and A. O. Alghannam. 2018. Energy analysis of hybrid solar tunnel dryer with PV system and solar collector for drying mint (MenthaViridis). Journal of Cleaner Production 181:352–64. doi:10.1016/j.jclepro.2018.01.229.
  • Essalhi, H., M. Benchrifa, R. Tadili, and M. N. Bargach. 2018. Experimental and theoretical analysis of drying grapes under an indirect solar dryer and in open sun. Innovative Food Science & Emerging Technologies 49:58–64. doi:10.1016/j.ifset.2018.08.002.
  • Gupta, A., A. Biswas, B. Das, and B. V. Reddy. 2022. Development and testing of novel photovoltaic-thermal collector-based solar dryer for green tea drying application. Solar Energy 231 (August 2021):1072–91. doi:10.1016/j.solener.2021.12.030.
  • Hamdi, I., S. Kooli, A. Elkhadraoui, Z. Azaizia, F. Abdelhamid, and A. Guizani. 2018. Experimental study and numerical modeling for drying grapes under solar greenhouse. Renewable Energy 127:936–46. doi:10.1016/j.renene.2018.05.027.
  • Hidalgo, L. F., M. N. Candido, K. Nishioka, J. T. Freire, and G. N. A. Vieira. 2021. Natural and forced air convection operation in a direct solar dryer assisted by photovoltaic module for drying of green onion. Solar Energy 220 (February):24–34. doi:10.1016/j.solener.2021.02.061.
  • IS 12933. 2003. 12933–5. https://law.resource.org/pub/in/bis/S08/is.12933.5.2003.pdf
  • Jain, D. 2006. Determination of convective heat and mass transfer coefficients for solar drying of fish. Biosystems Engineering 94 (3):429–35. doi:10.1016/j.biosystemseng.2006.04.006.
  • Kılkış, B. 2020. Development of a composite PVT panel with PCM embodiment, TEG modules, flat-plate solar collector, and thermally pulsing heat pipes. Solar Energy 200 (October 2019):89–107. doi:10.1016/j.solener.2019.10.075.
  • Lamrani, B., A. Draoui, and F. Kuznik. 2021. Thermal performance and environmental assessment of a hybrid solar-electrical wood dryer integrated with Photovoltaic/Thermal air collector and heat recovery system. Solar Energy 221 (August 2020):60–74. doi:10.1016/j.solener.2021.04.035.
  • Lingayat, A., V. P. Chandramohan, V. R. K. Raju, and A. Kumar. 2020. Development of indirect type solar dryer and experiments for estimation of drying parameters of apple and watermelon: Indirect type solar dryer for drying apple and watermelon. Thermal Science and Engineering Progress 16 (November 2019):100477. doi:10.1016/j.tsep.2020.100477.
  • Li, G., and X. Zhao. 2016. Conceptual development of a novel photovoltaic thermoelectric system and preliminary economic analysis. Energy Conversion and Management 126:935–43. doi:10.1016/j.enconman.2016.08.074.
  • Mohsenzadeh, M., M. B. Shafii, and H. Jafari Mosleh. 2017. A novel concentrating photovoltaic/thermal solar system combined with thermoelectric module in an integrated design. Renewable Energy 113:822–34. doi:10.1016/j.renene.2017.06.047.
  • Naderi, M., B. M. Ziapour, and M. Y. Gendeshmin. 2021. Improvement of photocells by the integration of phase change materials and thermoelectric generators (PV-PCM-TEG) and study on the ability to generate electricity around the clock. Journal of Energy Storage 36 (October 2020):102384. doi:10.1016/j.est.2021.102384.
  • Nazri, N. S., A. Fudholi, W. Mustafa, C. H. Yen, M. Mohammad, M. H. Ruslan, and K. Sopian. 2019. Exergy and improvement potential of hybrid photovoltaic thermal/thermoelectric (PVT/TE) air collector. Renewable and Sustainable Energy Reviews 111 (November 2017):132–44. doi:10.1016/j.rser.2019.03.024.
  • Reddy Mugi, V., and V. P. Chandramohan. 2021. Energy, exergy and economic analysis of an indirect type solar dryer using green chilli: A comparative assessment of forced and natural convection. Thermal Science and Engineering Progress 24 (April):100950. doi:10.1016/j.tsep.2021.100950.
  • Rezania, A., and L. A. Rosendahl. 2017. Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system. Applied Energy 187:380–89. doi:10.1016/j.apenergy.2016.11.064.
  • Salari, A., A. Parcheforosh, A. Hakkaki-Fard, and A. Amadeh. 2020. A numerical study on a photovoltaic thermal system integrated with a thermoelectric generator module. Renewable Energy 153:1261–71. doi:10.1016/j.renene.2020.02.018.
  • Samimi-Akhijahani, H., and A. Arabhosseini. 2018. Accelerating drying process of tomato slices in a PV-assisted solar dryer using a sun tracking system. Renewable Energy 123:428–38. doi:10.1016/j.renene.2018.02.056.
  • Sansaniwal, S. K., V. Sharma, and J. Mathur. 2018. Energy and exergy analyses of various typical solar energy applications: A comprehensive review. Renewable and Sustainable Energy Reviews 82 (May 2017):1576–601. doi:10.1016/j.rser.2017.07.003.
  • Seyfi, A., A. R. Asl, and A. Motevali. 2021. Comparison of the energy and pollution parameters in solar refractance window (photovoltaic-thermal), conventional refractance window, and hot air dryer. Solar Energy 229 (December 2020):162–73. doi:10.1016/j.solener.2021.05.094.
  • Shoeibi, S., H. Kargarsharifabad, S. A. A. Mirjalily, and M. Zargarazad. 2021. Performance analysis of finned photovoltaic/thermal solar air dryer with using a compound parabolic concentrator. Applied Energy 304 (June):117778. doi:10.1016/j.apenergy.2021.117778.
  • Singh, S., R. S. Gill, V. S. Hans, and M. Singh. 2021. A novel active-mode indirect solar dryer for agricultural products: experimental evaluation and economic feasibility. Energy 222:119956. doi:10.1016/j.energy.2021.119956.
  • Slimani, M. E. A., M. Amirat, S. Bahria, I. Kurucz, M. Aouli, and R. Sellami. 2016. Study and modeling of energy performance of a hybrid photovoltaic/thermal solar collector: configuration suitable for an indirect solar dryer. Energy Conversion and Management 125:209–21. doi:10.1016/j.enconman.2016.03.059.
  • Srivastava, A., A. Anand, A. Shukla, A. Kumar, D. Buddhi, and A. Sharma. 2021. A comprehensive overview on solar grapes drying: modeling, energy, environmental and economic analysis. Sustainable Energy Technologies and Assessments 47 (March):101513. doi:10.1016/j.seta.2021.101513.
  • Swamee, P., and A. Jain. 1976. Explicit equations for pipe-flow problems. Journal of the Hydraulics Division-American Society Civil Engineers 102 (5):657–64. doi:10.1061/JYCEAJ.0004542.
  • Tiwari, S., S. Agrawal, and G. N. Tiwari. 2018. PVT air collector integrated greenhouse dryers. Renewable and Sustainable Energy Reviews 90 (June 2017):142–59. doi:10.1016/j.rser.2018.03.043.
  • Tiwari, S., and G. N. Tiwari. 2017. Energy and exergy analysis of a mixed-mode greenhouse-type solar dryer, integrated with partially covered N-PVT air collector. Energy 128:183–95. doi:10.1016/j.energy.2017.04.022.
  • Tiwari, S., G. N. Tiwari, and I. M. Al-Helal. 2016. Performance analysis of photovoltaic–thermal (PVT) mixed mode greenhouse solar dryer. Solar Energy 133:421–28. doi:10.1016/j.solener.2016.04.033.
  • Tongpun, P., E. Bumrungthaichaichan, and S. Wattananusorn. 2014. Investigation of entrance length in circular and noncircular conduits by computational fluid dynamics simulation. Songklanakarin Journal of Science and Technology 36 (4):471–75.
  • Veeramanipriya, E., and A. R. Umayal Sundari. 2021. Performance evaluation of hybrid photovoltaic thermal (PVT) solar dryer for drying of cassava. Solar Energy 215 (January):240–51. doi:10.1016/j.solener.2020.12.027.
  • Vijayan, S., T. V. Arjunan, and A. Kumar. 2020. Exergo-environmental analysis of an indirect forced convection solar dryer for drying bitter gourd slices. Renewable Energy 146:2210–23. doi:10.1016/j.renene.2019.08.066.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.