529
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Bioethanol production from agro-wastes: a comprehensive review with a focus on pretreatment, enzymatic hydrolysis, and fermentation

, , , &
Pages 1398-1424 | Received 14 Dec 2022, Accepted 26 Aug 2023, Published online: 10 Sep 2023

References

  • Abbi, M., R. C. Kuhad, and A. Singh. 1996. Fermentation of xylose and rice straw hydrolysate to ethanol by Candida shehatae NCL-3501. Journal of Industrial Microbiology 17 (1):20–23. doi:10.1007/BF01570143.
  • Aghbashlo, M., H. Hosseinzadeh-Bandbafha, H. Shahbeik, and M. Tabatabaei. 2022. The role of sustainability assessment tools in realizing bioenergy and bioproduct systems. Biofuel Research Journal 9 (3):1697–706. doi:10.18331/BRJ2022.9.3.5.
  • Agrawal, R., P. Kumari, P. Sivagurunathan, A. Satlewal, R. Kumar, R. P. Gupta, and S. K. Puri. 2021. Pretreatment process and its effect on enzymatic hydrolysis of biomass. Current Status and Future Scope of Microbialogy Cellulases 145–69. doi:10.1016/B978-0-12-821882-2.00012-0.
  • Agu, O. S., L. G. Tabil, V. Meda, T. Dumonceaux, and E. Mupondwav. 2018. Pretreatment of crop residues by application of microwave heating and alkaline solution for biofuel processing: A review. Renewable Resources and Biorefineries 47–67. doi:10.5772/intechopen.79103.
  • Al Afif, R., C. Pfeifer, and T. Pröll. 2019. Bioenergy recovery from cotton stalk. Advnce Cotton Resarch IntechOpen. 10.5772/intechopen.88005
  • Al-Rubaye, A. F., I. H. Hameed, and M. J. Kadhim. 2017. A review: Uses of gas chromatography-mass spectrometry (GC-MS) technique for analysis of bioactive natural compounds of some plants. International Journal of Toxicological and Pharmacological Research 9 (1):81–85. doi:10.25258/ijtpr.v9i01.9042.
  • Amores, I., I. Ballesteros, P. Manzanares, F. Sáez, G. Michelena, and M. Ballesteros. 2013. Ethanol production from sugarcane bagasse pretreated by steam explosion. Electronic Journal of Energy & Environment Vol. 1 (Nº 1):25–36. https://hdl.handle.net/10925/1463.
  • Anu, S., A. K. Kumar, V. Kumar, and B. Singh. 2021. Optimization of cellulase production by Bacillus subtilis subsp. subtilis JJBS300 and biocatalytic potential in saccharification of alkaline-pretreated rice straw. Preparative Biochemistry & Biotechnology 51 (7):697–704. doi:10.1080/10826068.2020.1852419.
  • Aydogan, H., A. E. Ozcelik, and M. Acaroglu. 2019. An experimental study on the effects of bioethanol—gasoline blends on engine performance in a spark ignition engine. International Nitrogen Management System (INMS). doi:10.1109/ICCED.2017.8019984.
  • Azhar, S. H. M., R. Abdulla, S. A. Jambo, H. Marbawi, J. A. Gansau, A. A. M. Faik, and K. F. Rodrigues. 2017. Yeasts in sustainable bioethanol production: A review. Biochemistry and Biophysics Reports 10:52–61. doi:10.1016/j.bbrep.2017.03.003.
  • Balwan, W. K., and S. Kour. 2021. A Systematic review of biofuels: The cleaner energy for cleaner environment. Indian Journal of Scientific Research 12 (1):135–42. doi:10.32606/IJSR.V12.I1.00025.
  • Bardhan, P., A. Deka, S. S. Bhattacharya, M. Mandal, and R. Kataki. 2022. Economical aspect in biomass to biofuel production. In Value-Chain of Biofuels, 395–427. Elsevier. doi:10.1016/B978-0-12-824388-6.00003-8.
  • Batog, J., J. Frankowski, A. Wawro, and A. Łacka. 2020. Bioethanol production from biomass of selected sorghum varieties cultivated as main and second crop. Energies 13 (23):6291. doi:10.3390/en13236291.
  • Bayat, M., N. Karimi, M. Karami, A. B. Haghighi, K. Bayat, S. Akbari, and M. Haghani. 2021. Chronic exposure to 2.45 GHz microwave radiation improves cognition and synaptic plasticity impairment in vascular dementia model. The International Journal of Neuroscience 133 (2):111–22. doi:10.1080/00207454.2021.1896502.
  • Behera, S., R. Arora, N. Nandhagopal, and S. Kumar. 2014. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews 36:91–106. doi:10.1016/j.rser.2014.04.047.
  • Benton, T. G., A. Froggatt, L. Wellesley, O. Grafham, R. King, N. Morisetti, J. Nixey, and P. Schröder. 2022. The ukraine war and threats to food and energy security: Cascading risks from rising prices and supply disruptions. London, UK: Chatham House, the Royal Institute of International Affairs. https://www.chathamhouse.org/sites/default/files/2022-04/2022-04-12-ukraine-war-threats-food-energy-security-benton-et-al_0.pdf.
  • Bhardwaj, N., B. Kumar, and P. Verma. 2019. A detailed overview of xylanases: An emerging biomolecule for current and future prospective. Bioresources and Bioprocessing 6 (1):40. doi:10.1186/s40643-019-0276-2.
  • Bhurat, K. S., T. Banerjee, J. K. Pandey, and S. S. Bhurat. 2021. A lab fermenter level study on anaerobic hydrogen fermentation using potato peel waste: Effect of pH, temperature, and substrate pre-treatment. Journal of Material Cycles & Waste Management 23 (4):1617–25. doi:10.1007/s10163-021-01242-3.
  • Bhuvaneswari, M., and N. Sivakumar. 2019. Bioethanol production from fruit and vegetable wastes. Bioprocessing for Biomolecules Production 417–27. doi:10.1002/9781119434436.ch20.
  • Bidir, M. G., N. K. Millerjothi, M. S. Adaramola, and F. Y. Hagos. 2021. The role of nanoparticles on biofuel production and as an additive in ternary blend fuelled diesel engine: A review. Energy Reports 7:3614–27. doi:10.1016/j.egyr.2021.05.084.
  • Bilal, M., M. Asgher, H. Iqbal, and M. Ramzan. 2017. Enhanced bio-ethanol production from old newspapers waste through alkali and enzymatic delignification. Waste and Biomass Valorization 8 (7):2271–81. doi:10.1007/s12649-017-9871-7.
  • Bjerre, A. B., A. B. Olesen, T. Fernqvist, A. Plöger, and A. S. Schmidt. 1996. Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnology and Bioengineering 49 (5):568–77. doi:10.1002/(SICI)1097-0290(19960305)49:5<568:AID-BIT10>3.0.CO;2-6.
  • Bolade, O. P., A. A. Akinsiku, A. O. Adeyemi, G. E. Jolayemi, A. B. Williams, and N. U. Benson. August, 2019. Qualitative analysis, total phenolic content, FT-IR and GC-MS characterisation of Canna indica: Bioreducing agent for nanoparticles synthesis. Journal of Physics Conference Series 1299(1):012135. doi:10.1088/1742-6596/1299/1/012135.
  • Boulal, A., M. Kihal, C. Khelifi, and B. Benali. 2016. Bioethanol production from date palm fruit waste fermentation using solar energy. African Journal of Biotechnology 15 (30):1621–27. doi:10.5897/AJB2016.15368.
  • Bozkuş, T. N., O. Değer, and A. Yaşar. 2021. Chemical characterization of water and ethanolic extracts of Turkish propolis by HPLC-DAD and GC-MS. Journal of Liquid Chromatography & Related Technologies 44 (1–2):77–86. doi:10.1080/10826076.2021.1883648.
  • Bracco, S., O. Calicioglu, M. G. S. Juan, and A. Flammini. 2018. Assessing the contribution of bioeconomy to the total economy: A review of national frameworks. Sustainability 10 (6):1698. doi:10.3390/su10061698.
  • Braide, W., I. A. Kanu, U. S. Oranusi, and S. A. Adeleye. 2016. Production of bioethanol from agricultural waste. Journal of Fundamental & Applied Sciences 8 (2):372–86. doi:10.4314/jfas.v8i2.14.
  • Buaban, B., H. Inoue, S. Yano, S. Tanapongpipat, V. Ruanglek, V. Champreda, L. Eurwilaichitr, S. Rengpipat, and L. Eurwilaichitr. 2010. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichiastipitis. Journal of Bioscience and Bioengineering 110 (1):18–25. doi:10.1016/j.jbiosc.2009.12.003.
  • Bundhoo, Z. M. 2018. Microwave-assisted conversion of biomass and waste materials to biofuels. Renewable and Sustainable Energy Reviews 82:1149–77. doi:10.1016/j.rser.2017.09.066.
  • Carvalho, A. F. A., W. F. Marcondes, P. de Oliva Neto, G. M. Pastore, J. N. Saddler, and V. Arantes. 2018. The potential of tailoring the conditions of steam explosion to produce xylo-oligosaccharides from sugarcane bagasse. Bioresource Technology 250:221–29. doi:10.1016/j.biortech.2017.11.041.
  • Casabar, J. T., Y. Unpaprom, and R. Ramaraj. 2019. Fermentation of pineapple fruit peel wastes for bioethanol production. Biomass Conversion and Biorefinery 9 (4):761–65. doi:10.1007/s13399-019-00436-y.
  • Cesarino, I., P. Araújo, A. P. DominguesJúnior, and P. Mazzafera. 2012. An overview of lignin metabolism and its effect on biomass recalcitrance. Brazilian Journal of Botany 35 (4):303–11. doi:10.1590/S0100-84042012000400003.
  • Chandel, A. K., M. L. Narasu, G. Chandrasekhar, A. Manikyam, and L. V. Rao. 2009. Use of Saccharumspontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae VS3. Bioresource Technology 100 (8):2404–10. doi:10.1016/j.biortech.2008.11.014.
  • Chen, M., C. Dai, R. Liu, C. Lian, J. Yuan, C. Fang, and B. Fei. 2020. Influence of cell wall structure on the fracture behavior of bamboo (Phyllostachysedulis) fibers. Industrial Crops and Products 155:112787. doi:10.1016/j.indcrop.2020.112787.
  • Cheng, M. H., Z. Wang, B. S. Dien, P. J. Slininger, and V. Singh. 2019. Economic analysis of cellulosic ethanol production from sugarcane bagasse using a sequential deacetylation, hot water and disk-refining pretreatment. Processes 7 (10):642. doi:10.3390/pr7100642.
  • Chen, W. H., S. Nižetić, R. Sirohi, Z. Huang, R. Luque, A. M. Papadopoulos, R. Sakthivel, X. P. Nguyen, and A. T. Hoang. 2022. Liquid hot water as sustainable biomass pretreatment technique for bioenergy production: A review. Bioresource Technology 344:126207. doi:10.1016/j.biortech.2021.126207.
  • Coradello, G., and N. Tirelli. 2021. Yeast cells in microencapsulation. General features and controlling factors of the encapsulation process. Molecules 26 (11):3123. doi:10.3390/molecules26113123.
  • Deesuth, O., P. Laopaiboon, and L. Laopaiboon. 2016. High ethanol production under optimal aeration conditions and yeast composition in a very high gravity fermentation from sweet sorghum juice by Saccharomyces cerevisiae. Industrial Crops and Products 92:263–70. doi:10.1016/j.indcrop.2016.07.042.
  • Dhiman, S. S., A. David, V. W. Braband, A. Hussein, D. R. Salem, and R. K. Sani. 2017. Improved bioethanol production from corn stover: Role of enzymes, inducers and simultaneous product recovery. Applied Energy 208:1420–29. doi:10.1016/j.apenergy.2017.09.013.
  • Dien, B. S., R. B. Mitchell, M. J. Bowman, V. L. Jin, J. Quarterman, M. R. Schmer, and P. J. Slininger. 2018. Bioconversion of pelletized big bluestem, switchgrass, and low-diversity grass mixtures into sugars and bioethanol. Frontiers in Energy Research 6:129. doi:10.3389/fenrg.2018.00129.
  • Edeh, I. 2020. Bioethanol production: An overview. Ed., Bioethanol Technologies, IntechOpen. 10-5772/intechopen-94895.
  • Escalante, J., W. H. Chen, M. Tabatabaei, A. T. Hoang, E. E. Kwon, K. Y. A. Lin, and A. Saravanakumar. 2022. Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy: A review of thermogravimetric analysis (TGA) approach. Renewable and Sustainable Energy Reviews 169:112914. doi:10.1016/j.rser.2022.112914.
  • Esfandabadi, Z. S., M. Ranjbari, and S. D. Scagnelli. 2022. The imbalance of food and biofuel markets amid ukraine-Russia crisis: A systems thinking perspective. Biofuel Research Journal 9 (2):1640–47. doi:10.18331/BRJ2022.9.2.5.
  • Espinoza-Acosta, J. L., P. I. Torres-Chávez, E. Carvajal-Millán, B. Ramírez-Wong, L. A. Bello-Pérez, and B. Montaño-Leyva. 2014. Ionic liquids and organic solvents for recovering lignin from lignocellulosic biomass. BioResources 9 (2):3660–87. https://www.chathamhouse.org/sites/default/files/2022-04/2022-04-12-ukraine-war-threats-food-energy-security-benton-et-al_0.pdf/.
  • Ferreira-Leitão, V., C. C. Perrone, J. Rodrigues, A. P. M. Franke, S. Macrelli, and G. Zacchi. 2010. An approach to the utilisation of CO2 as impregnating agent in steam pretreatment of sugar cane bagasse and leaves for ethanol production. Biotechnology for Biofuels 3 (1):1–8. doi:10.1186/1754-6834-3-7.
  • Fetyan, N. A., A. E. K. B. El-Sayed, F. M. Ibrahim, Y. A. Attia, and M. W. Sadik. 2022. Bioethanol production from defatted biomass of Nannochloropsis oculata microalgae grown under mixotrophic conditions. Environmental Science and Pollution Research 29 (2):2588–97. doi:10.1007/s11356-021-15758-6.
  • Field, J. L., T. L. Richard, E. A. Smithwick, H. Cai, M. S. Laser, D. S. LeBauer, L. R. Lynd, K. Paustian, Z. Qin, and J. J. Sheehan. 2020. Robust paths to net greenhouse gas mitigation and negative emissions via advanced biofuels. Proceedings of the National Academy of Sciences 117 (36):21968–77. doi:10.1073/pnas.1920877117.
  • Gambelli, D., F. Alberti, F. Solfanelli, D. Vairo, and R. Zanoli. 2017. Third generation algae biofuels in Italy by 2030: A scenario analysis using Bayesian networks. Energy Policy 103:165–78. doi:10.1016/j.enpol.2017.01.013.
  • Gheewala, S. H. 2023. Life cycle assessment for sustainability assessment of biofuels and bioproducts. Biofuel Research Journal 10 (1):1810–15.
  • Gomes, D., M. Cruz, M. de Resende, E. Ribeiro, J. Teixeira, and L. Domingues. 2021. Very high gravity bioethanol Revisited: Main challenges and advances. Fermentation 7 (1):38. doi:10.3390/fermentation7010038.
  • Gumienna, M., K. Szambelan, H. Jeleń, and Z. Czarnecki. 2014. Evaluation of ethanol fermentation parameters for bioethanol production from sugar beet pulp and juice. Journal of the Institute of Brewing 120 (4):543–49. doi:10.1002/jib.181.
  • Gunam, I. B. W., I. A. P. K. Dewi, N. S. Antara, A. A. M. D. Anggreni, and Y. Setiyo. 2021. Bioethanol production from sugarcane bagasse by Saccharomyces cerevisiae ATCC 9763 immobilized in Na-alginate. IOP Conference Series: Earth and Environmental Science 824 (1):012054. IOP Publishing. doi:10.1088/1755-1315/824/1/012054.
  • Gupta, R., K. K. Sharma, and R. C. Kuhad. 2009. Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Bioresource Technology 100 (3):1214–20. doi:10.1016/j.biortech.2008.08.033.
  • Gupta, A., and J. P. Verma. 2015. Sustainable bio-ethanol production from agro-residues: A review. Renewable and Sustainable Energy Reviews 41:550–67. doi:10.1016/j.rser.2014.08.032.
  • Harmsen, P. F., W. Huijgen, L. Bermudez, and R. Bakker. 2010. Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Wageningen: Wageningen UR. Food & Biobased Research 54. https://www.chathamhouse.org/sites/default/files/2022-04/2022-04-12-ukraine-war-threats-food-energy-security-benton-et-al_0.pdf//.
  • Hoang, A. T., Z. Huang, S. Nižetić, A. Pandey, X. P. Nguyen, R. Luque, H. C. Ong, Z. Said, and T. H. Le. 2022. Characteristics of hydrogen production from steam gasification of plant-originated lignocellulosic biomass and its prospects in Vietnam. International journal of hydrogen energy 47 (7):4394–425. doi:10.1016/j.ijhydene.2021.11.091.
  • Hoang, A. T., S. Nizetic, H. C. Ong, C. T. Chong, A. E. Atabani, and V. V. Pham. 2021. Acid-based lignocellulosic biomass biorefinery for bioenergy production: Advantages, application constraints, and perspectives. Journal of Environmental Management 296:113194. doi:10.1016/j.jenvman.2021.113194.
  • Hoang, A. T., S. Nižetić, H. C. Ong, M. Mofijur, S. F. Ahmed, B. Ashok, and M. Q. Chau. 2021. Insight into the recent advances of microwave pretreatment technologies for the conversion of lignocellulosic biomass into sustainable biofuel. Chemosphere 281:130878. doi:10.1016/j.chemosphere.2021.130878.
  • Hoang, A. T., Q. V. Tran, A. R. M. S. Al-Tawaha, and X. P. Nguyen. 2019. Comparative analysis on performance and emission characteristics of an in-Vietnam popular 4-stroke motorcycle engine running on biogasoline and mineral gasoline. Renewable Energy Focus 28:47–55. doi:10.1016/j.ref.2018.11.001.
  • Hu, X., L. Cheng, Z. Gu, Y. Hong, Z. Li, and C. Li. 2018. Effects of ionic liquid/water mixture pretreatment on the composition, the structure and the enzymatic hydrolysis of corn stalk. Industrial Crops and Products 122:142–47. doi:10.1016/j.indcrop.2018.05.056.
  • Hussain, C. M., S. Singh, and L. Goswami, eds. 2021. Waste-to-energy approaches towards zero waste: Interdisciplinary methods of controlling waste (book chapter). Elsevier.
  • Imtiaz, U., S. S. Jamuar, and J. N. Sahu. 2015. Bioreactor profile design and optimization for ethanol production. 58th International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 1–4). IEEE. doi: 10.1109/MWSCAS.2015.7282038
  • Jeyakumar, N., A. T. Hoang, S. Nižetić, D. Balasubramanian, S. Kamaraj, P. L. Pandian, R. Sirohi, P. Q. P. Nguyen, and X. P. Nguyen. 2022. Experimental investigation on simultaneous production of bioethanol and biodiesel from macro-algae. Fuel 329:125362. doi:10.1016/j.fuel.2022.125362.
  • Jiang, W., S. Chang, H. Li, T. Oleskowicz, A. Louloudi, K. G. Kalogiannis, A. A. Lappas, N. Papayannakos, D. Kekos, and D. Mamma. 2019. Effect of various pretreatment methods on bioethanol production from cotton stalks. Fermentation 5 (1):5. doi:10.3390/fermentation5010005.
  • Joy, J., C. Jose, P. L. Mathew, S. Thomas, and M. N. Khalaf. 2016. Biological delignification of biomass. Green Polymers and Environmental Pollution Control 293–324.
  • Jusakulvijit, P., A. Bezama, and D. Thrän. 2021. The availability and assessment of potential agricultural residues for the Regional development of second-generation bioethanol in Thailand. Waste and Biomass Valorization 12 (11):6091–118. doi:10.1007/s12649-021-01424-y.
  • Kadarmoidheen, M., P. Saranraj, and D. Stella. 2012. Effect of cellulolytic fungi on the degradation of cellulosic agricultural wastes. International Journal of Applied Microbiology Science 1 (2):13–23.
  • Karray, R., M. Hamza, and S. Sayadi. 2015. Evaluation of ultrasonic, acid, thermo-alkaline and enzymatic pretreatments on anaerobic digestion of Ulvarigida for biogas production. Bioresource Technology 187:205–13. doi:10.1016/j.biortech.2015.03.108.
  • Katsimpouras, C., M. Zacharopoulou, L. Matsakas, U. Rova, P. Christakopoulos, and E. Topakas. 2017. Sequential high gravity ethanol fermentation and anaerobic digestion of steam explosion and organosolv pretreated corn stover. Bioresource Technology 244:1129–36. doi:10.1016/j.biortech.2017.08.112.
  • Kazmi, M. Z. H., A. Karmakar, V. K. Michaelis, and F. J. Williams. 2019. Separation of cellulose/hemicellulose from lignin in white pine sawdust using boron trihalide reagents. Tetrahedron 75 (11):1465–70. doi:10.1016/j.tet.2019.02.009.
  • Keshav, P. K., C. Banoth, S. N. Kethavath, and B. Bhukya. 2021. Lignocellulosic ethanol production from cotton stalk: An overview on pretreatment, saccharification and fermentation methods for improved bioconversion process. Biomass Conversion and Biorefinery 13 (6):1–17. doi:10.1007/s13399-021-01468-z.
  • Khalil, S. R., A. A. Abdelhafez, and E. A. M. Amer. 2015. Evaluation of bioethanol production from juice and bagasse of some sweet sorghum varieties. Annals of Agricultural Sciences 60 (2):317–24. doi:10.1016/j.aoas.2015.10.005.
  • Khandaker, M. M., K. Qiamuddin, A. Majrashi, and T. Dalorima. 2018. Bio-ethanol production from fruit and vegetable waste by using saccharomyces cerevisiae. Bioethanol Technologies 37–53. doi:10.5772/intechopen.94358.
  • Khoshkho, S. M., M. Mahdavian, F. Karimi, H. Karimi-Maleh, and P. Razaghi. 2022. Production of bioethanol from carrot pulp in the presence of Saccharomyces cerevisiae and beet molasses inoculum; a biomass based investigation. Chemosphere 286:131688. doi:10.1016/j.chemosphere.2021.131688.
  • Kim, S. M., B. S. Dien, M. E. Tumbleson, K. D. Rausch, and V. Singh. 2016. Improvement of sugar yields from corn stover using sequential hot water pretreatment and disk milling. Bioresource Technology 216:706–13. doi:10.1016/j.biortech.2016.06.003.
  • Kim, Y. K., and H. Lee. 2016. Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation. Bioresource Technology 204:139–44. doi:10.1016/j.biortech.2016.01.001.
  • Kim, J. S., Y. Y. Lee, and T. H. Kim. 2016. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology 199:42–48. doi:10.1016/j.biortech.2015.08.085.
  • Kluts, I., B. Wicke, R. Leemans, and A. Faaij. 2017. Sustainability constraints in determining European bioenergy potential: A review of existing studies and steps forward. Renewable and Sustainable Energy Reviews 69:719–34. doi:10.1016/j.rser.2016.11.036.
  • Koutinas, A. A., A. Vlysidis, D. Pleissner, N. Kopsahelis, I. Lopez Garcia, I. K. Kookos, S. Papanikolaou, T. H. Kwan, and C. S. K. Lin. 2014. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers. Chemical Society Reviews 43 (8):2587–627. doi:10.1039/C3CS60293A.
  • Ko, C. H., Y. N. Wang, F. C. Chang, J. J. Chen, W. H. Chen, and W. S. Hwang. 2012. Potentials of lignocellulosic bioethanols produced from hardwood in Taiwan. Energy 44 (1):329–34. doi:10.1016/j.energy.2012.06.026.
  • Krishna, C. 2005. Solid-state fermentation systems—an overview. Critical Reviews in Biotechnology 25 (1–2):1–30. doi:10.1080/07388550590925383.
  • Krishnan, S., M. F. Ahmad, N. A. Zainuddin, M. F. M. Din, S. Rezania, S. Chelliapan, S. M. Taib, M. Nasrullah, and Z. A. Wahid. 2020. Bioethanol production from lignocellulosic biomass (water hyacinth): A biofuel alternative. In Bioreactors, 123–43. Elsevier. doi:10.1016/B978-0-12-821264-6.00009-7.
  • Kuglarz, M., M. Alvarado-Morales, K. Dąbkowska, and I. Angelidaki. 2018. Integrated production of cellulosic bioethanol and succinic acid from rapeseed straw after dilute-acid pretreatment. Bioresource Technology 265:191–99. doi:10.1016/j.biortech.2018.05.099.
  • Kumar, A. 2018. Global warming, climate change and greenhouse gas mitigation. In Biofuels: Greenhouse Gas Mitigation and Global Warming, Springer India: New Delhi. doi:10.1007/978-81-322-3763-1.
  • Kumar, G. K., and P. V. Senan. 2020. Bioethanol production from local fruit waste and its optimization. Indian Journal of Experimental Biology (IJEB) 58 (12):879–82. doi:10.56042/ijeb.v58i12.44588.
  • Kumar, A. K., and S. Sharma. 2017. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review. Bioresources and Bioprocessing 4 (1):1–19. doi:10.1186/s40643-017-0137-9.
  • Kumar, S., R. Viral, V. Deep, P. Sharma, M. Kumar, M. Mahmud, and T. Stephan. 2021. Forecasting major impacts of COVID-19 pandemic on country-driven sectors: Challenges, lessons, and future roadmap. Personal and Ubiquitous Computing 27 (3):1–24. doi:10.1007/s00779-021-01530-7.
  • Kumar, R., and C. E. Wyman. 2009. Does change in accessibility with conversion depend on both the substrate and pretreatment technology. Bioresource Technology 100 (18):4193–202. doi:10.1016/j.biortech.2008.11.058.
  • Kushwaha, D., S. N. Upadhyay, and P. K. Mishra. 2018. Nanotechnology in bioethanol/biobutanol production. Green Nanotechnology for Biofuel Production 115–27. doi:10.1007/978-3-319-75052-1_8.
  • Lamichhane, G., S. Khadka, A. Acharya, and N. Parajuli. 2021. Pretreatment of finger millet straw (Eleusinecoracana) for enzymatic hydrolysis towards bioethanol production. Biomass Conversion and Biorefinery 13 (7):1–15. doi:10.1007/s13399-021-01633-4.
  • Lara-Serrano, M., F. Sáezangulo, M. J. Negro, S. Morales-DelaRosa, J. M. Campos-Martin, and J. L. Fierro. 2018. Second-generation bioethanol production combining simultaneous fermentation and saccharification of IL-pretreated barley straw. ACS Sustainable Chemistry & Engineering 6 (5):7086–95. doi:10.1021/acssuschemeng.8b00953.
  • Lin, Y., and S. Tanaka. 2006. Ethanol fermentation from biomass resources: Current state and prospects. Applied Microbiology and Biotechnology 69 (6):627–42. doi:https://doi.org/10.1007/s00253-005-0229-x.
  • Liu, X., U. H. Mortensen, and M. Workman. 2013. Expression and functional studies of genes involved in transport and metabolism of glycerol in Pachysolentannophilus. Microbialogy Cell 12 (1):27. doi:https://doi.org/10.1186/1475-2859-12-27.
  • Lizardi-Jiménez, M. A., and R. Hernández-Martínez. 2017. Solid state fermentation (SSF): Diversity of applications to valorize waste and biomass. Biotechnology 7 (1):44. doi:10.1007/s13205-017-0692-y.
  • López-Gómez, J. P., and J. Venus. 2021. Potential role of sequential solid-state and submerged-liquid fermentations in a circular bioeconomy. Fermentation 7 (2):76. doi:10.3390/fermentation7020076.
  • Magyar, M., L. da Costa Sousa, M. Jin, C. Sarks, and V. Balan. 2016. Conversion of apple pomace waste to ethanol at industrial relevant conditions. Applied Microbiology and Biotechnology 100 (16):7349–58. doi:10.1007/s00253-016-7665-7.
  • Maina, M. B., F. A. Oluwole, G. M. Ngala, and S. A. Abdulrahman. 2017. Comparison of the properties and yield of bioethanol from mango and orange waste. Arid Zone Journal of Engineering, Technology and Environment 13 (6):779.
  • Malhotra, G. 2013. Alcohol production from fruit and vegetable waste. International Journal of Applied Engineering Research 8 (15):1749–56.
  • Malik, K., E. S. Salama, M. M. El-Dalatony, M. Jalalah, F. A. Harraz, M. S. Al-Assiri, and X. Li. 2021. Co-fermentation of immobilized yeasts boosted bioethanol production from pretreated cotton stalk lignocellulosic biomass: Long-term investigation. Industrial Crops and Products 159:113122. doi:10.1016/j.indcrop.2020.113122.
  • Maurya, D. P., A. Singla, and S. Negi. 2015. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. Biotechnology 5 (5):597–609. doi:10.1007/s13205-015-0279-4.
  • McMillan, J. D. 1993. Xylose fermentation to ethanol. A review (no. NREL/TP-421-4944). In National Renewable Energy Lab. Golden, CO, United States. doi:10.2172/10117941.
  • Medina-Morales, M. A., E. Luis, L. A. Paredes-Pena, T. K. Morales-Martinez, J. A. Rodríguez-De la Garza, I. M. Moreno-Dávila, M. C. Tamayo-Ordonez, and L. J. Rios-Gonzalez. 2021. Biohydrogen production from thermochemically pretreated corncob using a mixed culture bioaugmented with Clostridium acetobutylicum. International Journal of Hydrogen Energy 46 (51):25974–84. doi:10.1016/j.ijhydene.2021.04.046.
  • Mikulski, D., and G. Kłosowsk. 2022. Delignification efficiency of various types of biomass using microwave-assisted hydrotropic pretreatment. Scientific Reports 12 (1):4561. doi:10.1038/s41598-022-08717-9.
  • Mikulski, D., and G. Kłosowski. 2022. Integration of first-and second-generation bioethanol production from beet molasses and distillery stillage after dilute sulfuric acid pretreatment. BioEnergy Research 15 (1):454–65. doi:10.1007/s12155-021-10260-w.
  • Mikulski, D., G. Kłosowski, A. Menka, and B. Koim-Puchowska. 2019. Microwave-assisted pretreatment of maize distillery stillage with the use of dilute sulfuric acid in the production of cellulosic ethanol. Bioresource Technology 278:318–28. doi:10.1016/j.biortech.2019.01.068.
  • Milano, J., H. C. Ong, H. H. Masjuki, A. S. Silitonga, W. H. Chen, F. Kusumo, S. Dharmaand, and A. H. Sebayang. 2018. Optimization of biodiesel production by microwave irradiation-assisted transesterification for waste cooking oil-Calophyllum inophyllum oil via response surface methodology. Energy Conversion and Management 158:400–15. doi:10.1016/j.enconman.2017.12.027.
  • Mishra, R. R., B. Samantaray, B. C. Behera, B. R. Pradhan, and S. Mohapatra. 2020. Process optimization for conversion of waste banana peels to biobutanol by a yeast co-culture fermentation system. Renewable Energy 162:478–88. doi:10.1016/j.renene.2020.08.045.
  • Mohammadi, M., M. Shafiei, K. Karimi, A. Abdolmaleki, J. P. Mikkola, and C. Larsson. 2019. Improvement of ethanol production from birch and spruce pretreated with 1-H-3-methylmorpholinium chloride. Electronic Journal of Biotechnology 41:95–99. doi:10.1016/j.ejbt.2019.07.004.
  • Mohanty, B., and I. I. Abdullahi. 2016. Bioethanol production from lignocellulosic waste-a review. Biosciences, Biotechnology Research Asia 13 (2):1153. doi:10.13005/bbra/2146.
  • Mohapatra, S., R. R. Mishra, B. Nayak, B. C. Behera, and P. K. D. Mohapatra. 2020. Development of co-culture yeast fermentation for efficient production of biobutanol from rice straw: A useful insight in valorization of agro industrial residues. Bioresource Technology 318:124070. doi:10.1016/j.biortech.2020.124070.
  • Moniruzzaman, M. 1995. Alcohol fermentation of enzymatic hydrolysate of exploded rice straw by Pichiastipitis. World Journal of Microbiology & Biotechnology 11 (6):646–48. doi:10.1007/BF00361008.
  • Monschein, M., and B. Nidetzky. 2016. Effect of pretreatment severity in continuous steam explosion on enzymatic conversion of wheat straw: Evidence from kinetic analysis of hydrolysis time courses. Bioresource Technology 200:287–96. doi:10.1016/j.biortech.2015.10.020.
  • Monshizadeh, A. 2015. Influence of the molecular weight of cellulose on the solubility in ionic liquid-water mixtures ( Master’s thesis).
  • Morales, G., J. Iglesias, and J. A. Melero. 2020. Sustainable catalytic conversion of biomass for the production of biofuels and bioproducts. Catalysts 10 (5):581. doi:10.3390/catal10050581.
  • Mousa, M. A., Y. Wang, S. A. Antora, A. D. Al-Qurashi, O. H. Ibrahim, H. J. He, S. Liu, and M. Kamruzzaman. 2022. An overview of recent advances and applications of FT-IR spectroscopy for quality, authenticity, and adulteration detection in edible oils. Critical Reviews in Food Science and Nutrition 62 (29):8009–27. doi:10.1080/10408398.2021.1922872.
  • Muktham, R., S. Bhargava, S. Bankupalli, and A. Ball. 2016. A review on 1st and 2nd generation bioethanol production-recent Progress. Journal of Sustainable Bioenergy Systems 6 (03):72–92. doi:10.4236/jsbs.2016.63008.
  • Mushlihah, S., D. R. Husain, A. Langford, and A. C. M. A. Tassakka. 2020. Fungal pretreatment as a sustainable and low cost option for bioethanol production from marine algae. Journal of Cleaner Production 265:121763. doi:10.1016/j.jclepro.2020.121763.
  • Mussatto, S. I., G. Dragone, P. M. Guimarães, J. P. A. Silva, L. M. Carneiro, I. C. Roberto, and J. A. Teixeira. 2010. Technological trends, global market, and challenges of bio-ethanol production. Biotechnology Advances 28 (6):817–30. doi:10.1016/j.biotechadv.2010.07.001.
  • Musule, R., E. Alarcón-Gutiérrez, E. P. Houbron, G. M. Bárcenas-Pazos, M. Del Rosario Pineda-López, Z. Domínguez, and L. R. Sánchez-Velásquez. 2016. Chemical composition of lignocellulosic biomass in the wood of Abiesreligiosa across an altitudinal gradient. Journal of Wood Science 62 (6):537–47. doi:10.1007/s10086-016-1585-0.
  • Nagenderan, S., P. Rajamamundi, M. Chandran, and K. P. Gopinath. 2020. Bioethanol from moringa olefira and pithecellobium dulce leafs: Production and characterization. Energy Sources, Part A: Recovery, Utilization, & Environmental Effects 42 (1):66–72. doi:10.1080/15567036.2019.1587055.
  • Nayak, P. K., C. C. Mohan, and K. Radhakrishnan. 2018. Effect of microwave pretreatment on the color degradation kinetics in mustard greens (Brassica juncea). Chemical Engineering Communications 205 (9):1261–73. doi:10.1080/00986445.2018.1446003.
  • Naydenova, Y., and V. Vasileva. 2016b. Analysis of forage quality of grass mixtures–perennial grasses with subterranean clover. Journal of Basic and Applied Research in Biomedicine 2 (4):534–40.
  • Nguyen, D. 2016. Using association mapping to identify quantitative trait loci (QTL) for straw digestibility in rice straw (Doctoral dissertation, University of York).
  • Nitsos, C. K., P. A. Lazaridis, A. Mach‐Aigner, K. A. Matis, and K. S. Triantafyllidis. 2019. Enhancing lignocellulosic biomass hydrolysis by hydrothermal pretreatment, extraction of surface lignin, wet milling and production of cellulolytic enzymes. ChemSuschem 12 (6):1179–95. doi:10.1002/cssc.201802597.
  • Oginni, O., K. Singh, and J. W. Zondlo. 2017. Pyrolysis of dedicated bioenergy crops grown on reclaimed mine land in West Virginia. Journal of Analytical and Applied Pyrolysis 123:319–29. doi:10.1016/j.jaap.2016.11.013.
  • Oliva, J. M., M. J. Negro, P. Manzanares, I. Ballesteros, M. Á. Chamorro, F. Sáez, and A. D. Moreno. 2017. A sequential steam explosion and reactive extrusion pretreatment for lignocellulosic biomass conversion within a fermentation-based biorefinery perspective. Fermentation 3 (2):15. doi:10.3390/fermentation3020015.
  • Oyegoke, T., and O. O. Ajayi. 2021. Investigation of the Feasibility of Transforming sorghum bagasse into bioethanol fuel in Nigeria: A techno-economic analysis. Fuel 3 (4):1–14. doi:10.37933/nipes.e/3.4.2021.1.
  • Palacios, A., A. Ilyina, R. Ramos-González, C. N. Aguilar, J. L. Martínez-Hernández, E. P. Segura-Ceniceros, H. A. Ruiz, M. Aguilar, M. Ballesteros, and J. M. Oliva. 2021. Ethanol production from banana peels at high pretreated substrate loading: Comparison of two operational strategies. Biomass Conversion and Biorefinery 11 (5):1587–96. doi:10.1007/s13399-019-00562-7.
  • Panahi, H. K. S., M. Dehhaghi, G. J. Guillemin, V. K. Gupta, S. S. Lam, M. Aghbashlo, and M. Tabatabaei. 2022. Bioethanol production from food wastes rich in carbohydrates. Current Opinion in Food Science 43:71–81. doi:10.1016/j.cofs.2021.11.001.
  • Pasangulapati, V. 2012. Devolatilization characteristics of cellulose, hemicellulose, lignin and the selected biomass during thermochemical gasification: Experiment and modeling studies. Oklahoma State University. ProQuest Dissertations Publishing 1513363.
  • Paschos, T., A. Louloudi, N. Papayannakos, D. Kekos, and D. Mamma. 2022. Potential of barley straw for high titer bioethanol production applying pre-hydrolysis and simultaneous saccharification and fermentation at high solid loading. Biofuels 13 (4):467–73. doi:10.1080/17597269.2020.1760688.
  • Pasha, C., M. Nagavalli, and L. VenkateswarRao. 2007. Lantana camara for fuel ethanol production using thermotolerant yeast. Letters in Applied Microbiology 44 (6):666–72. doi:10.1111/j.1472-765X.2007.02116.x.
  • Passoth, V., and M. Sandgren. 2019. Biofuel production from straw hydrolysates: Current achievements and perspectives. Applied Microbiology and Biotechnology 103 (13):5105–16. doi:10.1007/s00253-019-09863-3.
  • Praputri, E., and E. Sundari. 2019. Production of bioethanol from Colocasiaesculenta (L.) Schott (Talas Liar) by hydrolysis process. IOP Conference Series 543 (1):012056. doi:10.1088/1757-899X/543/1/012056.
  • Prasad, S., M. K. Malav, S. Kumar, A. Singh, D. Pant, and S. Radhakrishnan. 2018. Enhancement of bio-ethanol production potential of wheat straw by reducing furfural and 5-hydroxymethylfurfural (HMF). Bioresource Technology Reports 4:50–56. doi:10.1016/j.biteb.2018.09.007.
  • Promon, S. K., W. Kamal, S. S. Rahman, M. M. Hossain, and N. Choudhury. 2018. Ethanol production using vegetable peels medium and the effective role of cellulolytic bacterial (Bacillus subtilis) pretreatment. F1000research 7:7. doi:10.12688/f1000research.13952.1.
  • Puligundla, P., S. E. Oh, and C. Mok. 2016. Microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to sugars and ethanol: A review. Carbon Letters 17 (1):1–10. doi:10.5714/CL.2016.17.1.001.
  • Qarri, A., and A. Israel. 2020. Seasonal biomass production, fermentable saccharification and potential ethanol yields in the marine macroalga Ulva sp. Renewable Energy 145:2101–07. doi:10.1016/j.renene.2019.07.155.
  • Qiu, J., D. Tian, F. Shen, J. Hu, Y. Zeng, G. Yang, and J. Zhang. 2018. Bioethanol production from wheat straw by phosphoric acid plus hydrogen peroxide (PHP) pretreatment via simultaneous saccharification and fermentation (SSF) at high solid loadings. Bioresource Technology 268:355–62. doi:10.1016/j.biortech.2018.08.009.
  • Raud, M., T. Kikas, O. Sippula, and N. J. Shurpali. 2019. Potentials and challenges in lignocellulosic biofuel production technology. Renewable and Sustainable Energy Reviews 111:44–56. doi:10.1016/j.rser.2019.05.020.
  • Ray, A., M. Nayak, and A. Ghosh. 2022. A review on co-culturing of microalgae: A greener strategy towards sustainable biofuels production. Science of the Total Environment 802:149765. doi:10.1016/j.scitotenv.2021.149765.
  • Rezania, S. B. O., J. Cho, A. Talaiekhozani, F. Sabbagh, B. Hashemi, P. F. Rupani, and A. A. Mohammadi. 2020. Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview. Energy 199:117457. doi:10.1016/j.energy.2020.117457.
  • Robak, K., and M. Balcerek. 2018. Review of second generation bioethanol production from residual biomass. Food Technology and Biotechnology 56 (2):174. doi:10.17113/ftb.56.02.18.5428.
  • Rodionova, M. V., R. S. Poudyal, I. Tiwari, R. A. Voloshin, S. K. Zharmukhamedov, H. G. Nam, and S. I. Allakhverdiev. 2017. Biofuel production: Challenges and opportunities. International Journal of Hydrogen Energy 42 (12):8450–61. doi:10.1016/j.ijhydene.2016.11.125.
  • Sadh, P. K., S. Duhan, and J. S. Duhan. 2018. Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresources and Bioprocessing 5 (1). doi:10.1186/s40643-017-0187-z.
  • Saha, B. C., T. Yoshida, M. A. Cotta, and K. Sonomoto. 2013. Hydrothermal pretreatment and enzymatic saccharification of corn stover for efficient ethanol production. Industrial Crops and Products 44:367–72. doi:10.1016/j.indcrop.2012.11.025.
  • Saini, J. K., R. Saini, and L. Tewari. 2015. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: Concepts and recent developments. Biotechnology 5 (4):337–53. doi:10.1007/s13205-014-0246-5.
  • Saleem, M. 2022. Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source. Heliyon 8 (2):e08905. doi:https://doi.org/10.1016/j.heliyon.2022.e08905.
  • Sarao, L. K., S. Kaur, P. Kaur, and H. S. Bakala. 2022. Production of bioethanol from fruit wastes: Recent advances. Food Waste to Green Fuel: Trend & Development 213–53. doi:10.1007/978-981-19-0813-2_9.
  • Sarkar, N., S. K. Ghosh, S. Bannerjee, and K. Aikat. 2012. Bioethanol production from agricultural wastes: An overview. Renewable Energy 37 (1):19–27. doi:10.1016/j.renene.2011.06.045.
  • Sarris, D., and S. Papanikolaou. 2016. Biotechnological production of ethanol: Biochemistry, processes and technologies. Engineering in Life Science 16 (4):307–29. doi:10.1002/elsc.201400199.
  • Scapini, T., M. S. Dos Santos, C. Bonatto, J. H. Wancura, J. Mulinari, A. F. Camargo, and H. Treichel. 2021. Hydrothermal pretreatment of lignocellulosic biomass for hemicellulose recovery. Bioresource Technology 342:126033. doi:10.1016/j.biortech.2021.126033.
  • Semerci, I., and F. Güler. 2018. Protic ionic liquids as effective agents for pretreatment of cotton stalks at high biomass loading. Industrial Crops and Products 125:588–95. doi:10.1016/j.indcrop.2018.09.046.
  • Shahzad, K., M. Sohail, and A. Hamid. 2019. Green ethanol production from cotton stalk. IOP Conference Series. 257 (1):012025. IOP Publishing. doi:10.1088/1755-1315/257/1/012025.
  • Sharma, S., P. Nandal, and A. Arora. 2019. Ethanol production from NaOH pretreated rice straw: A cost effective option to manage rice crop residue. Waste and Biomass Valorization 10 (11):3427–34. doi:10.1007/s12649-018-0360-4.
  • Sharma, S., M. R. Swain, A. Mishra, A. S. Mathur, R. P. Gupta, S. K. Puri, and A. K. Sharma. 2021. High solid loading and multiple-fed simultaneous saccharification and co-fermentation (mf-SSCF) of rice straw for high titer ethanol production at low cost. Renewable Energy 179:1915–24. doi:10.1016/j.renene.2021.07.146.
  • Sharma, H. K., C. Xu, and W. Qin. 2019. Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: An overview. Waste and Biomass Valorization 10 (2):235–51. doi:10.1007/s12649-017-0059-y.
  • Shokravi, H., Z. Shokravi, M. Heidarrezaei, H. C. Ong, S. S. R. Koloor, M. Petrů, and A. F. Ismail. 2021. Fourth generation biofuel from genetically modified algal biomass: Challenges and future directions. Chemosphere 285:131535. doi:10.1016/j.chemosphere.2021.131535.
  • Shuai, L., and J. Luterbacher. 2016. Organic solvent effects in biomass conversion reactions. ChemSuschem 9 (2):133–55. doi:10.1002/cssc.201501148.
  • Silitonga, A. S., A. H. Shamsuddin, T. M. I. Mahlia, J. Milano, F. Kusumo, J. Siswantoro, S. Dharma, A. H. Sebayang, H. H. Masjuki, and H. C. Ong. 2020. Biodiesel synthesis from Ceiba pentandra oil by microwave irradiation-assisted transesterification: ELM modeling and optimization. Renewable Energy 146:1278–91. doi:10.1016/j.renene.2019.07.065.
  • Singh, S., A. Adak, M. Saritha, S. Sharma, R. Tiwari, S. Rana, and L. Nain. 2017. Bioethanol production scenario in India: Potential and policy perspective. Sustainable Biofuels Development in India 21–37. doi:10.1007/978-3-319-50219-9_2.
  • Singh, D. P., and R. K. Trivedi. 2013. Acid and alkaline pretreatment of lignocellulosic biomass to produce ethanol as biofuel. International Journal of ChemTech Research 5 (2):727–34.
  • Smuga-Kogut, M., L. Bychto, B. Walendzik, J. Cielecka-Piontek, R. Marecik, J. Kobus-Cisowska, and D. Szymanowska-Powałowska. 2019. Use of buckwheat straw to produce ethyl alcohol using ionic liquids. Energies 12 (10):2014. doi:10.3390/en12102014.
  • Sørensen, A., P. J. Teller, T. Hilstrøm, and B. K. Ahring. 2008. Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pretreatment and enzymatic treatment. Bioresource Technology 99 (14):6602–07. doi:10.1016/j.biortech.2007.09.091.
  • Takahashi, C. M., K. G. de Carvalho Lima, D. F. Takahashi, and F. Alterthum. 2000. Fermentation of sugar cane bagasse hemicellulosic hydrolysate and sugar mixtures to ethanol by recombinant Escherichia coli KO11. World Journal of Microbiology & Biotechnology 16 (8):829–34. doi:10.1023/A:1008987103701.
  • Talebnia, F., D. Karakashev, and I. Angelidaki. 2010. Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation. Bioresource Technology 101 (13):4744–53. doi:10.1016/j.biortech.2009.11.080.
  • Tan, H., Y. Yu, Y. Zhu, T. Liu, R. Miao, R. Hu, and J. Chen. 2022. Impacts of size reduction and alkaline-soaking pretreatments on microbial community and organic matter decomposition during wheat straw composting. Bioresource Technology 360:127549. doi:10.1016/j.biortech.2022.127549.
  • Tekaligne, T. M., A. R. Woldu, and Y. A. Tsigie. 2015. Bioethanol production from finger millet (Eleusinecoracana) straw. Ethiopian Journal of Science and Technology 8 (1):1–13. doi:10.4314/ejst.v8i1.1.
  • Teramura, H., K. Sasaki, T. Oshima, H. Kawaguchi, C. Ogino, T. Sazuka, and A. Kondo. 2018. Effective usage of sorghum bagasse: Optimization of organosolv pretreatment using 25% 1-butanol and subsequent nanofiltration membrane separation. Bioresource Technology 252:157–64. doi:10.1016/j.biortech.2017.12.100.
  • Tosuner, Z. V., G. G. Taylan, and S. Özmıhçı. 2019. Effects of rice husk particle size on biohydrogen production under solid state fermentation. International Journal of Hydrogen Energy 44 (34):18785–91. doi:10.1016/j.ijhydene.2018.10.230.
  • Travaini, R., M. D. M. Otero, M. Coca, R. Da-Silva, and S. Bolado. 2013. Sugarcane bagasse ozonolysis pretreatment: Effect on enzymatic digestibility and inhibitory compound formation. Bioresource Technology 133:332–39. doi:10.1016/j.biortech.2013.01.133.
  • Tsegaye, B., C. Balomajumder, and P. Roy. 2019. Alkali pretreatment of wheat straw followed by microbial hydrolysis for bioethanol production. Environmental Technology 40 (9):1203–11. doi:10.1080/09593330.2017.1418911.
  • Tse, T. J., D. J. Wiens, and M. J. Reaney. 2021. Production of bioethanol—A review of factors affecting ethanol yield. Fermentation 7 (4):268. doi:10.3390/fermentation7040268.
  • Tutt, M., and J. Olt. 2011. Suitability of various plant species for bioethanol production. Agronomy Research 9 (1):261–67.
  • Utama, G. L., F. E. Sidabutar, H. Felina, D. W. Wira, and R. L. Balia. 2019. The utilization of fruit and vegetable wastes for bioethanol production with the inoculation of indigenous yeasts consortium. Bulgarian Journal of Agricultural Science 25 (2):264–70.
  • Veza, I., A. T. Hoang, M. M. Abbas, N. Tamaldin, M. Idris, D. W. Djamari, and A. C. Opia. 2022. Microalgae and macroalgae for Third-generation bioethanol production. Liquid Biofuels: Bioethanol 301–31. doi:10.1007/978-3-031-01241-9_14.
  • Veza, I., A. T. Hoang, A. A. Yusuf, S. G. Herawan, M. E. M. Soudagar, O. D. Samuel, M. F. M. Said, and A. S. Silitonga. 2023. Effects of acetone-butanol-ethanol (ABE) addition on HCCI-DI engine performance, combustion and emission. Fuel 333:126377. doi:10.1016/j.fuel.2022.126377.
  • Veza, I., A. D. Karaoglan, E. Ileri, S. A. Kaulani, N. Tamaldin, Z. A. Latiff, M. F. M. Said, A. T. Hoang, K. V. Yatish, and M. Idris. 2022. Grasshopper optimization algorithm for diesel engine fuelled with ethanol-biodiesel-diesel blends. Case Studies in Thermal Engineering 31:101817. doi:10.1016/j.csite.2022.101817.
  • Vidushi, Y., B. Meenakshi, and M. B. Bharkatiya. 2017. A review on HPLC method development and validation. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences 2 (6):178. doi:10.26479/2017.0206.12.
  • Wang, L., Y. Liu, and H. Z. Chen. 2018. Advances in porous characteristics of the solid matrix in solid-state fermentation. Current Developments in Biotechnology and Bioengineering 19–29. doi:10.1016/B978-0-444-63990-5.00002-5.
  • Wang, Y. X., Y. Xin, J. Y. Yin, X. J. Huang, J. Q. Wang, J. L. Hu, F. Geng, and S. P. Nie. 2022. Revealing the architecture and solution properties of polysaccharide fractions from Macrolepiota albuminosa (Berk.) Pegler. Food Chemistry 368:130772. doi:10.1016/j.foodchem.2021.130772.
  • Wang, P., J. Zhang, J. Feng, S. Wang, L. Guo, Y. Wang, Y. Y. Lee, S. Taylor, T. McDonald, and Y. Wang. 2019. Enhancement of acid re-assimilation and biosolvent production in Clostridium saccharoperbutylacetonicum through metabolic engineering for efficient biofuel production from lignocellulosic biomass. Bioresource Technology 281:217–25. doi:10.1016/j.biortech.2019.02.096.
  • Wells, J. M., E. Drielak, K. C. Surendra, and S. K. Khanal. 2020. Hot water pretreatment of lignocellulosic biomass: Modeling the effects of temperature, enzyme and biomass loadings on sugar yield. Bioresource Technology 300:122593. doi:10.1016/j.biortech.2019.122593.
  • Woldesenbet, A. G., G. Shiferaw, and B. S. Chandravanshi. 2013. Bio-ethanol production from poultry manure at Bonga Poultry Farm in Ethiopia. African Journal of Environmental Science and Technology 7 (6):435–40. doi:10.5897/AJEST2013.1443.
  • Wongwatanapaiboon, J., K. Kangvansaichol, V. Burapatana, R. Inochanon, P. Winayanuwattikun, T. Yongvanich, and W. Chulalaksananukul. 2012. The potential of cellulosic ethanol production from grasses in Thailand. Journal of Biomedicine & Biotechnology 2012:1–10. doi:10.1155/2012/303748.
  • Wu, J., A. Elliston, G. Le Gall, I. J. Colquhoun, S. R. Collins, I. P. Wood, and K. W. Waldron. 2018. Optimising conditions for bioethanol production from rice husk and rice straw: Effects of pretreatment on liquor composition and fermentation inhibitors. Biotechnology for Biofuels 11 (1):1–13. doi:10.1186/s13068-018-1062-7.
  • Yang, H., Z. Shi, G. Xu, Y. Qin, J. Deng, and J. Yang. 2019. Bioethanol production from bamboo with alkali-catalyzed liquid hot water pretreatment. Bioresource Technology 274:261–66. doi:10.1016/j.biortech.2018.11.088.
  • Yousuf, A., D. Pirozzi, and F. Sannino. 2020. Fundamentals of lignocellulosic biomass. In Lignocellulosic Biomass to Liquid Biofuels. Academic Press (pp. 1–15).
  • Yuan, W., Z. Gong, G. Wang, W. Zhou, Y. Liu, X. Wang, and M. Zhao. 2018. Alkaline organosolv pretreatment of corn stover for enhancing the enzymatic digestibility. Bioresource Technology 265:464–70. doi:10.1016/j.biortech.2018.06.038.
  • Yu, Q., R. Liu, K. Li, and R. Ma. 2019. A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China. Renewable and Sustainable Energy Reviews 107:51–58. doi:10.1016/j.rser.2019.02.020.
  • Zadeh, Z. E., A. Abdulkhani, O. Aboelazayem, and B. Saha. 2020. Recent insights into lignocellulosic biomass pyrolysis: A critical review on pretreatment, characterization, and products upgrading. Processes 8 (7):799. doi:10.3390/pr8070799.
  • Zamora, D. S., K. G. Apostol, and G. J. Wyatt. 2014. Biomass production and potential ethanol yields of shrub willow hybrids and native willow accessions after a single 3-year harvest cycle on marginal lands in central Minnesota, USA. Agroforestry Systems 88 (4):593–606. doi:10.1007/s10457-014-9693-6.
  • Zhang, T., M. Zhao, F. Liu, H. Tian, T. Wulan, Y. Yue, and D. Li. 2020. A discrete element method model of corn stalk and its mechanical characteristic parameters. BioResources 15 (4):9337. doi:10.15376/biores.15.4.9337-9350.
  • Zhao, X., K. Cheng, and D. Liu. 2009. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology and Biotechnology 82 (5):815–27. doi:10.1007/s00253-009-1883-1.
  • Zhao, Y., A. Damgaard, and T. H. Christensen. 2018. Bioethanol from corn stover–a review and technical assessment of alternative biotechnologies. Progress in Energy and Combustion Science 67:275–91. doi:10.1016/j.pecs.2018.03.004.
  • Zhao, X., and D. Liu. 2010. Chemical and thermal characteristics of lignins isolated from Siam weed stem by acetic acid and formic acid delignification. Industrial Crops and Products 32 (3):284–91. doi:10.1016/j.indcrop.2010.05.003.
  • Zhu, J., Y. Rong, J. Yang, X. Zhou, Y. Xu, L. Zhang, and S. Yu. 2015. Integrated production of xylonic acid and bioethanol from acid-catalyzed steam-exploded corn stover. Applied Biochemistry and Biotechnology 176 (5):1370–81. doi:10.1007/s12010-015-1651-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.