101
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Precise prognostics of biochar yield from various biomass sources by Bayesian approach with supervised machine learning and ensemble methods

, , , , &
Pages 2180-2204 | Received 21 Sep 2023, Accepted 16 Dec 2023, Published online: 29 Dec 2023

References

  • Ahmad, Z., A. Shahid Khan, C. Wai Shiang, J. Abdullah, and F. Ahmad. 2021. Network intrusion detection system: A systematic study of machine learning and deep learning approaches. Transactions on Emerging Telecommunications Technologies 32 (1). doi:10.1002/ett.4150.
  • Akancha Kumari, N., R. K. Singh, and R. K. Singh. 2019. Co-pyrolysis of waste polypropylene and rice bran wax‒ production of biofuel and its characterization. Journal of the Energy Institute 92 (4):933–46. doi:10.1016/j.joei.2018.07.011.
  • Alabdrabalnabi, A., R. Gautam, and S. Mani Sarathy. 2022. Machine learning to predict biochar and bio-oil yields from co-pyrolysis of biomass and plastics. Fuel 328:125303. doi:10.1016/j.fuel.2022.125303.
  • Alruqi, M., and P. Sharma. 2023. Biomethane production from the mixture of sugarcane vinasse, solid waste and spent tea waste: A bayesian approach for hyperparameter optimization for gaussian process regression. Fermentation 9 (2):120. doi:10.3390/fermentation9020120.
  • Alruqi, M., P. Sharma, B. Deepanraj, and F. Shaik. 2023. Renewable energy approach towards powering the CI engine with ternary blends of algal biodiesel-diesel-diethyl ether: Bayesian optimized gaussian process regression for modeling-optimization. Fuel 334:126827. doi:10.1016/j.fuel.2022.126827.
  • Ansah, E., L. Wang, and A. Shahbazi. 2016. Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components. Waste Management 56:196–206. doi:10.1016/j.wasman.2016.06.015.
  • Bai, S. H., N. Omidvar, M. Gallart, W. Kämper, I. Tahmasbian, M. B. Farrar, K. Singh, G. Zhou, B. Muqadass, C.-Y. Xu, et al. 2022. Combined effects of biochar and fertilizer applications on yield: A review and meta-analysis. The Science of the Total Environment 808:152073. doi:10.1016/j.scitotenv.2021.152073.
  • Bayram, S., and H. Çıtakoğlu. 2023. Modeling monthly reference evapotranspiration process in Turkey: Application of machine learning methods. Environmental Monitoring and Assessment 195 (1):67. doi:10.1007/s10661-022-10662-z.
  • Bazargan, A., M. Nejati, H. Hajikhani, Z. Shafiee, and R. Abouei Mehrizi. 2022. Cross sectional study of the top research topics in environmental science and engineering. Results in Engineering 14:100465. doi:10.1016/j.rineng.2022.100465.
  • Behera, S., and K. Samal. 2022. Sustainable approach to manage solid waste through biochar assisted composting. Energy Nexus 7:100121. doi:10.1016/j.nexus.2022.100121.
  • Bhattacharjee, N., and A. B. Biswas. 2019. Pyrolysis of orange bagasse: Comparative study and parametric influence on the product yield and their characterization. Journal of Environmental Chemical Engineering 7 (1):102903. doi:10.1016/j.jece.2019.102903.
  • Boyle, P. 2007. Gaussian processes for regression and optimisation. Victoria University of Wellington.
  • Cao, H., Y. J. Milan, S. H. Mood, M. Ayiania, S. Zhang, X. Gong, E. E. S. Lora, Q. Yuan, and M. Garcia-Perez. 2021. A novel elemental composition based prediction model for biochar aromaticity derived from machine learning. Artificial Intelligence in Agriculture 5:133–41. doi:10.1016/j.aiia.2021.06.002.
  • Cao, H., Y. Xin, and Q. Yuan. 2016. Prediction of biochar yield from cattle manure pyrolysis via least squares support vector machine intelligent approach. Bioresource Technology 202:158–64. doi:10.1016/j.biortech.2015.12.024.
  • Chen, W.-H., R. Aniza, A. A. Arpia, H.-J. Lo, A. T. Hoang, V. Goodarzi, and J. Gao. 2022a. A comparative analysis of biomass torrefaction severity index prediction from machine learning. Applied Energy 324:119689. doi:10.1016/j.apenergy.2022.119689.
  • Chen, M.-W., M.-S. Chang, Y. Mao, S. Hu, and C.-C. Kung. 2023. Machine learning in the evaluation and prediction models of biochar application: A review. Science Progress 106 (1):003685042211488. doi:10.1177/00368504221148842.
  • Chen, W.-H., A. T. Hoang, S. Nižetić, A. Pandey, C. K. Cheng, R. Luque, H. C. Ong, S. Thomas, and X. P. Nguyen. 2022b. Biomass-derived biochar: From production to application in removing heavy metal-contaminated water. Process Safety and Environmental Protection 160:704–33. doi:10.1016/j.psep.2022.02.061.
  • Chen, D., D. Liu, H. Zhang, Y. Chen, and Q. Li. 2015. Bamboo pyrolysis using TG–FTIR and a lab-scale reactor: Analysis of pyrolysis behavior, product properties, and carbon and energy yields. Fuel 148:79–86. doi:10.1016/j.fuel.2015.01.092.
  • Chen, Z., and B. Wang. 2018. How priors of initial hyperparameters affect gaussian process regression models. Neurocomputing 275:1702–10. doi:10.1016/j.neucom.2017.10.028.
  • Citakoglu, H. 2021. Comparison of multiple learning artificial intelligence models for estimation of long-term monthly temperatures in Turkey. Arabian Journal of Geosciences 14 (20):2131. doi:10.1007/s12517-021-08484-3.
  • Citakoglu, H., and Ö. Coşkun. 2022. Comparison of hybrid machine learning methods for the prediction of short-term meteorological droughts of sakarya meteorological station in Turkey. Environmental Science and Pollution Research 29 (50):75487–511. doi:10.1007/s11356-022-21083-3.
  • Crombie, K., and O. Mašek. 2015. Pyrolysis biochar systems, balance between bioenergy and carbon sequestration. GCB Bioenergy 7 (2):349–61. doi:10.1111/gcbb.12137.
  • Dao, L. A., L. Ferrarini, and D. La Carrubba 2020. Improving solar and PV power prediction with ensemble methods. IFAC-Papersonline 53 (2):12829–34. doi:10.1016/j.ifacol.2020.12.1974.
  • Dasappa, S., and A. M. Shivapuji. 2022. Biomass gasification: Thermochemical route to energetic bio-chemicals. In Advanced biofuel technologies, 305–32. Elsevier. doi:10.1016/B978-0-323-88427-3.00022-2.
  • Das, S. K., and G. K. Ghosh. 2020. Soil health management through low cost biochar technology. In Biochar applications in agriculture and environment management, 193–206. Cham: Springer International Publishing. doi:10.1007/978-3-030-40997-5_9.
  • Demir, V., and H. Citakoglu. 2023. Forecasting of solar radiation using different machine learning approaches. Neural Computing & Applications 35 (1):887–906. doi:10.1007/s00521-022-07841-x.
  • Dong, V. H., and P. Sharma. 2023. Optimized conversion of waste vegetable oil to biofuel with meta heuristic methods and design of experiments. Journal of Emerging Science and Engineering 1 (1):22–28. doi:10.61435/jese.2023.4.
  • Ghosh, D., and S. K. Maiti. 2021. Biochar‐assisted eco‐restoration of coal mine degraded land to meet united nation sustainable development goals. Land Degradation & Development 32 (16):4494–508. doi:10.1002/ldr.4055.
  • Gibbs, M. N. 1997. Bayesian gaussian processes for regression and Classi cation. University of Cambridge.
  • Gopi, A., P. Sharma, K. Sudhakar, W. K. Ngui, I. Kirpichnikova, and E. Cuce. 2022. Weather impact on solar farm performance: A comparative analysis of machine learning techniques. Sustainability 15 (1):439. doi:10.3390/su15010439.
  • Gupta, D. K., C. K. Gupta, R. Dubey, R. K. Fagodiya, G. Sharma, M. B. Noor Mohamed, R. Dev, and A. K. Shukla. 2020. Role of biochar in carbon sequestration and greenhouse gas mitigation. In Biochar applications in agriculture and environment management, 141–65. Cham: Springer International Publishing. doi:10.1007/978-3-030-40997-5_7.
  • Gupta, H. V., and H. Kling. 2011. On typical range, sensitivity, and normalization of mean squared error and nash-sutcliffe efficiency type metrics. Water Resources Research 47 (10):47. doi:10.1029/2011WR010962.
  • Hai, A., G. Bharath, M. F. A. Patah, W. M. A. W. Daud, K. Rambabu, P. Show, and F. Banat. 2023. Machine learning models for the prediction of total yield and specific surface area of biochar derived from agricultural biomass by pyrolysis. Environmental Technology & Innovation 30:103071. doi:10.1016/j.eti.2023.103071.
  • Haq, Z. U., H. Ullah, M. N. A. Khan, S. R. Naqvi, and M. Ahsan. 2022a. Hydrogen production optimization from sewage sludge supercritical gasification process using machine learning methods integrated with genetic algorithm. Chemical Engineering Research & Design 184:614–26. doi:10.1016/j.cherd.2022.06.020.
  • Haq, Z. U., H. Ullah, M. N. A. Khan, S. Raza Naqvi, A. Ahad, and N. A. S. Amin. 2022b. Comparative study of machine learning methods integrated with genetic algorithm and particle swarm optimization for bio-char yield prediction. Bioresource Technology 363:128008. doi:10.1016/j.biortech.2022.128008.
  • Haq, Z. U., H. Ullah, M. N. A. Khan, S. Raza Naqvi, A. Ahad, and N. A. S. Amin. 2022c. Comparative study of machine learning methods integrated with genetic algorithm and particle swarm optimization for bio-char yield prediction. Bioresource Technology 363:128008. doi:10.1016/j.biortech.2022.128008.
  • He, X., Z. Liu, W. Niu, L. Yang, T. Zhou, D. Qin, Z. Niu, and Q. Yuan. 2018. Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues. Energy 143:746–56. doi:10.1016/j.energy.2017.11.062.
  • Hernandez‐Soriano, M. C., B. Kerré, P. Goos, B. Hardy, J. Dufey, and E. Smolders. 2016. Long‐term effect of biochar on the stabilization of recent carbon: Soils with historical inputs of charcoal. GCB Bioenergy 8 (2):371–81. doi:10.1111/gcbb.12250.
  • Hoang, A. T., J. L. Goldfarb, A. M. Foley, E. Lichtfouse, M. Kumar, L. Xiao, S. F. Ahmed, Z. Said, R. Luque, V. G. Bui, et al. 2022a. Production of biochar from crop residues and its application for anaerobic digestion. Bioresource Technology 363:127970. doi:10.1016/j.biortech.2022.127970.
  • Hoang, A. T., S. Nižetić, H. C. Ong, M. Mofijur, S. F. Ahmed, B. Ashok, V. T. V. Bui, and M. Q. Chau. 2021. Insight into the recent advances of microwave pretreatment technologies for the conversion of lignocellulosic biomass into sustainable biofuel. Chemosphere 281:130878. doi:10.1016/j.chemosphere.2021.130878.
  • Hoang, A. T., A. Pandey, Z. Huang, R. Luque, K. H. Ng, A. M. Papadopoulos, W.-H. Chen, S. Rajamohan, H. Hadiyanto, X. P. Nguyen, et al. 2022b. Catalyst-based synthesis of 2,5-dimethylfuran from carbohydrates as a sustainable biofuel production route. ACS Sustainable Chemistry & Engineering 10 (10):3079–115. doi:10.1021/acssuschemeng.1c06363.
  • Hoang, A. T., P. S. Varbanov, S. Nižetić, R. Sirohi, A. Pandey, R. Luque, K. H. Ng, and V. V. Pham. 2022c. Perspective review on municipal solid waste-to-energy route: Characteristics, management strategy, and role in circular economy. Journal of Cleaner Production 359:131897. doi:10.1016/j.jclepro.2022.131897.
  • Hong, Z., F. Zhong, W. Niu, K. Zhang, J. Su, J. Liu, L. Li, and F. Wu. 2020. Effects of temperature and particle size on the compositions, energy conversions and structural characteristics of pyrolysis products from different crop residues. Energy 190:116413. doi:10.1016/j.energy.2019.116413.
  • Huang, Y.-F., P.-T. Chiueh, C.-H. Shih, S.-L. Lo, L. Sun, Y. Zhong, and C. Qiu. 2015. Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2 capture. Energy 84:75–82. doi:10.1016/j.energy.2015.02.026.
  • Janiesch, C., P. Zschech, and K. Heinrich. 2021. Machine learning and deep learning. Electronic Markets 31 (3):685–95. doi:10.1007/s12525-021-00475-2.
  • Jeyasubramanian, K., B. Thangagiri, A. Sakthivel, J. D. Raja, S. Seenivasan, P. Vallinayagam, D. Madhavan, S. M. Devi, and B. Rathika. 2021. A complete review on biochar: Production, property, multifaceted applications, interaction mechanism and computational approach. Fuel 292:120243. doi:10.1016/j.fuel.2021.120243.
  • Kant Bhatia, S., A. K. Palai, A. Kumar, R. Kant Bhatia, A. Kumar Patel, V. Kumar Thakur, and Y.-H. Yang. 2021. Trends in renewable energy production employing biomass-based biochar. Bioresource Technology 340:125644. doi:10.1016/j.biortech.2021.125644.
  • Kanti, P. K., P. Sharma, B. Koneru, P. Banerjee, and K. D. Jayan. 2023. Thermophysical profile of graphene oxide and MXene hybrid nanofluids for sustainable energy applications: Model prediction with a Bayesian optimized neural network with K-cross fold validation. FlatChem 39:100501. doi:10.1016/j.flatc.2023.100501.
  • Kapoor, A., R. Sharma, A. Kumar, and S. Sepehya. 2022. Biochar as a means to improve soil fertility and crop productivity: A review. Journal of Plant Nutrition 45 (15):2380–88. doi:10.1080/01904167.2022.2027980.
  • Khalid, R., and N. Javaid. 2020. A survey on hyperparameters optimization algorithms of forecasting models in smart grid. Sustainable Cities and Society 61:102275. doi:10.1016/j.scs.2020.102275.
  • Khan, M., Z. Ullah, O. Mašek, S. Raza Naqvi, and M. Nouman Slam Khan. 2022. Artificial neural networks for the prediction of biochar yield: A comparative study of metaheuristic algorithms. Bioresource Technology 355:127215. doi:10.1016/j.biortech.2022.127215.
  • Khoshaba, F., S. Kareem, H. Awla, and C. Mohammed, 2022. Machine learning algorithms in bigdata analysis and its applications: A review. 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), IEEE, pp. 1–8. 10.1109/HORA55278.2022.9799848
  • Kopsiaftis, G., E. Protopapadakis, A. Voulodimos, N. Doulamis, and A. Mantoglou. 2019. Gaussian process regression tuned by Bayesian optimization for seawater intrusion prediction. Computational Intelligence and Neuroscience 2019:1–12. doi:10.1155/2019/2859429.
  • Lakshmi, D., D. Akhil, A. Kartik, K. P. Gopinath, J. Arun, A. Bhatnagar, J. Rinklebe, W. Kim, and G. Muthusamy. 2021. Artificial intelligence (AI) applications in adsorption of heavy metals using modified biochar. The Science of the Total Environment 801:149623. doi:10.1016/j.scitotenv.2021.149623.
  • Lee, Y., J. Park, C. Ryu, K. S. Gang, W. Yang, Y. K. Park, J. Jung, and S. Hyun. 2013. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C. Bioresource Technology 148:196–201. doi:10.1016/j.biortech.2013.08.135.
  • Lee, K.-T., J.-Y. Tsai, A. T. Hoang, W.-H. Chen, D. S. Gunarathne, K.-Q. Tran, A. Selvarajoo, and V. Goodarzi. 2022. Energy-saving drying strategy of spent coffee grounds for co-firing fuel by adding biochar for carbon sequestration to approach net zero. Fuel 326:124984. doi:10.1016/j.fuel.2022.124984.
  • Le, A. T., A. Pandey, R. Sirohi, P. Sharma, W.-H. Chen, N. D. K. Pham, V. D. Tran, X. P. Nguyen, and A. T. Hoang. 2023. Precise prediction of biochar yield and proximate analysis by modern machine learning and SHapley additive exPlanations. Energy & Fuels 37 (22):17310–27. doi:10.1021/acs.energyfuels.3c02868.
  • Li, Y., R. Gupta, and S. You. 2022. Machine learning assisted prediction of biochar yield and composition via pyrolysis of biomass. Bioresource Technology 359:127511. doi:10.1016/j.biortech.2022.127511.
  • Liu, Z., and G. Han. 2015. Production of solid fuel biochar from waste biomass by low temperature pyrolysis. Fuel 158:159–65. doi:10.1016/j.fuel.2015.05.032.
  • Liu, Z., W. Niu, H. Chu, T. Zhou, and Z. Niu. 2018. Effect of the carbonization temperature on the properties of biochar produced from the pyrolysis of crop residues. BioResources 13 (2). doi:10.15376/biores.13.2.3429-3446.
  • Liu, X., Y. Zhang, Z. Li, R. Feng, and Y. Zhang. 2014. Characterization of corncob-derived biochar and pyrolysis kinetics in comparison with corn stalk and sawdust. Bioresource Technology 170:76–82. doi:10.1016/j.biortech.2014.07.077.
  • Liu, Z., F. Zhang, H. Liu, F. Ba, S. Yan, and J. Hu. 2018. Pyrolysis/Gasification of pine sawdust biomass briquettes under carbon dioxide atmosphere: Study on carbon dioxide reduction (utilization) and biochar briquettes physicochemical properties. Bioresource Technology 249:983–91. doi:10.1016/j.biortech.2017.11.012.
  • Li, X., T. Wang, S. X. Chang, X. Jiang, and Y. Song. 2020. Biochar increases soil microbial biomass but has variable effects on microbial diversity: A meta-analysis. The Science of the Total Environment 749:141593. doi:10.1016/j.scitotenv.2020.141593.
  • Ly, H.-B., T.-A. Nguyen, B. T. Pham, and T. Xie. 2022. Investigation on factors affecting early strength of high-performance concrete by gaussian process regression. PLoS One 17 (1):e0262930. doi:10.1371/journal.pone.0262930.
  • Mamaeva, A., A. Tahmasebi, L. Tian, and J. Yu. 2016. Microwave-assisted catalytic pyrolysis of lignocellulosic biomass for production of phenolic-rich bio-oil. Bioresource Technology 211:382–89. doi:10.1016/j.biortech.2016.03.120.
  • McElwee, P., K. Calvin, D. Campbell, F. Cherubini, G. Grassi, V. Korotkov, A. Le Hoang, S. Lwasa, J. Nkem, E. Nkonya, et al. 2020. The impact of interventions in the global land and agri‐food sectors on nature’s contributions to people and the UN sustainable development goals. Global Change Biology 26 (9):4691–721. doi:10.1111/gcb.15219.
  • Moor, M., O. Banerjee, Z. S. H. Abad, H. M. Krumholz, J. Leskovec, E. J. Topol, and P. Rajpurkar. 2023. Foundation models for generalist medical artificial intelligence. Nature 616 (7956):259–65. doi:10.1038/s41586-023-05881-4.
  • Murtaza, G., Z. Ahmed, M. Usman, W. Tariq, Z. Ullah, M. Shareef, H. Iqbal, M. Waqas, A. Tariq, Y. Wu, et al. 2021. Biochar induced modifications in soil properties and its impacts on crop growth and production. Journal of Plant Nutrition 44:1677–91. doi:10.1080/01904167.2021.1871746.
  • Narde, S. R., and N. Remya. 2022. Biochar production from agricultural biomass through microwave-assisted pyrolysis: Predictive modelling and experimental validation of biochar yield. Environment Development and Sustainability 24 (9):11089–102. doi:10.1007/s10668-021-01898-9.
  • Neogi, S., V. Sharma, N. Khan, D. Chaurasia, A. Ahmad, S. Chauhan, A. Singh, S. You, A. Pandey, and P. C. Bhargava. 2022. Sustainable biochar: A facile strategy for soil and environmental restoration, energy generation, mitigation of global climate change and circular bioeconomy. Chemosphere 293:133474. doi:10.1016/j.chemosphere.2021.133474.
  • Nguyen, T. B. N., and N. V. L. Le. 2023. Biomass resources and thermal conversion biomass to biofuel for cleaner energy: A review. Journal of Emerging Science and Engineering 1 (1):6–13. doi:10.61435/jese.2023.2.
  • Okolie, J. A., S. Savage, C. C. Ogbaga, and B. Gunes. 2022. Assessing the potential of machine learning methods to study the removal of pharmaceuticals from wastewater using biochar or activated carbon. Total Environment Research Themes 1-2:100001. doi:10.1016/j.totert.2022.100001.
  • Ortiz, L. R., E. Torres, D. Zalazar, H. Zhang, R. Rodriguez, and G. Mazza. 2020. Influence of pyrolysis temperature and bio-waste composition on biochar characteristics. Renew Energy 155:837–47. doi:10.1016/j.renene.2020.03.181.
  • Palansooriya, K. N., J. T. F. Wong, Y. Hashimoto, L. Huang, J. Rinklebe, S. X. Chang, N. Bolan, H. Wang, and Y. S. Ok. 2019. Response of microbial communities to biochar-amended soils: A critical review. Biochar 1 (1):3–22. doi:10.1007/s42773-019-00009-2.
  • Park, J., D. Lechevalier, R. Ak, M. Ferguson, K. H. Law, Y.-T.-T. Lee, and S. Rachuri. 2017. Gaussian Process Regression (GPR) representation in Predictive Model Markup Language (PMML). Smart and Sustainable Manufacturing Systems 1 (1):20160008. doi:10.1520/SSMS20160008.
  • Pathy, A., S. Meher, and B. P. 2020. Predicting algal biochar yield using eXtreme gradient boosting (XGB) algorithm of machine learning methods. Algal Research 50:102006. doi:10.1016/j.algal.2020.102006.
  • Patra, B. R., S. Nanda, A. K. Dalai, and V. Meda. 2021. Slow pyrolysis of agro-food wastes and physicochemical characterization of biofuel products. Chemosphere 285:131431. doi:10.1016/j.chemosphere.2021.131431.
  • Pokharel, P., Z. Ma, and S. X. Chang. 2020. Biochar increases soil microbial biomass with changes in extra- and intracellular enzyme activities: A global meta-analysis. Biochar 2 (1):65–79. doi:10.1007/s42773-020-00039-1.
  • Qin, F., C. Zhang, G. Zeng, D. Huang, X. Tan, and A. Duan. 2022. Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity. Renewable and Sustainable Energy Reviews 157:112056. doi:10.1016/j.rser.2021.112056.
  • Rathnayake, D., P. O. Ehidiamhen, C. E. Egene, C. V. Stevens, E. Meers, O. Mašek, and F. Ronsse. 2021. Investigation of biomass and agricultural plastic co-pyrolysis: Effect on biochar yield and properties. Journal of Analytical and Applied Pyrolysis 155:105029. doi:10.1016/j.jaap.2021.105029.
  • Romero, C. M., X. Hao, C. Li, J. Owens, T. Schwinghamer, T. A. McAllister, and E. Okine. 2021. Nutrient retention, availability and greenhouse gas emissions from biochar-fertilized chernozems. Catena 198:105046. doi:10.1016/j.catena.2020.105046.
  • Rout, T., D. Pradhan, R. K. Singh, and N. Kumari. 2016. Exhaustive study of products obtained from coconut shell pyrolysis. Journal of Environmental Chemical Engineering 4 (3):3696–705. doi:10.1016/j.jece.2016.02.024.
  • Sagi, O., and L. Rokach. 2018. Ensemble learning: A survey. WIREs data min. Knowledge Discovery 8 (4). doi:10.1002/widm.1249.
  • Sahoo, D., and N. Remya. 2022. Influence of operating parameters on the microwave pyrolysis of rice husk: Biochar yield, energy yield, and property of biochar. Biomass Conversion and Biorefinery 12 (8):3447–56. doi:10.1007/s13399-020-00914-8.
  • Said, Z., P. Sharma, B. J. Bora, and A. K. Pandey. 2023. Sonication impact on thermal conductivity of f-MWCNT nanofluids using XGBoost and gaussian process regression. Journal of the Taiwan Institute of Chemical Engineers 145:104818. doi:10.1016/j.jtice.2023.104818.
  • Saravanakumar, A., P. Vijayakumar, A. T. Hoang, E. E. Kwon, and W.-H. Chen. 2023. Thermochemical conversion of large-size woody biomass for carbon neutrality: Principles, applications, and issues. Bioresource Technology 370:128562. doi:10.1016/j.biortech.2022.128562.
  • Semida, W. M., H. R. Beheiry, M. Sétamou, C. R. Simpson, T. A. Abd El-Mageed, M. M. Rady, and S. D. Nelson. 2019. Biochar implications for sustainable agriculture and environment: A review. South African Journal of Botany 127:333–47. doi:10.1016/j.sajb.2019.11.015.
  • Seow, Y. X., Y. H. Tan, N. M. Mubarak, J. Kansedo, M. Khalid, M. L. Ibrahim, and M. Ghasemi. 2022. A review on biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications. Journal of Environmental Chemical Engineering 10 (1):107017. doi:10.1016/j.jece.2021.107017.
  • Shariff, A., N. M. Noor, A. Lau, and M. A. M. Ali. 2016. A comparative study on biochar from slow pyrolysis of corn cob and cassava wastes. International Journal of Biotechnology & Bioengineering 10:767–71.
  • Sirohi, R., V. Vivekanand, A. K. Pandey, A. Tarafdar, M. K. Awasthi, A. Shakya, S. H. Kim, S. J. Sim, H. A. Tuan, and A. Pandey. 2023. Emerging trends in role and significance of biochar in gaseous biofuels production. Environmental Technology & Innovation 30:103100. doi:10.1016/j.eti.2023.103100.
  • Soper, D. S. 2021. Greed is good: Rapid hyperparameter optimization and model selection using greedy k-fold cross validation. Electronics 1973 (16):1973. doi:10.3390/electronics10161973.
  • Sri Shalini, S., K. Palanivelu, and A. Ramachandran. 2021. Biochar from biomass waste as a renewable carbon material for climate change mitigation in reducing greenhouse gas emissions—a review. biomass conversion and Biorefinery. 11:2247–67. doi:10.1007/s13399-020-00604-5.
  • Tag, A. T., G. Duman, S. Ucar, and J. Yanik. 2016. Effects of feedstock type and pyrolysis temperature on potential applications of biochar. Journal of Analytical and Applied Pyrolysis 120:200–06. doi:10.1016/J.JAAP.2016.05.006.
  • Tee, J. X., A. Selvarajoo, and S. K. Arumugasamy. 2022. Prediction of carbon sequestration of biochar produced from biomass pyrolysis by artificial neural network. Journal of Environmental Chemical Engineering 10 (3):107640. doi:10.1016/j.jece.2022.107640.
  • Tomczyk, A., Z. Sokołowska, and P. Boguta. 2020. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/technology 19 (1):191–215. doi:10.1007/s11157-020-09523-3.
  • Ucar, S., and A. R. Ozkan. 2008. Characterization of products from the pyrolysis of rapeseed oil cake. Bioresource Technology 99 (18):8771–8776. doi:10.1016/j.biortech.2008.04.040.
  • Ullah, H., Z. U. Haq, S. R. Naqvi, M. N. A. Khan, M. Ahsan, and J. Wang. 2023. Optimization based comparative study of machine learning methods for the prediction of bio-oil produced from microalgae via pyrolysis. Journal of Analytical and Applied Pyrolysis 170:105879. doi:10.1016/j.jaap.2023.105879.
  • Uncuoglu, E., H. Citakoglu, L. Latifoglu, S. Bayram, M. Laman, M. Ilkentapar, and A. A. Oner. 2022. Comparison of neural network, gaussian regression, support vector machine, long short-term memory, multi-gene genetic programming, and M5 trees methods for solving civil engineering problems. Applied Soft Computing 129:109623. doi:10.1016/j.asoc.2022.109623.
  • Wang, B., and T. Chen. 2015. Gaussian process regression with multiple response variables. Chemometrics and Intelligent Laboratory Systems 142:159–65. doi:10.1016/j.chemolab.2015.01.016.
  • Wang, C., W. Li, Z. Yang, Y. Chen, W. Shao, and J. Ji. 2015. An invisible soil acidification: Critical role of soil carbonate and its impact on heavy metal bioavailability. Scientific Reports 5 (1):12735. doi:10.1038/srep12735.
  • Wang, Z., X. Peng, A. Xia, A. A. Shah, Y. Huang, X. Zhu, X. Zhu, and Q. Liao. 2022. The role of machine learning to boost the bioenergy and biofuels conversion. Bioresource Technology 343:126099. doi:10.1016/j.biortech.2021.126099.
  • Wang, J., and S. Wang. 2019. Preparation, modification and environmental application of biochar: A review. Journal of Cleaner Production 227:1002–22. doi:10.1016/j.jclepro.2019.04.282.
  • Wu, J., X.-Y. Chen, H. Zhang, L.-D. Xiong, H. Lei, and S.-H. Deng. 2019. Hyperparameter optimization for machine learning models based on Bayesian optimization. Journal of Electronic Science and Technology 17:26–40. doi:10.11989/JEST.1674-862X.80904120.
  • Wu, Y., Y. Ke, Z. Chen, S. Liang, H. Zhao, and H. Hong. 2020. Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping. Catena 187:104396. doi:10.1016/j.catena.2019.104396.
  • Xiong, X., M. He, S. Dutta, and D. C. W. Tsang. 2022. Biochar and sustainable development goals. In Biochar in agriculture for achieving sustainable development goals, 15–22. Elsevier. doi:10.1016/B978-0-323-85343-9.00027-6.
  • Xu, Y., and B. Chen. 2013. Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresource Technology 146:485–93. doi:10.1016/j.biortech.2013.07.086.
  • Xu, S., J. Chen, H. Peng, S. Leng, L. Hui, W. Qu, Y. Hu, L. Hailong, S. Jiang, W. Zhou, et al. 2021. Effect of biomass type and pyrolysis temperature on nitrogen in biochar, and the comparison with hydrochar. Fuel 291:120128. doi:10.1016/j.fuel.2021.120128.
  • Yang, X., C. Yuan, S. He, D. Jiang, B. Cao, and S. Wang. 2023. Machine learning prediction of specific capacitance in biomass derived carbon materials: Effects of activation and biochar characteristics. Fuel 331:125718. doi:10.1016/j.fuel.2022.125718.
  • Yin, J., and N. Li. 2022. Ensemble learning models with a Bayesian optimization algorithm for mineral prospectivity mapping. Ore Geology Reviews 145:104916. doi:10.1016/j.oregeorev.2022.104916.
  • Yu, S., J. Park, M. Kim, C. Ryu, and J. Park. 2019. Characterization of biochar and byproducts from slow pyrolysis of hinoki cypress. Bioresource Technology Reports 6:217–22. doi:10.1016/j.biteb.2019.03.009.
  • Zhang, C., W.-H. Chen, S.-H. Ho, A. T. Hoang, and Y. Zhang. 2023. Tetracycline-adsorbed biochar for solid biofuel usage to achieve waste utilization for environmental sustainability. Environmental Research 237:116959. doi:10.1016/j.envres.2023.116959.
  • Zhang, W., R. Chen, J. Li, T. Huang, B. Wu, J. Ma, Q. Wen, J. Tan, and W. Huang. 2023. Synthesis optimization and adsorption modeling of biochar for pollutant removal via machine learning. Biochar 5 (1):25. doi:10.1007/s42773-023-00225-x.
  • Zhang, J., J. Liu, and R. Liu. 2015. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresource Technology 176:288–91. doi:10.1016/j.biortech.2014.11.011.
  • Zhang, Y., Z. Ma, Q. Zhang, J. Wang, Q. Ma, Y. Yang, X. Luo, and W. Zhang. 2017. Comparison of the physicochemical characteristics of bio-char pyrolyzed from moso bamboo and rice husk with different pyrolysis temperatures. BioResources 12 (3):4652–69. doi:10.15376/biores.12.3.4652-4669.
  • Zhang, X., P. Zhang, X. Yuan, Y. Li, and L. Han. 2020. Effect of pyrolysis temperature and correlation analysis on the yield and physicochemical properties of crop residue biochar. Bioresource Technology 296:122318. doi:10.1016/j.biortech.2019.122318.
  • Zhaoxia, L., N. Wenjuan, C. Heying, and N. Zhiyou. 2018. Process optimization for straws pyrolysis and analysis of biochar physiochemical properties. Transactions of the Chinese Society of Agricultural Engineering 34:196–203.
  • Zhu, X., Y. Li, and X. Wang. 2019a. Machine learning prediction of biochar yield and carbon contents in biochar based on biomass characteristics and pyrolysis conditions. Bioresource Technology 288:121527. doi:10.1016/j.biortech.2019.121527.
  • Zhu, X., Y. Li, and X. Wang. 2019b. Machine learning prediction of biochar yield and carbon contents in biochar based on biomass characteristics and pyrolysis conditions. Bioresource Technology 288:121527. doi:10.1016/j.biortech.2019.121527.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.