3,122
Views
8
CrossRef citations to date
0
Altmetric
Review Articles

Metabolic adaptations to endurance training and nutrition strategies influencing performance

ORCID Icon, , &
Pages 134-146 | Received 26 Oct 2018, Accepted 29 Oct 2018, Published online: 09 Nov 2018

References

  • Aird, T. P., Davies, R. W., & Carson, B. P. (2018). Effects of fasted vs. fed state exercise on performance and post‐exercise metabolism: A systematic review & meta‐analysis. Scandinavian Journal of Medicine & Science in Sports, 28, 1476–1493.
  • Akerstrom, T. C., Krogh-Madsen, R., Petersen, A. M., & Pedersen, B. K. (2009). Glucose ingestion during endurance training in men attenuates expression of myokine receptor Experimental Physiology, 94(11), 1124–1131. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19592412
  • Baar, K., & McGee, S. (2008). Optimizing training adaptations by manipulating glycogen. European Journal of Sport Science, 8(2), 97–106.
  • Bartlett, J. D., Hawley, J. A., & Morton, J. P. (2015). Carbohydrate availability and exercise training adaptation: Too much of a good thing? European Journal of Sport Science, 15(1), 3–12.
  • Bartlett, J. D., Louhelainen, J., Iqbal, Z., Cochran, A. J., Gibala, M. J., Gregson, W., … Morton, J. P. (2013). Reduced carbohydrate availability enhances exercise-induced p53 signaling in human skeletal muscle: Implications for mitochondrial biogenesis. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 304(6), R450–R458.
  • Bassett, D. R., & Howley, E. T. (2000). Limiting factors for maximum oxygen uptake and determinants of endurance performance. Medicine and Science in Sports and Exercise, 32(1), 70–84. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10647532
  • Burke, L. M. (2015). Re-examining high-fat diets for sports performance: Did we call the ‘nail in the coffin’too soon? Sports Medicine, 45(1), 33–49.
  • Burke, L. M., Angus, D. J., Cox, G. R., Cummings, N. K., Febbraio, M. A., Gawthorn, K., … Hargreaves, M. (2000). Effect of fat adaptation and carbohydrate restoration on metabolism and performance during prolonged cycling. Journal of Applied Physiology, 89(6), 2413–2421.
  • Burke, L. M., Hawley, J. A., Angus, D. J., Cox, G. R., Clark, S. A., Cummings, N. K., … Hargreaves, M. (2002). Adaptations to short-term high-fat diet persist during exercise despite high carbohydrate availability. Medicine and Science in Sports and Exercise, 34(1), 83–91.
  • Burke, L. M., Ross, M. L., Garvican‐Lewis, L. A., Welvaert, M., Heikura, I. A., Forbes, S. G., … Sharma, A. P. (2017). Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. The Journal of Physiology, 595(9), 2785–2807.
  • Carey, A. L., Staudacher, H. M., Cummings, N. K., Stepto, N. K., Nikolopoulos, V., Burke, L. M., & Hawley, J. A. (2001). Effects of fat adaptation and carbohydrate restoration on prolonged endurance exercise. Journal of Applied Physiology, 91(1), 115–122.
  • Chi, M. M., Hintz, C. S., Coyle, E. F., Martin, W. H., Ivy, J. L., Nemeth, P. M., … Lowry, O. H. (1983). Effects of detraining on enzymes of energy metabolism in individual human muscle fibers The American Journal of Physiology, 244(3), C276–287. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6829750
  • Civitarese, A. E., Hesselink, M. K., Russell, A. P., Ravussin, E., & Schrauwen, P. (2005). Glucose ingestion during exercise blunts exercise-induced gene expression of skeletal muscle fat oxidative genes. American Journal of Physiology-Endocrinology and Metabolism, 289(6), E1023–E1029.
  • Cochran, A. J., Little, J. P., Tarnopolsky, M. A., & Gibala, M. J. (2010). Carbohydrate feeding during recovery alters the skeletal muscle metabolic response to repeated sessions of high-intensity interval exercise in humans. Journal of Applied Physiology, 108(3), 628–636.
  • Cochran, A. J. R., Myslik, F., MacInnis, M. J., Percival, M. E., Bishop, D., Tarnopolsky, M. A., & Gibala, M. J. (2015). Manipulating carbohydrate availability between twice-daily sessions of high-intensity interval training over 2 weeks improves time-trial performance. International Journal of Sport Nutrition and Exercise Metabolism, 25(5), 463–470.
  • Cochran, A. J. R., Percival, M. E., Tricarico, S., Little, J. P., Cermak, N., Gillen, J. B., … Gibala, M. J. (2014). Intermittent and continuous high‐intensity exercise training induce similar acute but different chronic muscle adaptations. Experimental Physiology, 99(5), 782–791.
  • Cole, K. J., Costill, D. L., Starling, R. D., Goodpaster, B. H., Trappe, S. W., & Fink, W. J. (1996). Effect of caffeine ingestion on perception of effort and subsequent work production. International Journal of Sport Nutrition, 6(1), 14–23. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/8653101
  • Costa, R. J., Miall, A., Khoo, A., Rauch, C., Snipe, R., Camões-Costa, V., & Gibson, P. (2017). Gut-training: The impact of two weeks repetitive gut-challenge during exercise on gastrointestinal status, glucose availability, fuel kinetics, and running performance. Applied Physiology, Nutrition, and Metabolism, 42(5), 547–557.
  • Cox, G. R., Clark, S. A., Cox, A. J., Halson, S. L., Hargreaves, M., Hawley, J. A., … Burke, L. M. (2010). Daily training with high carbohydrate availability increases exogenous carbohydrate oxidation during endurance cycling. Journal of Applied Physiology, 109(1), 126–134.
  • Coyle, E. F. (1991). Timing and method of increased carbohydrate intake to cope with heavy training, competition and recovery. Journal of Sports Sciences, 9(S1), 29–52.
  • Coyle, E. F., Coggan, A. R., Hemmert, M., & Ivy, J. L. (1986). Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. Journal of Applied Physiology, 61(1), 165–172.
  • De Bock, K., Derave, W., Eijnde, B. O., Hesselink, M., Koninckx, E., Rose, A. J., … Hespel, P. (2008). Effect of training in the fasted state on metabolic responses during exercise with carbohydrate intake. Journal of Applied Physiology, 104(4), 1045–1055.
  • Dominguez, R., Cuenca, E., Mate-Munoz, J. L., Garcia-Fernandez, P., Serra-Paya, N., Estevan, M. C., … Garnacho-Castano, M. V. (2017). Effects of beetroot juice supplementation on cardiorespiratory endurance in athletes. A systematic review Nutrients, 9(1), 43. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28067808
  • Dominguez, R., Mate-Munoz, J. L., Cuenca, E., Garcia-Fernandez, P., Mata-Ordonez, F., Lozano-Estevan, M. C., … Garnacho-Castano, M. V. (2018). Effects of beetroot juice supplementation on intermittent high-intensity exercise efforts. Journal of the International Society of Sports Nutrition, 15, 2. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29311764
  • Dudley, G. A., Abraham, W. M., & Terjung, R. L. (1982). Influence of exercise intensity and duration on biochemical adaptations in skeletal muscle Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology, 53(4), 844–850. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6295989
  • Esteve-Lanao, J., Foster, C., Seiler, S., & Lucia, A. (2007). Impact of training intensity distribution on performance in endurance athletes The Journal of Strength and Conditioning Research, 21(3), 943. Retrieved from http://nsca.allenpress.com/nscaonline/?request=get-abstract&doi=10.1519%2FR-19725.1
  • Esteve-Lanao, J., San Juan, A. F., Earnest, C. P., Foster, C., & Lucia, A. (2005). How do endurance runners actually train? Relationship with competition performance. Medicine and Science in Sports and Exercise, 37(3), 496–504. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15741850
  • Flood, A., Waddington, G., & Cathcart, S. (2017). Examining the relationship between endogenous pain modulation capacity and endurance exercise performance. Research in Sports Medicine, 25(3), 300–312.
  • Gejl, K. D., Thams, L. B., Hansen, M., Rokkedal-Lausch, T., Plomgaard, P., Nybo, L., … Holmberg, H.-C. (2017). No superior adaptations to carbohydrate periodization in elite endurance athletes. Medicine and Science in Sports and Exercise, 49(12), 2486–2497.
  • Glaister, M., Pattison, J. R., Muniz-Pumares, D., Patterson, S. D., & Foley, P. (2015). Effects of dietary nitrate, caffeine, and their combination on 20-km cycling time trial performance Journal of Strength and Conditioning Research, 29(1), 165–174. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24978834
  • Goedecke, J. H., Christie, C., Wilson, G., Dennis, S. C., Noakes, T. D., Hopkins, W. G., & Lambert, E. V. (1999). Metabolic adaptations to a high-fat diet in endurance cyclists. Metabolism, 48(12), 1509–1517.
  • Goncalves, L. S., Painelli, V. S., Yamaguchi, G., Oliveira, L. F., Saunders, B., Da Silva, R. P., … Gualano, B. (2017). Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation Journal of Applied Physiology, 123(1), 213–220. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28495846
  • Gonzalez, J. T., Fuchs, C. J., Smith, F. E., Thelwall, P. E., Taylor, R., Stevenson, E. J., … Van Loon, L. J. (2015). Ingestion of glucose or sucrose prevents liver but not muscle glycogen depletion during prolonged endurance-type exercise in trained cyclists. American Journal of Physiology-Endocrinology and Metabolism, 309(12), E1032–E1039.
  • Graham-Paulson, T., Perret, C., & Goosey-Tolfrey, V. (2016). Improvements in cycling but not handcycling 10 km time trial performance in habitual caffeine users. Nutrients, 8(7). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27348000
  • Guest, N., Corey, P., Vescovi, J., & El-Sohemy, A. (2018). Caffeine, CYP1A2 genotype, and endurance performance in athletes Medicine and Science in Sports and Exercise, 50(8), 1570–1578. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29509641
  • Handzlik, M. K., & Gleeson, M. (2013). Likely additive ergogenic effects of combined preexercise dietary nitrate and caffeine ingestion in trained cyclists. ISRN Nutrition, 2013, 396581. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24967257
  • Havemann, L., West, S. J., Goedecke, J. H., Macdonald, I. A., St Clair Gibson, A., Noakes, T., & Lambert, E. V. (2006). Fat adaptation followed by carbohydrate loading compromises high-intensity sprint performance. Journal of Applied Physiology, 100(1), 194–202.
  • Helge, & Kiens, B. (1997). Muscle enzyme activity in humans: Role of substrate availability and training. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 272(5), R1620–R1624.
  • Helge, Richter, E. A., & Kiens, B. (1996). Interaction of training and diet on metabolism and endurance during exercise in man. The Journal of Physiology, 492(1), 293–306.
  • Howarth, K. R., Phillips, S. M., MacDonald, M. J., Richards, D., Moreau, N. A., & Gibala, M. J. (2010). Effect of glycogen availability on human skeletal muscle protein turnover during exercise and recovery. Journal of Applied Physiology, 109(2), 431–438.
  • Hulston, C. J., & Jeukendrup, A. E. (2008). Substrate metabolism and exercise performance with caffeine and carbohydrate intake Medicine and Science in Sports and Exercise, 40(12), 2096–2104. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18981939
  • Hulston, C. J., Venables, M. C., Mann, C. H., Martin, C., Philp, A., Baar, K., & Jeukendrup, A. E. (2010). Training with low muscle glycogen enhances fat metabolism in well-trained cyclists. Medicine and Science in Sports and Exercise, 42(11), 2046–2055.
  • Impey, S. G., Smith, D., Robinson, A. L., Owens, D. J., Bartlett, J. D., Smith, K., … Close, G. L. (2015). Leucine-enriched protein feeding does not impair exercise-induced free fatty acid availability and lipid oxidation: Beneficial implications for training in carbohydrate-restricted states. Amino Acids, 47(2), 407–416.
  • Jeukendrup, A. E. (2010). Carbohydrate and exercise performance: The role of multiple transportable carbohydrates Current Opinion in Clinical Nutrition & Metabolic Care, 13(4), 452–457. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/20574242
  • Jeukendrup, A. E., Moseley, L., Mainwaring, G. I., Samuels, S., Perry, S., & Mann, C. H. (2006). Exogenous carbohydrate oxidation during ultraendurance exercise Journal of Applied Physiology, 100(4), 1134–1141. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/16322366
  • Jeukendrup, A. E., Wagenmakers, A. J., Stegen, J., Gijsen, A. P., Brouns, F., & Saris, W. (1999). Carbohydrate ingestion can completely suppress endogenous glucose production during exercise. American Journal of Physiology-Endocrinology and Metabolism, 276(4), E672–E683.
  • Jones, A. M. (2014). Dietary nitrate supplementation and exercise performance Sports Medicine (Auckland, N.Z.), 44(Suppl 1), S35–S45. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24791915
  • Joyner, M. J., & Coyle, E. F. (2008). Endurance exercise performance: The physiology of champions: Factors that make champions. The Journal of Physiology, 586(1), 35–44.
  • Kasper, A. M., Cocking, S., Cockayne, M., Barnard, M., Tench, J., Parker, L., … Morton, J. P. (2016). Carbohydrate mouth rinse and caffeine improves high-intensity interval running capacity when carbohydrate restricted. European Journal of Sport Science, 16(5), 560–568.
  • Kiens, B., Essen‐Gustavsson, B., Gad, P., & Lithell, H. (1987). Lipoprotein lipase activity and intramuscular triglyceride stores after long‐term high‐fat and high‐carbohydrate diets in physically trained men. Clinical Physiology and Functional Imaging, 7(1), 1–9.
  • King, A. J., O’Hara, J. P., Morrison, D. J., Preston, T., & King, R. (2018). Carbohydrate dose influences liver and muscle glycogen oxidation and performance during prolonged exercise. Physiological Reports, 6(1). Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29333721
  • Knapik, J. J., Meredith, C. N., Jones, B. H., Suek, L., Young, V. R., & Evans, W. J. (1988). Influence of fasting on carbohydrate and fat metabolism during rest and exercise in men. Journal of Applied Physiology (Bethesda, Md. : 1985), 64(5), 1923–1929.
  • Lambert, E. V., Goedecke, J. H., van Zyl, C., Murphy, K., Hawley, J. A., Dennis, S. C., & Noakes, T. D. (2001). High-fat diet versus habitual diet prior to carbohydrate loading: Effects on exercise metabolism and cycling performance. International Journal of Sport Nutrition and Exercise Metabolism, 11(2), 209–225.
  • Lane, S. C., Camera, D. M., Lassiter, D. G., Areta, J. L., Bird, S. R., Yeo, W. K., … Burke, L. M. (2015). Effects of sleeping with reduced carbohydrate availability on acute training responses. Journal of Applied Physiology, 119(6), 643–655.
  • Lane, S. C., Hawley, J. A., Desbrow, B., Jones, A. M., Blackwell, J. R., Ross, M. L., … Burke, L. M. (2014). Single and combined effects of beetroot juice and caffeine supplementation on cycling time trial performance Applied Physiology, Nutrition, and Metabolism, 39(9), 1050–1057. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25154895
  • Leckey, J. J., Hoffman, N. J., Parr, E. B., Devlin, B. L., Trewin, A. J., Stepto, N. K., … Hawley, J. A. (2018). High dietary fat intake increases fat oxidation and reduces skeletal muscle mitochondrial respiration in trained humans FASEB Journal, 32(6), 2979–2991. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29401600
  • Lee, J., Kim, H. T., Solares, G. J., Kim, K., Ding, Z., & Ivy, J. L. (2015). Caffeinated nitric oxide-releasing lozenge improves cycling time trial performance International Journal of Sports Medicine, 36(2), 107–112. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/25285468
  • Lundby, C., Montero, D., & Joyner, M. (2017). Biology of VO2max: Looking under the physiology lamp. Journal of Acta Physiologica, 220(2), 218–228.
  • MacAuley, D. (2005). Profile: Roger Bannister Lancet, 366(Suppl 1), S14–S15. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/16360731
  • MacInnis, M. J., & Gibala, M. J. (2017). Physiological adaptations to interval training and the role of exercise intensity The Journal of Physiology, 595(9), 2915–2930. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27748956
  • Marquet, L.-A., Brisswalter, J., Louis, J., Tiollier, E., Burke, L., Hawley, J., & Hausswirth, C. (2016a). Enhanced endurance performance by periodization of CHO intake:” sleep low” strategy. Medicine and Science in Sports and Exercise, 48(4), 663–672.
  • Marquet, L.-A., Hausswirth, C., Molle, O., Hawley, J. A., Burke, L. M., Tiollier, E., & Brisswalter, J. (2016b). Periodization of carbohydrate intake: Short-term effect on performance. Nutrients, 8(12), 755.
  • McConell, G., Fabris, S., Proietto, J., & Hargreaves, M. (1994). Effect of carbohydrate ingestion on glucose kinetics during exercise Journal of Applied Physiology, 77(3), 1537–1541. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/7836162
  • McMahon, N. F., Leveritt, M. D., & Pavey, T. G. (2017). The effect of dietary nitrate supplementation on endurance exercise performance in healthy adults: A systematic review and meta-analysis Sports Medicine (Auckland, N.Z.), 47(4), 735–756. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27600147
  • McSwiney, F. T., Wardrop, B., Hyde, P. N., Lafountain, R. A., Volek, J. S., & Doyle, L. (2018). Keto-adaptation enhances exercise performance and body composition responses to training in endurance athletes. Metabolism, 81, 25–34.
  • Newell, M. L., Hunter, A. M., Lawrence, C., Tipton, K. D., & Galloway, S. D. R. (2015). The ingestion of 39 or 64 g· hr− 1 of carbohydrate is equally effective at improving endurance exercise performance in cyclists. Journal of International Journal of Sport Nutrition Exercise Metabolism, 25(3), 285–292.
  • Newell, M. L., Wallis, G. A., Hunter, A. M., Tipton, K. D., & Galloway, S. D. (2018). Metabolic responses to carbohydrate ingestion during exercise: Associations between carbohydrate dose and endurance performance. Nutrients, 10(1), 37.
  • Nikolopoulos, V., Arkinstall, M. J., & Hawley, J. A. (2004). Reduced neuromuscular activity with carbohydrate ingestion during constant load cycling. International Journal of Sport Nutrition and Exercise Metabolism, 14(2), 161–170. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/15118190
  • Peters, S. J., St. Amand, T. A., Howlett, R. A., Heigenhauser, G. J., & Spriet, L. L. (1998). Human skeletal muscle pyruvate dehydrogenase kinase activity increases after a low-carbohydrate diet. American Journal of Physiology-Endocrinology and Metabolism, 275(6), E980–E986.
  • Plews, D. J., & Laursen, P. B. (2017). Training intensity distribution over a four-year cycle in olympic champion rowers: Different roads lead to rio. International Journal of Sports Physiology and Performance, 1–24. Retrieved from http://journals.humankinetics.com/doi/10.1123/ijspp.2017-0343
  • Pochmuller, M., Schwingshackl, L., Colombani, P. C., & Hoffmann, G. (2016). A systematic review and meta-analysis of carbohydrate benefits associated with randomized controlled competition-based performance trials. Journal of the International Society of Sports Nutrition, 13, 27. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27408608
  • Randell, R. K., Rollo, I., Roberts, T. J., Dalrymple, K. J., Jeukendrup, A. E., & Carter, J. M. (2017). Maximal fat oxidation rates in an athletic population. Medicine and Science in Sports and Exercise, 49, 133–140.
  • Raney, M. A., & Turcotte, L. P. (2006). Regulation of contraction-induced FA uptake and oxidation by AMPK and ERK1/2 is intensity dependent in rodent muscle. American Journal of Physiology-Endocrinology and Metabolism, 291(6), E1220–E1227.
  • Rimer, E. G., Peterson, L. R., Coggan, A. R., & Martin, J. C.performance. (2016). Acute dietary nitrate supplementation increases maximal cycling power in athletes. International Journal of Sports Physiology and Performance, 116, 715.
  • Rosset, R., Egli, L., & Lecoultre, V. (2017). Glucose-fructose ingestion and exercise performance: The gastrointestinal tract and beyond European Journal of Sport Science, 17(7), 874–884. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28441908
  • Rowlands, D. S., & Hopkins, W. G. (2002). Effects of high-fat and high-carbohydrate diets on metabolism and performance in cycling. Metabolism, 51(6), 678–690.
  • Rowlands, D. S., Houltham, S., Musa-Veloso, K., Brown, F., Paulionis, L., & Bailey, D. (2015). Fructose-glucose composite carbohydrates and endurance performance: Critical review and future perspectives Sports Medicine (Auckland, N.Z.), 45(11), 1561–1576. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26373645
  • Silva-Cavalcante, M. D., Correia-Oliveira, C. R., Santos, R. A., Lopes-Silva, J. P., Lima, H. M., Bertuzzi, R., … Lima-Silva, A. E. (2013). Caffeine increases anaerobic work and restores cycling performance following a protocol designed to lower endogenous carbohydrate availability. PLoS One, 8(8), e72025.
  • Sitkowski, D., Szygula, Z., Pokrywka, A., Turowski, D., & Malczewska-Lenczowska, J. (2018). Interrelationships between changes in erythropoietin, plasma volume, haemoglobin concentration, and total haemoglobin mass in endurance athletes. Research in sports medicine, 26(3), 1–9. Retrieved from https://www.tandfonline.com/doi/abs/10.1080/15438627.2018.1447936?journalCode=gspm20
  • Smith, J. W., Pascoe, D. D., Passe, D. H., Ruby, B. C., Stewart, L. K., Baker, L. B., & Zachwieja, J. J. (2013). Curvilinear dose-response relationship of carbohydrate (0-120 g.h(−1)) and performance Medicine and Science in Sports and Exercise, 45(2), 336–341. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22968309
  • Smith, J. W., Zachwieja, J. J., Peronnet, F., Passe, D. H., Massicotte, D., Lavoie, C., & Pascoe, D. D. (2010). Fuel selection and cycling endurance performance with ingestion of [13C]glucose: Evidence for a carbohydrate dose response Journal of Applied Physiology (Bethesda, Md. : 1985), 108(6), 1520–1529. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/20299609
  • Southward, K., Rutherfurd-Markwick, K. J., & Ali, A. (2018). The effect of acute caffeine ingestion on endurance performance: A systematic review and meta-analysis Sports Medicine, 48(8), 1913–1928. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29876876
  • Stannard, S. R., Buckley, A. J., Edge, J. A., & Thompson, M. W. (2010). Adaptations to skeletal muscle with endurance exercise training in the acutely fed versus overnight-fasted state. Journal of Science and Medicine in Sport, 13(4), 465–469.
  • Stellingwerff, T. (2012). Case study: Nutrition and training periodization in three elite marathon runners. International Journal of Sport Nutrition and Exercise Metabolism, 22(5), 392–400.
  • Stellingwerff, T. (2016). Competition nutrition practices of elite ultramarathon runners International Journal of Sport Nutrition and Exercise Metabolism, 26(1), 93–99. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26061831
  • Stellingwerff, T., Spriet, L. L., Watt, M. J., Kimber, N. E., Hargreaves, M., Hawley, J. A., & Burke, L. M. (2006). Decreased PDH activation and glycogenolysis during exercise following fat adaptation with carbohydrate restoration. American Journal of Physiology-Endocrinology and Metabolism, 290(2), E380–E388.
  • Tarnopolsky, M. A., Gibala, M., Jeukendrup, A. E., & Phillips, S. M. (2005). Nutritional needs of elite endurance athletes. Part II: Dietary protein and the potential role of caffeine and creatine. European Journal of Sport Science, 5(2), 59–72.
  • Thompson, C., Wylie, L. J., Blackwell, J. R., Fulford, J., Black, M. I., Kelly, J., … Jones, A. M. (2017). Influence of dietary nitrate supplementation on physiological and muscle metabolic adaptations to sprint interval training Journal of Applied Physiology (Bethesda, Md. : 1985), 122(3), 642–652. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27909231
  • Van Proeyen, K., Szlufcik, K., Nielens, H., Ramaekers, M., & Hespel, P. (2010). Beneficial metabolic adaptations due to endurance exercise training in the fasted state. Journal of Applied Physiology, 110(1), 236–245.
  • Vaughan, R. A., Gannon, N. P., & Carriker, C. R. (2016). Nitrate-containing beetroot enhances myocyte metabolism and mitochondrial content Journal of Traditional Complementary Medicine, 6(1), 17–22. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26870674
  • Volek, J. S., Freidenreich, D. J., Saenz, C., Kunces, L. J., Creighton, B. C., Bartley, J. M., … Maresh, C. M. (2016). Metabolic characteristics of keto-adapted ultra-endurance runners. Metabolism, 65(3), 100–110.
  • Volek, J. S., Noakes, T., & Phinney, S. D. (2015). Rethinking fat as a fuel for endurance exercise. European Journal of Sport Science, 15(1), 13–20.
  • Webster, C. C., Swart, J., Noakes, T. D., & Smith, J. A. (2018). A carbohydrate ingestion intervention in an elite athlete who follows a low-carbohydrate high-fat diet International Journal of Sports Physiology and Performance, 13(7), 957–960. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/29252062
  • Whitfield, J., Ludzki, A., Heigenhauser, G. J., Senden, J. M., Verdijk, L. B., van Loon, L. J., … Holloway, G. P. (2016). Beetroot juice supplementation reduces whole body oxygen consumption but does not improve indices of mitochondrial efficiency in human skeletal muscle The Journal of Physiology, 594(2), 421–435. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26457670
  • Womack, C. J., Saunders, M. J., Bechtel, M. K., Bolton, D. J., Martin, M., Luden, N. D., … Hancock, M. (2012). The influence of a CYP1A2 polymorphism on the ergogenic effects of caffeine Journal of the International Society of Sports Nutrition, 9(1), 7. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22420682
  • Yeo, W. K., Lessard, S. J., Chen, Z.-P., Garnham, A. P., Burke, L. M., Rivas, D. A., … Hawley, J. A. (2008). Fat adaptation followed by carbohydrate restoration increases AMPK activity in skeletal muscle from trained humans. Journal of Applied Physiology, 105(5), 1519–1526.
  • Zajac, A., Poprzecki, S., Maszczyk, A., Czuba, M., Michalczyk, M., & Zydek, G. (2014). The effects of a ketogenic diet on exercise metabolism and physical performance in off-road cyclists. Nutrients, 6(7), 2493–2508.
  • Zinn, C., Wood, M., Williden, M., Chatterton, S., & Maunder, E. (2017). Ketogenic diet benefits body composition and well-being but not performance in a pilot case study of New Zealand endurance athletes. Journal of the International Society of Sports Nutrition, 14(1), 22.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.