150
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Remaining useful life prediction of proton exchange membrane fuel cell based on Wiener process and Bayesian GRU network considering multi-source uncertainties

, , , &
Pages 2341-2356 | Received 21 Sep 2023, Accepted 04 Jan 2024, Published online: 21 Jan 2024

References

  • Ao, Y., S. Laghrouche, D. Depernet, and K. Chen. 2021. Proton exchange membrane fuel cell prognosis based on frequency-domain kalman filter. IEEE Transactions on Transportation Electrification 7 (4):2332–2343. doi:10.1109/TTE.2021.3077506.
  • Askarzadeh, A., and A. Rezazadeh. 2012. An innovative global harmony search algorithm for parameter identification of a pem fuel cell model. IEEE Transactions on Industrial Electronics 590 (9):3473–3480. doi:10.1109/TIE.2011.2172173.
  • Bressel, M., M. Hilairet, D. Hissel, and B. Ould Bouamama. 2016a. Extended kalman filter for prognostic of proton exchange membrane fuel cell. Applied Energy 164:0 220–227. doi:10.1016/j.apenergy.2015.11.071.
  • Bressel, M., M. Hilairet, D. Hissel, and B. Ould Bouamama. 2016b. Remaining useful life prediction and uncertainty quantification of proton exchange membrane fuel cell under variable load. IEEE Transactions on Industrial Electronics 63 (4):2569–2577. doi:10.1109/TIE.2016.2519328.
  • Chaoui, H., M. Kandidayeni, L. Boulon, S. Kelouwani, and H. Gualous. 2021. Real-time parameter estimation of a fuel cell for remaining useful life assessment. IEEE Transactions on Power Electronics 36 (7):7470–7479. doi:10.1109/TPEL.2020.3044216.
  • Cheng, Y., N. Zerhouni, and C. Lu. 2018. A hybrid remaining useful life prognostic method for proton exchange membrane fuel cell. International Journal of Hydrogen Energy 430 (27):12314–12327. doi:10.1016/j.ijhydene.2018.04.160.
  • Chen, K., S. Laghrouche, and A. Djerdir. 2019. Fuel cell health prognosis using unscented kalman filter: Postal fuel cell electric vehicles case study. International Journal of Hydrogen Energy 440 (3):0 1930–1939. doi:10.1016/j.ijhydene.2018.11.100.
  • Chen, K., S. Laghrouche, and A. Djerdir. 2020. Proton exchange membrane fuel cell prognostics using genetic algorithm and extreme learning machine. Fuel Cells 200 (3):0 263–271. doi:10.1002/fuce.201900085.
  • Cho, K., B. van Merrienboer, C. Gulcehre, Bahdanau D, Bougares F, Schwenk H, and Bengio Y. 2014. Learning phrase representations using rnn encoder-decoder for statistical machine translation. EMNLP 2014 - 2014 Conference on Empirical Methods in Natural Language Processing 7 (4): 1724–34.
  • Corrá, J. M., F. A. Farret, V. Popov, and M. G. Simoes. 2005. Sensitivity analysis of the modeling parameters used in simulation of proton exchange membrane fuel cells. IEEE Transactions on Energy Conversion 20 (1):211–218. doi:10.1109/TEC.2004.842382.
  • FCLAB Research. 2014. Ieee phm 2014 data challenge. Accessed March, 2017. http://eng.fclab.fr/ieeephm-2014-data-challenge/.
  • Hua, Z., Z. Zheng, E. Pahon, M.-C. Péra, and F. Gao. 2021. Remaining useful life prediction of pemfc systems under dynamic operating conditions. Energy Conversion and Management 231:113825. doi:10.1016/j.enconman.2021.113825.
  • Hua, Z., Z. Zheng, E. Pahon, M.-C. Péra, and F. Gao. 2022. A review on lifetime prediction of proton exchange membrane fuel cells system. Journal of Power Sources 529:231256. doi:10.1016/j.jpowsour.2022.231256.
  • Hua, Z., Z. Zheng, M. C. Péra, and F. Gao. 2020. Remaining useful life prediction of pemfc systems based on the multi-input echo state network. Applied Energy 265:114791. doi:10.1016/j.apenergy.2020.114791.
  • Huo, D., and C. M. Hall. 2023. Data-driven prediction of temperature variations in an open cathode proton exchange membrane fuel cell stack using koopman operator. Energy and AI 14:100289. ISSN 2666-5468. doi:10.1016/j.egyai.2023.100289.
  • Jouin, M., R. Gouriveau, D. Hissel, M.-C. Péra, and N. Zerhouni. 2016. Particle filter-based prognostics: Review, discussion and perspectives. Mechanical Systems and Signal Processing 72-73:2–31. doi:10.1016/j.ymssp.2015.11.008.
  • Larminie, J., and A. Dicks. 2003. Fuel cell systems explained, second edition. Chichester, UK: Wiley.
  • Lei, Y., N. Li, and J. Lin. 2016. A new method based on stochastic process models for machine remaining useful life prediction. IEEE Transactions on Instrumentation and Measurement 650 (12):2671–2684. doi:10.1109/TIM.2016.2601004.
  • Li, N., Y. Lei, T. Yan, N. Li, and T. Han. 2019. A wiener process model-based method for remaining useful life prediction considering unit-to-unit variability. IEEE Transactions on Industrial Electronics 660 (3):2092–2101. doi:10.1109/TIE.2018.2838078.
  • Li, Q., P. Liu, X. Meng, G. Zhang, Y. Ai, and W. Chen. 2022. Model prediction control-based energy management combining self-trending prediction and subset-searching algorithm for hydrogen electric multiple unit train. IEEE Transactions on Transportation Electrification 8 (2):2249–2260. doi:10.1109/TTE.2022.3149479.
  • Li, Q., X. Meng, F. Gao, Zhang, G., Chen, W. and Rajashekara, K. 2022. Reinforcement learning energy management for fuel cell hybrid system: A review. IEEE Industrial Electronics Magazine 17 (4):45–54. doi:10.1109/MIE.2022.3148568.
  • Liu, H., J. Chen, D. Hissel, and H. Su. 2019. Remaining useful life estimation for proton exchange membrane fuel cells using a hybrid method. Applied Energy 237:910–919. doi:10.1016/j.apenergy.2019.01.023.
  • Liu, J., Q. Li, W. Chen, Y. Yan, Y. Qiu, and T. Cao. 2019. Remaining useful life prediction of pemfc based on long short-term memory recurrent neural networks. International Journal of Hydrogen Energy 44 (11):5470–5480. doi:10.1016/j.ijhydene.2018.10.042.
  • Li, Q., L. Yin, H. Yang, T. Wang, Y. Qiu, and W. Chen. 2020. Multi-objective optimization and data-driven constraint adaptive predictive control for efficient and stable operation of pemfc system. IEEE Transactions on Industrial Electronics 680 (12):12418–12429. doi:10.1109/TIE.2020.3040662.
  • Mann, R. F., J. C. Amphlett, M. A. I. Hooper, H. M. Jensen, B. A. Peppley, and P. R. Roberge. 2000. Development and application of a generalised steady-state electrochemical model for a pem fuel cell. Journal of Power Sources 86 (1–2):173–180. doi:10.1016/S0378-7753(99)00484-X.
  • Ma, R., R. Xie, L. Xu, Y. Huangfu, and Y. Li. 2021. A hybrid prognostic method for pemfc with aging parameter prediction. IEEE Transactions on Transportation Electrification 7 (4):2318–2331. doi:10.1109/TTE.2021.3075531.
  • Ma, R., T. Yang, E. Breaz, Z. Li, P. Briois, and F. Gao. 2018. Data-driven proton exchange membrane fuel cell degradation predication through deep learning method. Applied Energy 231:102–115. doi:10.1016/j.apenergy.2018.09.111.
  • Mezzi, R., N. Yousfi-Steiner, M. Cecile Pera, D. Hissel, and L. Larger. 2021. An echo state network for fuel cell lifetime prediction under a dynamic micro-cogeneration load profile. Applied Energy 283:116297. doi:10.1016/j.apenergy.2020.116297.
  • Morando, S., S. Jemei, D. Hissel, R. Gouriveau, and N. Zerhouni. 2017. Proton exchange membrane fuel cell ageing forecasting algorithm based on echo state network. International Journal of Hydrogen Energy 42 (2):1472–1480. doi:10.1016/j.ijhydene.2016.05.286.
  • Nagulapati, V. M., S. S. Kumar, V. Annadurai, and H. Lim. 2023. Machine learning based fault detection and state of health estimation of proton exchange membrane fuel cells. Energy and AI 12:100237. ISSN 2666-5468. doi:10.1016/j.egyai.2023.100237.
  • Sarkka, S. 2013. Bayesian filtering and smoothing. Cambridge, UK: Cambridge university press.
  • Si, X., W. Wang, C. Hu, and D.-H. Zhou. 2014. Estimating remaining useful life with three-source variability in degradation modeling. IEEE Transactions on Reliability 63 (1):167–190. doi:10.1109/TR.2014.2299151.
  • Si, X., W. Wang, C. Hu, D.-H. Zhou, and M. G. Pecht. 2012. Remaining useful life estimation based on a nonlinear diffusion degradation process. IEEE Transactions on Reliability 610 (1):50–67. doi:10.1109/TR.2011.2182221.
  • Wang, F., C. Huang, T. Mamo, and X.-B. Cheng. 2021. Ensemble model for the degradation prediction of proton exchange membrane fuel cell stacks. Quality and Reliability Engineering International 370 (1):0 34–46. doi:10.1002/qre.2718.
  • Wang, F., T. Mamo, and X. Cheng. 2020. Bi-directional long short-term memory recurrent neural network with attention for stack voltage degradation from proton exchange membrane fuel cells. Journal of Power Sources 461:228170. doi:10.1016/j.jpowsour.2020.228170.
  • Xie, R., R. Ma, S. Pu, L. Xu, D. Zhao, and Y. Huangfu. 2020. Prognostic for fuel cell based on particle filter and recurrent neural network fusion structure. Energy and AI 2:0 100017. doi:10.1016/j.egyai.2020.100017.
  • Xie, Y., J. Zou, C. Peng, Y. Zhu, and F. Gao. 2020. A novel pem fuel cell remaining useful life prediction method based on singular spectrum analysis and deep gaussian processes. International Journal of Hydrogen Energy 45 (55):30942–30956. doi:10.1016/j.ijhydene.2020.08.052.
  • Zhang, D., P. Baraldi, C. Cadet, N. Yousfi-Steiner, C. Bérenguer, and E. Zio. 2019. An ensemble of models for integrating dependent sources of information for the prognosis of the remaining useful life of proton exchange membrane fuel cells. Mechanical Systems and Signal Processing 124:0 479–501. doi:10.1016/j.ymssp.2019.01.060.
  • Zhang, Z., Y. Wang, H. He, and F. Sun. 2021. A short-and long-term prognostic associating with remaining useful life estimation for proton exchange membrane fuel cell. Applied Energy 304:117841. doi:10.1016/j.apenergy.2021.117841.
  • Zhang, X., D. Yang, M. Luo, and Z. Dong. 2017. Load profile based empirical model for the lifetime prediction of an automotive pem fuel cell. International Journal of Hydrogen Energy 420 (16):0 11868–11878. doi:10.1016/j.ijhydene.2017.02.146.
  • Zhou, D., Y. Wu, F. Gao, E. Breaz, A. Ravey, and A. Miraoui. 2017. Degradation prediction of pem fuel cell stack based on multiphysical aging model with particle filter approach. IEEE Transactions on Industry Applications 530 (4):0 4041–4052. doi:10.1109/TIA.2017.2680406.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.